
TAMKANG JOURNAL OF MATHEMATICS
Volume 44, Number 1, 53-60, Spring 2013
doi:10.5556/j.tkjm.44.2013.1007

-
+

+

-

-
-

-
-

Available online at http://journals.math.tku.edu.tw/

THE CONCEPT OF FRACTIONAL DIFFERENTIAL

SUBORDINATION

RABHA W. IBRAHIM

Abstract. In this work, we consider a definition for the concept of fractional differential

subordination in sense of Srivastava-Owa fractional operators. By employing some types

of admissible functions, involving differential operator of fractional order, we illustrate

geometric properties such as starlikeness and convexity for a class of analytic functions

in the unit disk. Moreover, applications are posed in the sequel.

1. Introduction

Recently, the theory of fractional calculus has found interesting applications in the the-

ory of analytic functions. The classical definitions of fractional operators and their general-

izations have fruitfully been applied in obtaining, for example, the characterization proper-

ties, coefficient estimates [1], distortion inequalities [2] and convolution structures for various

subclasses of analytic functions and the works in the research monographs. In [3], Srivastava

and Owa, gave definitions for fractional operators (derivative and integral) in the complex

z-plane C as follows:

Definition 1.1. The fractional derivative of order α is defined, for a function f (z) by

Dα
z f (z) :=

1

Γ(1−α)

d

d z

∫z

0

f (ζ)

(z −ζ)α
dζ; 0 ≤α< 1,

where the function f (z) is analytic in simply-connected region of the complex z-plane C con-

taining the origin and the multiplicity of (z−ζ)−α is removed by requiring l og (z−ζ) to be real

when(z −ζ) > 0.

Definition 1.2. The fractional integral of order α is defined, for a function f (z), by

Iαz f (z) :=
1

Γ(α)

∫z

0
f (ζ)(z −ζ)α−1dζ; α> 0,
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where the function f (z) is analytic in simply-connected region of the complex z-plane (C)

containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring l og (z − ζ) to

be real when (z −ζ) > 0.

Remark 1.1. From Definitions 1.1 and 1.2, we have

Dα
z {zµ} =

Γ(µ+1)

Γ(µ−α+1)
{zµ−α}, µ>−1; 0 ≤α< 1

and

Iαz {zµ} =
Γ(µ+1)

Γ(µ+α+1)
{zµ+α}, µ>−1; α> 0.

Further properties of these operators with applications can be found in [2]−[5].

2. Preliminaries

Let H be the class of functions analytic in the unit disk U = {z : |z| < 1} and for a ∈ C

(set of complex numbers) and n ∈ N (set of natural numbers), let H [a,n] be the subclass of

H consisting of functions of the form f (z) = a +anzn +an+1zn+1 +·· · . Let A be the class of

functions f , analytic in U and normalized by the conditions f (0) = f ′(0)−1 = 0. A function

f ∈A is called starlike of order µ if it satisfies the following inequality

ℜ

{ z f ′(z)

f (z)

}

>µ, (z ∈U )

for some 0≤µ< 1. We denoted this class S (µ). A function f ∈A is called convex of order µ if

it satisfies the following inequality

ℜ

{ z f ′′(z)

f ′(z)
+1

}

>µ, (z ∈U )

for some 0 ≤µ< 1. We denoted this class C (µ). We note that f ∈C (µ) if and only if z f ′ ∈S (µ).

Furthermore, Let P be the subclass of analytic functions in the unit disk and take the formula

p(z) = 1+
∞
∑

n=1

an zn , ℜ(p(z)) > 0, p(0) = 1.

Let f be analytic in U , g analytic and univalent in U and f (0) = g (0). Then, by the symbol

f (z) ≺ g (z) ( f subordinate to g ) in U , we shall mean f (U ) ⊂ g (U ).

Let φ : C2 → C and let h be univalent in U . If p is analytic in U satisfying the differential

subordination φ(p(z)), zp ′(z)) ≺ h(z) then p is called a solution of the differential subordina-

tion. The univalent function q is called a dominant of the solutions of the differential subordi-

nation, p ≺ q. If p and φ(p(z)), zp ′(z)) are univalent in U and satisfy the differential superor-

dination h(z)≺φ(p(z)), zp ′(z)) then p is called a solution of the differential superordination.
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An analytic function q is called subordinate of the solution of the differential superordination

if q ≺ p. For details (see [6]).

