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ON 1-VERTEX BIMAGIC VERTEX LABELING

J. BASKAR BABUJEE AND S. BABITHA

Abstract. A 1-vertex magic vertex labeling of a graph G with p vertices is defined as a

bijection f from the vertices to the integers 1,2, . . . , p with the property that there is a

constant k such that at any vertex x,
∑

y∈N(x)

f (y) = k, where N (x) is the set of vertices

adjacent to x. In this paper we introduce 1-vertex bimagic vertex labeling of a graph G

and obtain the necessary condition for a graph to be 1-vertex bimagic. We exhibit the

same type of labeling for some class of graphs and give some general results.

1. Introduction

A labeling of a graph is assigning labels to the vertices, edges or both vertices and edges.

In most applications labels are positive (or nonnegative) integers, though in general real num-

bers could be used. For various types of graph labeling one can refer the survey of graph

labeling by J.A. Gallian [3]. In 1963, Sedláĉek [7] introduced the magic labeling for a graph

G =G(V ,E ) which is defined as a bijection f from E to a set of positive integers such that

(i) f (ei ) 6= f (e j ) for all distinct ei ,e j ∈ E , and

(ii)
∑

e∈NE (x)

f (e) is the same for every x ∈V , where NE (x) is the set of edges incident to x.

MacDougall, Miller, Slamin and Wallis [4] introduced the notion of a vertex-magic total

labeling in 1999. For a graph G(V ,E ) a bijective mapping f from V ∪E to the set {1,2, . . . , |V ∪E |}

is a vertex-magic total labeling if there is a constant k , called the magic constant, such that for

every vertex v , f (v)+
∑

f (vu) = k where the sum is over all vertices u adjacent to v (some

authors use the term “vertex-magic” for this concept). In [1, 2], edge bimagic total labeling

was introduced by J. Baskar Babujee. A graph G(p, q) with p vertices and q edges is called

edge bimagic total if there exists a bijection f : V ∪E → {1,2, . . . , p +q} such that for any edge

uv ∈ E , we have two constants k1 and k2 with f (u)+ f (v)+ f (uv)= k1 or k2.
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In [5] Mirka Miller et al. defined the 1-vertex-magic vertex labeling of a graph with p

vertices defined as a bijection f taking the vertices to the integers 1,2, . . . , p with the property

that there is a constant k such that at any vertex x,
∑

y∈N(x)

f (y) = k , where N (x) is the set of

vertices adjacent to x (that is, distance 1 from x).

A necessary condition for the existence of a 1-vertex magic vertex labeling is given in [5]

as follows:

If f is 1-vertex magic vertex labeling then
∑

x∈V

d (x) f (x) = k p where d (x) is the degree of vertex

x.

A 1-vertex-magic vertex labeling is the same as sigma labeling or Σ-labeling defined by

Vilfred [11]. It becomes interesting when we arrive with 1-vertex magic vertex labeling sum-

ming to exactly two distinct constants say k1 or k2. This motivates us to work in 1-vertex

bimagic vertex labeling. This paper is organized as follows. In section 2, we introduce a 1-

vertex bimagic vertex labeling and which classes of graphs are and are not 1-vertex bimagic.

In section 3, we prove a 1-vertex bimagic vertex labeling for complete symmetric multipartite

graph. In section 4, we prove some general results on regular or bi-regular1-vertex bimagic-

graphs. In section 5, we conclude this paper with an open problem.

2. 1-Vertex Bimagic Vertex Labeling

Definition 2.1. A bijective labeling f : V (G) → {1,2, . . . , p} is called a 1-vertex bimagic vertex

labeling if for each vertex u ∈ V (G), the sum of all f (v) such that v is adjacent to u is either

k1 or k2 (i.e) for all u ∈V (G),
∑

uv∈E(G)

f (v) = k1 or k2 Where k1 and k2 are distinct constants. A

graph which has a 1-vertex bimagic vertex labeling is called a 1-vertex bimagic graph.

Definition 2.2. A bijective labeling f : V (G) → {1,3, . . . ,2p−1} is called a odd 1-vertex bimagic

vertex labeling if for each vertex u ∈ V (G), the sum of all f (v) such that v is adjacent to u

is either k1 or k2 (i.e) for all u ∈ V (G),
∑

uv∈E(G)

f (v) = k1 or k2 Where k1 and k2 are distinct

constants.