Analogs to this definition, we impose the concept of fractional differential subordination.

Definition 2.1. Let ϕ : C2 → C and let h be univalent in U . If p is analytic in U sat-

isfying the fractional differential subordination ϕ
(

p(z), zαDα
z p(z)

)

≺ h(z), 0 ≤ α < 1, then

p is called a solution of the fractional differential subordination. The univalent function q is

called a dominant of the solutions of the fractional differential subordination, p ≺ q. If p and

ϕ
(

p(z), zαDα
z p(z)

)

are univalent in U and satisfy the fractional differential superordination

h(z)≺ϕ
(

p(z), zαDα
z p(z)

)

then p is called a solution of the fractional differential superordina-

tion. An analytic function q is called subordinate of the solution of the fractional differential

superordination if q ≺ p.

It is clear that when α = 0, we have the differential subordination and the differential

superordination of the first order. In the following sequel, we will assume that h is an analytic

convex function in U with h(0) = 1. For 0 ≤α< 1, consider the fractional differential equation

p(z)+µzαDα
z p(z)= g (z), g (z) ≺h(z).

We will denote the class consisting of all solutions p ∈P as R(α,µ,h), that is

R(α,µ,h)=
{

p ∈P : p(z)+µzαDα
z p(z) ≺h(z), z ∈U

}

.

Definition 2.2 ([6]). We denote by Q the set of all functions f (z) that are analytic and uni-

valent on U −E ( f ) where E ( f ) := {ζ ∈ ∂U : l i mz→ζ f (z) = ∞} and are such that f ′(ζ) 6= 0 for

ζ ∈ ∂U \ E ( f ).

3. Main results

In this section, we establish some results which are related to the subordination of two

functions. This will lead to develop and generalize the theory of differential subordinations.

In addition, we show that the problem of finding best dominants of fractional subordination

reduces to finding univalent solutions of fractional differential equations.

Theorem 3.1. Let p(z) = a +an zn +·· · be analytic in U with p(z) 6= a and n ≥ 1, and let q ∈Q

with q(0) = a. If there exist points z0 ∈U and ζ0 ∈ ∂U \E (q) such that p(z0) = q(ζ0) and p(Ur0
)⊂

q(U ), where r0 = |z0| and Ur0
:= {z : |z| < r0 < 1}, then there exists a positive real number m ≥ n

such that

zα
0 Dα

z0
p(z0) = mζ0

∞
∑

k=0

(

α

k

)

q (k)(ζ0),
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where

(

α

k

)

is the normal binomial coefficients.

Proof. Since p is analytic in U , the set p(U r0
) is bounded and p(U r0

) ⊂ q(U )\E (q). By putting

f (z) = q−1[p(z)], for z ∈ U r0
, then f is analytic in U r0

and satisfies | f (z0)| = |ζ0| = 1, f (0) = 0

and | f (z)| ≤ 1, for |z| ≤ r0. Furthermore, since p(z) = q(ζ), where ζ= f (z). In view of Remark

1.1, a computation yields

zαDα
z f (z)

f (z)
= zαo(z−α) = o(1) := m,

where m is a positive real number satisfying m ≥ n. Consequently, by using Leibniz rule for

fractional differentiation of analytic functions [7] yields

Dα
z p(z)= Dα

z

(

q(ζ)
)

= Dα
z

(

q( f (z))
)

=

∞
∑

k=0

(

α

k

)

q (k)(z)Dα−k
z f (z).

Hence, by setting z = z0,ζ= ζ0, we obtain

zα
0 Dα

z0
p(z0) = ζ0

∞
∑

k=0

(

α

k

)

q (k)(z0)
zα

0 Dα−k
z0

f (z0)

f (z0)

=mζ0

∞
∑

k=0

(

α

k

)

q (k)(ζ0).

This completes the proof. ���

We next consider the subordination of two functions. This will lead to suggest the con-

cept of the fractional differential subordinations.

Theorem 3.2. Let p(z) = a +an zn +·· · be analytic in U with p(z) 6= a and n ≥ 1, and let q ∈Q

with q(0) = a. If p is not subordination to q, then there exist points z0 = r0e iθ0 ∈ U and ζ0 ∈

∂U \ E (q) for which p(Ur0
) ⊂ q(U ) and a real number m such that

(i) p(z0) = q(ζ0)

(ii) zα
0 Dα

z0
p(z0) =mζ0

∞
∑

k=0

(

α

k

)

q (k)(ζ0),

where m is real.
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Proof. Since p(0) = q(0) and p, q are analytic in U we define

r0 = sup{r : p(Ur )⊂ q(U )}.