Definition 2.3. A bijective labeling f : V (G) → {0,2, . . . ,2(p−1)} is called a even 1-vertex bimagic

vertex labeling if for each vertex u ∈ V (G), the sum of all f (v) such that v is adjacent to u is

either k1 or k2 (i.e) for all u ∈ V (G),
∑

uv∈E(G)

f (v) = k1 or k2 Where k1 and k2 are distinct con-

stants.

Theorem 2.1. A necessary condition for the existence of a 1-vertex bimagic vertex labeling f of

a graph G is
∑

x∈V

d (x) f (x) = k1p1 +k2p2 (2.1)
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where d (x) is the degree of vertex x and p1, p2 are the number of vertices with common count

k1 and k2 respectively.

Proof. Let V =V1∪V2 and |V1| = p1, |V2| = p2 = p−p1 where p1 and p2 the number of vertices

with common count k1 and k2 respectively. Consider L.H.S of (2.1),

∑

x∈V

d (x) f (x) =
∑

x∈V1

d (x) f (x)+
∑

x∈V2

d (x) f (x) (2.2)

Consider the two sub graphs G1 and G2 of G with vertex sets V1 and V2 respectively. Apply-

ing the necessary condition for the existence of a 1-vertex magic vertex labeling given in [5]

mentioned in introduction of our paper, (2.2) becomes

∑

x∈V

d (x) f (x) = k1p1 +k2p2. ���

Theorem 2.2. If G has a 1-vertex magic vertex labeling and G 6= C4, then G +K1 admits a 1-

vertex bimagic vertex labeling.

Proof. If G is cycle C4 then C4+K1 is 1-vertex magic. Let G(p, q) has a 1-vertex magic vertex la-

beling then there exist a function f : V → {1,2, . . . , p} such that for every vertex u,
∑

uv∈E(G)

f (v)=

r . Now we define the new graph called G1 = G +K1 with vertex set V1(G1) = V (G)∪ {x} and

E1(G1) = E (G)∪ {xvi : 1 ≤ i l eqp}. Consider the bijective function g : V1 → {1,2, . . . , p, p +1}

defined by

g (vi ) = f (vi ); 1 ≤ i ≤ p or vi ∈V (G)

g (x) = p +1.

Since the graph G is already 1-vertex magic vertex labeling, for every u ∈V1(G),

∑

uv∈E1(G1)

g (v)=
∑

uv∈E(G)

f (v)+ g (x)

= r +p +1 = k1(say)

For the newly added vertex x,

∑

v∈N(x)

g (v)=
p
∑

i=1

g (vi ) =
p
∑

i=1

f (vi )= 1+2+3+·· · +p =
p(p +1)

2
= k2(say)

This proves that G +K1 admits a 1-vertex bimagic vertex labeling. ���

Theorem 2.3. The path graph Pn , n > 3 is not a 1-vertex bimagic.

Proof. If n ≤ 3, Pn is a 1-vertex bimagic. Consider the path Pn , n > 3 with vertex set {v1, v2, . . . , vn}

and edge set {vi vi+1 : 1 ≤ i ≤ n − 1}. If we arrange the labels {a1, a2, . . . , an} for the vertices



262 J. BASKAR BABUJEE AND S. BABITHA

{v1, v2, . . . , vn} by permutation, the common count of v1 is a2 = k1 (say) and vn is an−1 = k2

(say). For all other vertices from {v2, . . . , vn−1} the common count is {a1+a3, a2+a4, . . . , an−2+

an} respectively. Since the function f is bijective, (all the vertices having distinct la-

beling) these n − 2 counts cannot be either k1 or k2. Hence the path graph Pn is not a

1-vertex bimagic. ���

Theorem 2.4. The cycle graph Cn is a 1-vertex bimagic if and only if n = 4.

Proof. Consider the cycle Cn (n ≥ 5) with vertex set {v1, v2, . . . , vn} and edge set {vi vi+1 : 1 ≤

i ≤ n − 1}∪ {vn v1}. If we arrange the labels {a1, a2, . . . , an} for the vertices {v1, v2, . . . , vn} by

permutation, the common count of v2 is a1+a3 = k1 (say) and vn is an−1+a1 = k2 (say). For all

other vertices {v1, v3, . . . , vn−1} the common count is {a1+an , a2+a4, . . . , an−2+an} respectively.

Since the function f is bijective, (all the vertices having distinct labeling) these n −2 counts

cannot be either k1 or k2. Hence the cycle Cn (n ≥ 5) is not a 1-vertex bimagic.

Conversely, Consider the cycle Cn with n = 4. The vertices of the cycle C4 are v1, v2, v3, v4.

Let the function f : V (G) → {1,2,3,4} be defined as f (vi ) = i . Consider the common count of

the labels of v1 and v3, we have
∑

v3u∈E(G)

f (u) = f (v2)+ f (v4) = 6 and for the common count

of the labels of v2 and v4, we have
∑

v3u∈E(G)

f (u) = f (v1)+ f (v3) = 4. Thus for the cycle C4, we

have two constants 6 and 4. Hence the cycle Cn is a 1-vertex bimagic when n = 4. ���

Theorem 2.5. The complete bipartite graph Km.n has a 1-vertex bimagic vertex labeling.

Proof. Let G(V ,E ) be a complete bipartite graph with vertex set V (G) = {v1, v2, . . . , vm ,u1,u2, . . .,

un} and edge set be E (G) = {vi u j : 1 ≤ i ≤m,1 ≤ i ≤ n}. Define the function f : V (G) . . . {1,2, . . .,

m +n} as follows

If m ≤n,

f (vi ) = i for 1 ≤ i ≤ m,

f (u j )= m + j for 1 ≤ j ≤ n

If m >n,

f (vi ) = i for 1 ≤ i ≤ n,

f (u j )= n + j for 1 ≤ j ≤m

If m ≤n, for any vertex vi ∈V (G),

∑

vi u∈E(G)

f (u) =
n
∑

j=1

u j =

n
∑

j=1

m + j = nm + (1+2+·· ·+n)= nm +
n(n +1)

2
= k1

For any vertex u j ∈V (G),

∑

ui u∈E(G)

f (u)=
m
∑

i=1

vi =

m
∑

i=1

i = 1+2+·· · +m =
m(m +1)

2
= k2
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Thus for any vertex v ∈V (G) we have two constants k1 or k2.

Similarly for m > n, we get the two constants k1 and k2 vice versa. Which proves that

complete bipartite graph Km.n has a 1-vertex-bimagic vertex labeling. ���

Definition 2.4. A graph Go(Pn ) is obtained from a path Pn by introducing new edges between

any two vertices if they are at odd distance.

Go(Pn) has n vertices and
(

n2−1
4

)

edges if n is odd and
(

n2

4

)

edges if n is even.

Also Go(Pn) is
(

n−1
2 , n+1

2

)

bi-regular when n is odd and
(

n
2

)

regular when n is even.

The 1-vertex-bimagic vertex labeling for Go(P9) and Go(P10) is shown below.

Example 2.1.

K1 = 20,K2 = 25 K1 = 30,K2 = 25

Figure 1: 1-vertex bimagic vertex labeling for Go(P9) and Go(P10).

Theorem 2.6. The graph Go(Pn), n ≥ 3 has 1-vertex bimagic vertex labeling.

Proof. Consider the graph Go(Pn). We prove this theorem in two cases

Case 1: When n is odd

The vertex set and edge set be defined as V (G) = {v1, v2, . . . , vn}. As per the definition of

Go(Pn) we construct the edge set with respect to the index of the vertices as follows E (G) =
{

vi v2 j : 1 ≤ j ≤ n−1
2 and for i is odd

}

∪
{

vi v2 j−1 : 1 ≤ j ≤ n+1
2 and fori is even

}

. Define a bijec-

tive function f : V (G) → {1,2, . . . ,n} as follows

f (vi ) = i for 1 ≤ i ≤n.

For any vertex vi ∈V (G), if i is odd

∑

vi u∈E(G)

f (u)=

n−1
2

∑

j=1

f (v2 j ) =

n−1
2

∑

j=1

2 j = 2

n−1
2

∑

j=1

j

= 2

(

1+2+·· ·+
n −1

2

)
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=
n −1

2

(

n +1

2

)

= k1(say)

For any vertex vi ∈V (G), if i is even

∑

vi u∈E(G)

f (u) =

n−1
2

∑

j=1

f (v2 j−1) =

n−1
2

∑

j=1

(2 j −1) = 2

n−1
2

∑

j=1

j

(

n +1

2

)

= 2

(

1+2+·· ·+
n +1

2

)

−

(

n +1

2

)

=
n +1

2

(

n +3

2

)

−

(

n +1

2

)

=

(

n +1

2

)2

= k2(say)

Thus for any vertex v ∈V (G) we have two constants k1 or k2.