By the assumption p(z)⊀ q(z) yields p(U ) 6⊂ q(U ). Since p(U r0
) ⊂ q(U ), there exists z0 ∈ ∂Ur0

such that p(z0) ∈ ∂q(U ). Hence there exists ζ0 ∈ ∂U \ E (q) such that p(z0) = q(ζ0) and this

completes conclusion (i). Conclusion (ii) follows by applying Theorem 3.1.

We shall define the class of generalized admissible functions. This class plays an impor-

tant role in the theory of fractional differential subordinations. The proof follows by applying

Theorem 3.2.

Definition 3.1. Let Ω be a set in C, q ∈ Q and n be positive integer. The class of generalized

admissible functions Ψn[Ω, q], consists of those functions ψ : C2 ×U → C that satisfy the ad-

missible condition

ψ
(

q(ζ),mζ
∞
∑

k=0

(

α

k

)

q (k)(ζ); z
)

∉Ω, (1)

when z ∈U ,ζ ∈ ∂U \ E (q) and m is real.

Note that when α= 0 and m ≥ n in Definition 3.1, we have the normal admissible func-

tions.

Theorem 3.3. Let ψ ∈Ψ[Ω, q] with q(0) = a. If p(z)= a +an zn +·· · satisfies

ψ
(

p(z), zαDα
z p(z); z

)

∈Ω, (2)

then p ≺ q.

Proof. Assume p 6≺ q. By Theorem 3.2, there exists z0 = r e iθ ∈U and ζ0∂U \ E (q) and m real

that satisfy (i)-(ii). Thus by Definition 3.1, we have

ψ
(

p(z0), zα
0 Dα

z0
p(z0); z0

)

6∈Ω

which contradicts (2); hence p ≺ q. ���

From the above result we pose dominants of fractional differential subordination (2) by

using the generalized admissible function ψ.

Corollary 3.1. Let q be univalent in U with q(0) = a. And let Ω ⊂ C, ψ ∈ Ψ[Ω, qρ], ρ ∈ (0,1)

with qρ(z) = q(ρz). If p(z)= a +an zn +·· · satisfies (2) then p ≺ q.

Proof. Since q is univalent in U then its univalent in U ; thus the set E (q)=; and qρ ∈Q . The

class Ψ[Ω, qρ] is an admissible class ; therefore in view of theorem 3.3, p ≺ qρ. But qρ ≺ q, we

deduce p ≺ q. ���
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Corollary 3.2. Let Ω ⊂ C be simply connected domain and a conformal mapping h : U → Ω

such that Ω= h(U ). And let ψ ∈Ψ[h(U ), q] with q(0) = a. If p(z)= a +an zn +·· · satisfies

ψ
(

p(z), zαDα
z p(z); z

)

≺ h(z), z ∈U , (3)

then p ≺ q.

Proof. Conditions (2) and (3) are equivalent. Thus in virtue of Theorem 3.3, we have p ≺ q. ���

Corollary 3.3. Let h and q be univalent in U , with q(0) = a and set qρ(z) = q(ρz) and hρ(z) =

h(ρz). Let ψ : C2 ×U −→C satisfy

ψ ∈Ψn[h(U ), qρ(U )], ρ ∈ (0,1).

If p(z)= a +an zn +·· · , ψ
(

p(z), zαDα
z p(z); z

)

is analytic in U and

ψ
(

p(z), zαDα
z p(z); z

)

≺ h(z), z ∈U

then p ≺ q.

Proof. By applying Theorem 3.3, we have p ≺ qρ. But qρ ≺ q, we deduce p ≺ q. ���

Corollary 3.4. Let h and q be univalent in U , with q(0) = a and set qρ(z) = q(ρz) and hρ(z) =

h(ρz). Let ψ : C2 ×U −→C satisfy

ψ ∈Ψn[hρ(U ), qρ(U )], ρ ∈ (ρ0,1), ρ0 ∈ (0,1).

If p(z)= a +an zn +·· · , ψ
(

p(z), zαDα
z p(z); z

)

is analytic in U and

ψ
(

p(z), zαDα
z p(z); z

)

≺ h(z), z ∈U (4)

then p ≺ q.