Case 2: When n is even

The vertex set and edge set be defined as V (G) = {v1, v2, . . . , vn}. As per the definition of

Go(Pn) we construct the edge set with respect to the index of the vertices as follows E (G) =
{

vi v2 j : 1 ≤ j ≤ n
2

and for i is odd
}

∪
{

vi v2 j−1 : 1≤ j ≤ n
2

and for i is even
}

. Define a bijective

function f : V (G) → {1,2, . . . ,n} as follows

f (vi ) = i for 1 ≤ i ≤ n.

For any vertex vi ∈V (G), for i is odd

∑

vi u∈E(G)

f (u) =

n
2

∑

j=1

f (v2 j ) =

n
2

∑

j=1

2 j = 2

n
2

∑

j=1

j

= 2
(

1+2+·· ·+
n

2

)

=
n

2

(n

2
+1

)

= k1(say)

For any vertex vi ∈V (G), for i is even

∑

vi u∈E(G)

f (u)=

n
2

∑

j=1

f (v2 j−1) =

n
2

∑

j=1

2 j −1 = 2

n
2

∑

j=1

j −
(n

2

)

= 2
(

1+2+·· · +
n

2

)

−

(n

2

)

=
n

2

(n

2
+1

)

−

(n

2

)

=

(n

2

)2
= k2(say)

Thus for any vertex v ∈V (G) we have two constants k1 or k2.

Hence the graph Go(Pn) has 1-vertex-bimagic vertex labeling. ���
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3. 1-vertex bimagic vertex labeling for complete symmetric multipartite graph

Let Hn,p , n > 1 and p > 1 denote the complete symmetric multipartite graph with p parts,

each of which contains n vertices. Hn,p is a graph with p partition which has equal number of

vertices and every vertex of G in each partition connected to all other vertices of the remaining

(p − 1) partitions. The number of vertices and edges in Hn,p is np and

(

p

2

)

n2 respectively.

Another way of describing Hn.p is as follows: Consider a complete graph Kp with p vertices

{x1, x2, x3, . . . , xp }. By replacing every vertex in Kp with n pairs of vertices, each joined to all

vertices corresponding to the neighbours of the original vertex of Kp , we obtain the graph

Hn,p .

Example 3.2. 1-vertex bimagic vertex labeling for complete symmetric multipartite graphs

H6,6 and H5,6 is given below

Figure 2: 1-vertex bimagic vertex labeling for complete symmetric multipartite graph

Theorem 3.7. Let n > 1 and p > 1. Hn,p has a 1-vertex bimagic vertex labeling, for

(i) any p, when n is even

(ii) even p, when n is odd.

Proof. Consider a graph Hn,p . We prove this theorem in two cases.

Case 1: For any p , when n is even

Let xi j be the vertices of Hn,p , 1 ≤ i ≤ n; 1 ≤ j ≤ p . Label the vertices in the following way. Let

m =







p

2
if p ≡ 0 mod 2

p+1
2 otherwise
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For 1 ≤ j ≤ m, f (xi , j ) =







j + (i −1)m if i is odd

m − j +1+ (i −1)m if i is even

For m +1 ≤ j ≤ p , f (xi , j ) =







nm + ( j −m)+ (i −1)m if i is odd

m(n +2)− j +1+ (i −1)m if i is even

For 1 ≤ j ≤ m, the sum of the labels of the n vertices in each set j is n
2 (mn +1) = S1 say. For

m +1 ≤ j ≤ p , the sum of the labels of the n vertices in each set j is n
2 (n(m +p)+1) = S2 say.

Sub case (i): When p is even

For any vertex x ∈V (G) in the interval 1 ≤ j ≤m

∑

x y∈E(G)

f (y)= (m −1)S1 +mS2 = k1

and for any vertex x ∈V (G) in the interval m +1 ≤ j ≤ p

∑

x y∈E(G)

f (y)= mS1 + (m −1)S2 = k2

Sub case (ii): When p is odd

For any vertex x ∈V (G) in the interval 1 ≤ j ≤m

∑

x y∈E(G)

f (y)= (m −1)S1 + (m −1)S2 = k1

and for any vertex x ∈V (G) in the interval m +1 ≤ j ≤ p

∑

x y∈E(G)

f (y)= mS1 + (m −2)S2 = k2

Thus for any vertex x ∈V (G) we have two constants k1 or k2 for n is even and p is even or odd.

Case 2: If p is even and n is odd then we can prove this case in two sub cases. Let m =
p

2
.

Sub Case (i): when m is odd then 2t +1 = m. The labeling is defined below

f (xi , j )=







































































2 j −1, 1≤ j ≤ t +1 and i = 1,

2( j − t −1), t +2 ≤ j ≤ 2t +1 and i = 1,

4t +3− j , 1≤ j ≤ 2t +1 and i = 2,

5t +4− j , 1≤ j ≤ t +1 and i = 3,

7t +5− j , t +2 ≤ j ≤ 2t +1 and i = 3,

j + (i −1)(2t +1), 1≤ j ≤ 2t +1 and i > 3, i even,

2t +2− j + (i −1)(2t +1), 1≤ j ≤ 2t +1 and i > 3, i odd.
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and

f (xi ,2t+ j+1) =







































































n(2t +1)+2 j −1, 1 ≤ j ≤ t +1 and i = 1,

n(2t +1)+2( j − t −1), t +2 ≤ j ≤ 2t +1 and i = 1,

n(2t +1)+4t +3− j , 1 ≤ j ≤ 2t +1 and i = 2,

n(2t +1)+5t +4− j , 1 ≤ j ≤ t +1 and i = 3,

n(2t +1)+7t +5− j , t +2 ≤ j ≤ 2t +1 and i = 3,

n(2t +1)+ j + (i −1)(2t +1), 1 ≤ j ≤ 2t +1 and i > 3, i even,

n(2t +1)+2t +2− j + (i −1)(2t +1), 1 ≤ j ≤ 2t +1 and i > 3, i odd.

For every j in the interval 1 ≤ j ≤ m, we split the calculation for j = 1 to t +1 and j = t +2 to

2t +1 as follows

for j = 1 to t +1, f (x1, j )+ f (x2, j )+ f (x3, j )= 2 j −1+4t +3− j +5t +4− j = 9t +6

for j = t +2 to 2t +1, f (x1, j )+ f (x2, j )+ f (x3, j ) = 2( j − t −1)+4t +3− j +7t +5− j = 9t +6

and for i > 1,

f (x2i , j )+ f (x2i+1, j ) = j +(2i −1)(2t +1)+2t +2− j +(2i +1−1)(2t +1) = (2t +2)+(4i −1)(2t +1).

Thus the sum of the labels of n vertices in each set j is

= f (x1, j )+ f (x2, j )+ f (x3, j )+

n−1
2

∑

i=2

[ f (x2i , j )+ f (x2i+1, j )]

= (9t +6)+ (n −3)(t +1)+
(

n2−n−6
2

)

(2t +1) = S1, say.

For every j in the interval m +1 ≤ j ≤ p , we split the calculation for j = 1 to t +1 and j = t +2

to 2t +1 as follows

for j = 1 to t +1,

f (x1,2t+ j+1)+ f (x2,2t+ j+1)+ f (x3,2t+ j+1)

= n(2t +1)+2 j −1+n(2t +1)+4t +3− j +n(2t +1)+5t +4− j

= 3n(2t +1)+9t +6

for j = t +2 to 2t +1,

f (x1,2t+ j+1)+ f (x2,2t+ j+1)+ f (x3,2t+ j+1)

= n(2t +1)+2( j − t − t 1)+n(2t +1)+4t +3− j +n(2t +1)+7t +5− j

= 2n(2t +1)+9t +6

and for i > 1,

f (x2i ,2t+ j+1)+ f (x2i+1,2t+ j+1) = n(2t+1)+ j+(2i −1)(2t+1)+n(2t+1)+2t+2− j+(2i )(2t+1)

= 2n(2t +1)+2t +2+ (4i −1)(2t +1).
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Thus the sum of the labels of n vertices in each set j is