Proof. By applying Theorem 3.3, we have pρ ≺ qρ. By letting ρ→ 1−, we pose p ≺ q. ���

Theorem 3.4. Let h be univalent in U and let ψ : C2 ×U −→ C such that the fractional differ-

ential equation

ψ
(

q(z), zαDα
z q(z); z

)

= h(z), (5)

subject to the initial condition q(0) = a has a univalent solution q and one of the following

conditions is satisfied

(i) q ∈Q andψ ∈Ψ[h, q],

(ii) q is univalent inU andψ ∈Ψ[h, qρ], ρ ∈ (0,1)

(iii) q is univalent inU andψ ∈Ψ[hρ, qρ], ρ ∈ (ρ0,1), , ρ0 ∈ (0,1).

(6)

If p(z) = a + anzn + ·· · , ψ
(

p(z), zαDα
z p(z); z

)

is analytic in U satisfies (4) then p ≺ q and q is

the best dominant.
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Proof. In view of Corollaries 3.2, 3.3 and 3.4, we have q is the dominant of (4). Since q is a

solution of (5), implies that q is a solution for (4) and hence it is the best dominant.

4. Applications

In this section, we deduce some application of Theorem 3.3 and its corollaries and special

cases involving starlike, convex and bounded turning functions.

Let A be the subclass of H [a,n] consisting of functions of the form

f (z) = z +
∞
∑

n=2

an zn , z ∈U . (7)

By letting p(z) =
f (z)

z
, p(z) =

z f ′(z)

f (z)
, p(z) = 1+

z f ′′(z)

f ′(z)
, p(z) = f ′(z) in Theorem 3.3, we have

the following results:

Theorem 4.1. Let ψ ∈Ψ[Ω, q] with q(0) = 1. If f ∈A satisfies

ψ
( f (z)

z
, zαDα

z

f (z)

z
; z

)

∈Ω,

or

ψ
( f (z)

z
, zαDα

z

f (z)

z
; z

)

≺ h(z), z ∈U ,

where h : U →Ω is a conformal mapping such that Ω= h(U ), then
f (z)

z ≺ q(z).

Theorem 4.2. Let ψ ∈Ψ[Ω, q] with q(0) = 1. If f ∈A satisfies

ψ
( z f ′(z)

f (z)
, zαDα

z

z f ′(z)

f (z)
; z

)

∈Ω,

or

ψ
( z f ′(z)

f (z)
, zαDα

z

z f ′(z)

f (z)
; z

)

≺ h(z), z ∈U ,

where h : U →Ω is a conformal mapping such that Ω= h(U ), then
z f ′(z)

f (z) ≺ q(z).

Theorem 4.3. Let ψ ∈Ψ[Ω, q] with q(0) = 1. If f ∈A satisfies

ψ
(

1+
z f ′′(z)

f ′(z)
, zαDα

z

(

1+
z f ′′(z)

f ′(z)

)

; z
)

∈Ω,

or

ψ
(

1+
z f ′′(z)

f ′(z)
, zαDα

z

(

1+
z f ′′(z)

f ′(z)

)

; z
)

≺ h(z), z ∈U ,

where h : U →Ω is a conformal mapping such that Ω= h(U ), then 1+
z f ′′(z)

f ′(z) ≺ q(z).
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Theorem 4.4. Let ψ ∈Ψ[Ω, q] with q(0) = 1. If f ∈A satisfies

ψ
(

f ′(z), zαDα
z f ′(z); z

)

∈Ω,

or

ψ
(

f ′(z), zαDα
z f ′(z); z

)

≺ h(z), z ∈U ,

where h : U →Ω is a conformal mapping such that Ω=h(U ), then f ′(z) ≺ q(z).

Remark 4.1. Note that the result in Theorem 3.1, corresponds to one introduced in [8] as

follows:

Let p(z)= a+an zn+·· · be analytic in U with p(z) 6= a and n ≥ 1, and let q ∈Q with q(0) =

a. If there exist points z0 ∈ U and ζ0 ∈ ∂U \ E (q) such that p(z0) = q(ζ0) and p(Ur0
) ⊂ q(U ),

where r0 = |z0| and Ur0
:= {z : |z| < r0 < 1}, then there exists an m ≥n ≥ 1 such that

z0p ′(z0) = mζ0q ′(ζ0).
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