= f (x1,2t+ j+1)+ f (x2,2t+ j+1)+ f (x3,2t+ j+1)+

n−1
2

∑

i=2

[ f (x2i ,2t+ j+1)+ f (x2i+1,2t+ j+1)]

= [3n(2t+1)+(9t+6)]+(n−3)n(2t+1)+(n−3)(t+1)+
(

n2−n−6
2

)

(2t+1) = S2 say. For any vertex

x ∈V (G) in the interval 1 ≤ j ≤m

∑

x y∈E(G)

f (y)= (m −1)S1 +mS2 = k1

And for any vertex x ∈V (G) in the interval m +1 ≤ j ≤ p

∑

x y∈E(G)

f (y)= mS1 + (m −1)S2 = k2

Thus in this case, for any vertex x ∈V (G) we have two constants k1 or k2.

Sub Case (ii): when m is even then 2t +1 = m +1. The labeling is defined below

The labeling of f (xi , j ) is same as given in above sub case (i) and the labeling of f (xi ,2t+ j+1) is

shown below

f (xi ,2t+ j+1) =







































































n(2t +1)+2 j −1, 1 ≤ j ≤ t +1 and i = 1,

n(2t +1)+2( j − t ), t +1 ≤ j ≤ 2t −1 and i = 1,

n(2t +1)+4(t −1)+3− j , 1 ≤ j ≤ 2t −1 and i = 2,

n(2t +1)+5(t −1)+4− j , 1 ≤ j ≤ t +1 and i = 3,

n(2t +1)+7(t −1)+5− j , t +1 ≤ j ≤ 2t −1 and i = 3,

n(2t +1)+ j + (i −1)(2t −1), 1 ≤ j ≤ 2t −1 and i > 3, i even,

n(2t +1)+2(t −1)+2− j + (i −1)(2t −1), 1 ≤ j ≤ 2t −1 and i > 3, i odd.

For every j in the interval 1 ≤ j ≤ m +1, we split the calculation for j = 1 to t +1 and j = t +2

to 2t +1 as follows

for j = 1 to t +1, f (x1, j )+ f (x2, j )+ f (x3, j ) = 2 j −1+4t +3− j +5t +4− j = 9t +6

for j = t +2 to 2t +1, f (x1, j )+ f (x2, j )+ f (x3, j ) = 2( j − t −1)+4t +3− j +7t +5− j = 9t +6

and for i > 1, f (x2i , j )+ f (x2i+1, j ) = j + (2i −1)(2t +1)+2t +2− j + (2i +1−1)(2t +1)

= (2t +2)+ (4i −1)(2t +1)

Thus the sum of the labels of n vertices in each set j is

= f (x1, j )+ f (x2, j )+ f (x3, j )+

n−1
2

∑

i=2

[ f (x2i , j )+ f (x2i+1, j )]

= (9t +6)+ (n −3)(t +1)+
(

n2−n−6
2

)

(2t +1) = S1 say.

For every j in the interval m +2 ≤ j ≤ p , we split the calculation for j = 1 to t and j = t +1 to

2t −1 as follows

for j = 1 to t ,

f (x1,2t+ j+1)+ f (x2,2t+ j+1)+ f (x3,2t+ j+1)
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= n(2t +1)+2 j −1+n(2t +1)+4(t −1)+3− j +n(2t +1)+5(t −1)+4− j

= 3n(2t +1)+9(t −1)+6

for j = t +2 to 2t −1,

f (x1,2t+ j+1)+ f (x2,2t+ j+1)+ f (x3,2t+ j+1)

= n(2t +1)+2( j − t )+n(2t +1)+4(t −1)+3− j +n(2t +1)+7(t −1)+5− j

= 3n(2t +1)+9(t −1)+6

and for i > 1

f (x2i ,2t+ j+1)+ f (x2i+1,2t+ j+1)

= n(2t +1)+ j + (i −1)(2t −1)+n(2t +1)+2(t −1)+2− j + (i −1)(2t −1)

= 2n(2t +1)+2(t −1)+2+ (4i −1)(2t −1)

Thus the sum of the labels of n vertices in each set j is

= f (x1,2t+ j+1)+ f (x2,2t+ j+1)+ f (x3,2t+ j+1)+

n−1
2

∑

i=2

[ f (x2i ,2t+ j+1)+ f (x2i+1,2t+ j+1)]

= [3n(2t +1)+9(t −1)+6]+ (n −3)n(2t +1)+ (n −3)t +
(

n2−n−6
2

)

(2t −1) = S2 say.

For any vertex x ∈V (G) in the interval 1 ≤ j ≤ m +1

∑

x y∈E(G)

f (y) =mS1 + (m −1)S2 = k1

And for any vertex x ∈V (G) in the interval m +2 ≤ j ≤ p

∑

x y∈E(G)

f (y) = (m +1)S1 + (m −2)S2 = k2

Thus in this case, for any vertex x ∈V (G) we have two constants k1 or k2.

Hence using the above cases Hn,p has a 1-vertex bimagic vertex labeling, if either n is even or

p is even and n is odd. ���

4. General results on regular and bi-regular graphs

All the graphs for which 1-vertex bimagic vertex labeling is done so far are either regular

or bi-regular. But the Complete graph Kn is not a 1-vertex bimagic, since it clearly admits

distinct neibourhood sum for every vertex. Also form the definition and the theorems proved

above we observe that the vertex set of every 1-vertex bimagic biregular graphs are partitioned

into two sets V1 and V2 in such a way that each set contains the vertices of common count

k1 (degree r1) or k2 (degree r2) respectively. We use this observation to prove the following

theorems.
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Theorem 4.8. A regular or bi-regular graph G has a 1-vertex-bimagic vertex labeling iff it has

an odd 1-vertex-bimagic vertex labeling.

Proof. Suppose that G is a 1-vertex bimagic graph with p vertices and q edges. Then there

exists a function h : V (G) → {1,2, . . . , p} such that for every vertex u,
∑

uv∈E(G)

h(v) = k1 or k2.

Now we define f : V (G) → {1,3, . . . ,2p − 1} such that f (vi ) = 2h(vi )− 1; 1 ≤ i ≤ p . For every

vertex u ∈V (G) we have

∑

uv∈E(G)

f (v) =
∑

uv∈E(G)

[2h(v)−1] = 2
∑

uv∈E(G)

h(v)−deg (u)

= 2(k1 or k2)−deg (u)

= 2k1 − r1 or 2k2 − r2 = s1 or s2.

Then G has an odd 1-vertex-bimagic vertex labeling with common counts s1 and s2. Con-

versely, suppose that G is a graph with p vertices and q edges and f : V (G) → {1,3, . . . ,2p −1}

is an odd 1-vertex-bimagic vertex labeling with two common count s1 and s2. Then h : V (G) →

{1,2, . . . , p} defined by h(vi ) = 1
2 [ f (vi )+1] for 1 ≤ i ≤ p .

For every vertex u ∈V (G) we have

∑

uv∈E(G)

h(v)=
∑

uv∈E(G)

1

2
[ f (v)+1] =

1

2

(

∑

uv∈E(G)

f (v)+
∑

uv∈E(G)

1

)

=
1

2
(s1 or s2)+

1

2
deg (u)= k1 or k2

Hence 1-vertex-bimagic vertex labeling has two common counts k1 =
1
2 (s1+r1) and k2 =

1
2 (s2+

r2). ���

Theorem 4.9. A regular or bi-regular graph G has a 1-vertex-bimagic vertex labeling iff it has

an even 1-vertex-bimagic vertex labeling.

Proof. Suppose that G is a 1-vertex-bimagic graph with p vertices and q edges. Then there

exists a function h : V (G) → {1,2, . . . , p} such that for every vertex u,
∑

uv∈E(G)

h(v) = k1 or k2.

Now we define g : V (G) → {0,2, . . . ,2p − 2} such that g (vi ) = 2h(vi )− 2; 1 ≤ i ≤ p . For every

vertex u ∈V (G) we have

∑

uv∈E(G)

g (v)=
∑

uv∈E(G)

[2h(v)−2] = 2
∑

uv∈E(G)

h(v)−2deg (u)= 2((k1 or k2)−deg (u))

= 2k1 − r1 or 2k2 − r2 = s1 or s2

Then G has an even 1-vertex bimagic vertex labeling with common counts s1 and s2.
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Conversely, suppose that G is a graph with p vertices and q edges and g : V (G) → {0,2, . . .,

2p −2} is an even 1-vertex-bimagic vertex labeling with two common edge count s1 and s2.

Then h : V (G) → {1,2, . . . , p} defined by h(vi ) = 1
2 [g (vi )+2] for 1 ≤ i ≤ p .

For every vertex u ∈V (G) we have

∑

uv∈E(G)

h(v)=
∑

uv∈E(G)

1

2
[g (v)+2] =

1

2

(

∑

uv∈E(G)

g (v)+
∑

uv∈E(G)

2

)

=
1

2
(s1 or s2)+deg (u)= k1 or k2

Hence 1-vertex-bimagic vertex labeling has two common counts k1 =
1
2 (s1)+deg (u) and k2 =

1
2

(s2)+deg (u). ���

Theorem 4.10. If H is a regular or bi-regular 1-vertex bimagic graph then G = H
mK1
n (m > 1),

has a 1-vertex bimagic vertex labeling.

Proof. Consider a graph H is a 1-vertex bimagic with n vertices {x1, x2, x3, . . . , xn}. By replacing

every vertex in H with m isolated vertices, each joined to all vertices corresponding to the

neighbours of the original vertex of H , we obtain the graph G = H
mK1
n which is a multipartite

graph. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, Let xi j be the vertices of G that replace x j , 1 ≤ j ≤ n in

H . Given that H has a 1-vertex bimagic vertex labeling, then there exist a function f : V →

{1,2, . . . ,n} such that
∑

un∈E(H)

f (v) = k1 or k2 where k1 and k2 are constants. Let V1 be the set

of vertices having constant value k1, that is for every vertex y ∈V1,
∑

y x∈E(H)

f (x)= k1. Let V2 be

the set of vertices having constant value k2, that is for every vertex y ∈V2,
∑

y x∈E(H)

f (x) = k2.

Label the vertices of G in the following way

g (xi , j ) = f (x j )+ (i −1)n for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For every j in the interval 1 ≤ j ≤ n,

m
∑

i=1

g (xi , j ) =
m
∑

i=1

[ f (x j )+ (i −1)n] =
m
∑

i=1

f (x j )+
m
∑

i=1

(i −1)n =m f (x j )+
nm(m −1)

2

Let U and W be the two partitions of the graph G in such a way that U contains the sets which

is having the vertices of V1 in H and W contains the sets which is having the vertices of V2 in

H .

For any vertex u ∈U , the deg (u)= r1 (say).

∑

uxi , j∈E(G)

g (xi , j ) =
∑

uxi , j∈E(G)

m
∑

i=1

g (xi , j ) =
∑

uxi , j∈E(G)

(

m f (x j )+
nm(m −1)

2

)



272 J. BASKAR BABUJEE AND S. BABITHA

=
∑

uxi , j ∈E(G)

m f (x j )+
∑

uxi , j ∈E(G)

(

nm(m −1)

2

)

=mk1 +

(

nm(m −1)

2

)

deg (u)=mk1 +

(

nm(m −1)

2

)

r1 = s1(say)

For any vertex u ∈W , the deg (u)= r2 (say).

∑

uxi , j∈E(G)

g (xi , j ) =
∑

uxi , j ∈E(G)

m
∑

i=1

g (xi , j ) =
∑

uxi , j∈E(G)

(

m f (x j )+
nm(m −1)

2

)

=
∑

uxi , j ∈E(G)

m f (x j )+
∑

uxi , j ∈E(G)

(

nm(m −1)

2

)

=mk2 +

(

nm(m −1)

2

)

deg (u)=mk2 +

(

nm(m −1)

2

)

r2 = s2(say)

Thus for any vertex u ∈V (G) we have two constants s1 or s2.

Hence G = H
mK1
n has a 1-vertex bimagic vertex labeling. ���

5. Conclusion

Theorem 3.7 shows a 1-vertex bimagic vertex labeling for certain class of symmetric mul-

tipartite graphs and the Theorem 4.10 shows a 1-vertex bimagic vertex labeling for a class of

multipartite graphs. We belive that complete multipartite graph and multipartite graph have

1-vertex bimagic vertex labeling along with some condition. So, we conclude this paper with

the following open problems.

Open Problem 5.1

(i) Does there exist 1-vertex bimagic vertex labeling for other classes of multipartite graphs.

(ii) Are there any necessary and sufficient conditions for a complete multipartite graph to

have a 1-vertex bimagic vertex labeling.
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