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A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

ZHENG-LV ZHANG AND QING-HUA XU

Abstract. In this paper, we introduce and investigate an interesting subclass Jα(h) of an-

alytic and close-to-convex function in the open unit disk D. several coefficient inequal-

ities, growth, and distortion theorem for this class are proved. The various results pre-

sented here would generalize many know results.

1. Introduction

Let R= (−∞,+∞) be the set of real numbers, C be the set of complex numbers and

N= {1,2,3, . . .}

be the set of positive integer. We also let A denote the class of functions of the form

f (z) = z +
∞
∑

n=2

an zn , (1)

which are analytic in the open disk

D = {z : z ∈C and |z| < 1}.

We denote by S the subclass of the analytic function class A consisting of all functions in A

which are also univalent in D.

A function f (z) ∈A is said to be convex functions of order α if and only if

ℜ(1+
z f ′′(z)

f ′(z)
) >α (|z| < 1,0 ≤α< 1).

We denote by K (α) the subclass of A consisting of all convex functions of order α. If

f ∈A and there exists a function g ∈S ∗, such that

ℜ

( z f ′(z)

g (z)

)

> 0 (|z| < 1,0 ≤α< 1),
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then f is said to be a close-to-convex function. Let C denote the set of all close-to-convex

functions.

For two functions f and g analytic in D, we say that the function f (z) is subordinate to

g (z) in D and write

f (z) ≺ g (z) (z ∈ D)

if there exists a Schwarz function w (z), analytic in D with

w (0)= 0 and |w (z)| < 1 (z ∈ D)

such that

f (z) = g (w (z)) (z ∈ D).

In particular, if the function g is univalent in D, the above subordination is equivalent to

f (0) = g (0) and f (D) ⊂ g (D).

In many earlier investigations, various interesting subclasses of the analytic function

class A and the univalent function class S have been studied from a number of different

viewpoints. We choose to recall here the investigation by H.R.Abdel-Gawad and D. K. Thomas

[1], B. S. Mehrok and G. Singh [2], H. M. Srivastava et al. [3], X. Q. Hua et al. [4]. Selearaj.C[5].

In particular, H. R. Abdel-Gawad and D. K. Thomas [1] introduced a subclass J of analytic

functions, which is indeed a subclass of close-to-convex functions.

Definition 1 ((see [1]). Let the function f (z) be analytic in D and defined by (1). We say that

f ∈J if there exists a function g ∈K such that:

ℜ(
z f ′(z)

g (z)
) > 0 (z ∈ D).

Recently, B. S. Mehrok and G. Singh extend Definition 1 by introducing the following sub-

class of analytic functions.

Definition 2 ((see [2]). Let the function f (z) be analytic in D and defined by (1). We say that

f ∈J (A,B ) if there exists a function g ∈K , satisfying the following condition:

ℜ(
z f ′(z)

g (z)
) ≺

1+ Az

1+B z
(z ∈ D,−1 ≤ B < A ≤ 1).

Definition 3. Let h : D −→C be a convex function such that

h(0) = 1 and h(z̄) =h(z)(z ∈ D,ℜ(h(z)) > 0).
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Suppose also that the function h satisfies the following conditions for r ∈ (0,1)






min|z|=r |h(z)| = min{h(r ),h(−r )} (0 < r < 1)

max|z|=r |h(z)| =max{h(r ),h(−r )} (0 < r < 1).
(2)

We denote by Jα(h) the class of functions given by

Jα(h) =

{

f : f ∈A and
z f ′(z)

g (z)
∈ h(D) (z ∈ D, g ∈K (α))

}

.

Remark 1. There are many choices of the function h which would provide interesting sub-

class of analytic functions. For example, if we set

h(z)=
1+ Az

1+B z
(z ∈ D,−1 ≤ B < A ≤ 1),

then it is easily verified that h is a convex function in D and satisfies the hypotheses of Defi-

nition 3. If Jα(h), then
z f ′(z)

g (z)
∈ h(D) (z ∈ D)

for some g ∈K (α).

Let

p(z) =
z f ′(z)

g (z)
(z ∈ D),

and we have

p(0) = h(0) = 1and p(z)∈ h(D) (z ∈ D).

According the principle of subordination, we obtain

z f ′(z)

g (z)
≺

1+ Az

1+B z
,

if α= 0 then, f ∈J (A,B ) (see Definition 2).

2. Preliminaries

In order to prove the desired results, we first recall the following lemma.

Lemma 1 (see [6]). Let the function h(z) given by

h(z)=
∞
∑

n=1

hn zn

be convex in D. Suppose also that the function f (z) given by

f (z) =
∞
∑

n=1

an zn

is holomorphic in D. If f (z) ≺ h(z), (z ∈ D), then

|an| ≤ |h1| (n ∈N).
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Theorem 1. Let the function f (z) be analytic in D and defined by (1). If f ∈Jα(h) , then

| an |≤
|h′(0) | + 1

n!

∏n
k=2

(k −2α)

n
+
|h′(0) |

n

n−1
∑

k=2

1

k !

k
∏

j=2

( j −2α).

Proof. Because f ∈Jα(h) , we have

z f ′(z)

g (z)
∈ h(D) (z ∈ D), (3)

where g (z) = z +
∑∞

n=2 bn zn ∈K (α). Next, by setting

p(z)=
z f ′(z)

g (z)
(z ∈ D), (4)

we deduce from (3) that

p(0) = h(0)= 1 and p(z)∈ h(D) (z ∈ D).

Therefore, we have

p(z)≺ h(z) (z ∈ D).

According to Lemma 1, we thus deduce that

| pn |=

∣

∣

∣

∣

p(n)(0)

n!

∣

∣

∣

∣

≤ |h′(0)|(n ∈N).

On the other hand, we readily find from (4) that

z f ′(z) = g (z)p(z) (z ∈ D). (5)

Further, by letting

p(z)= 1+p1z +p2z2
+·· · (z ∈ D). (6)

From (5), (6), and comparing the coefficients of two sides of the equation, we deduce that

nan = pn−1 +b2pn−2 +·· ·+bn−1p1 +bn (n ∈N).

Since g (z) ∈K (α), it follows that |bn | ≤
1
n!

∏n
k=2

(k −2α)(see[7]). So, we from Lemma 1 obtain

that

|nan |≤ |h′(0)|+ |h′(0)|
n−1
∑

k=2

1

k !

k
∏

j=2

( j −2α)+
1

n!

n
∏

k=2

(k −2α) (n ∈N).

Hence

| an |≤
|h′(0) | + 1

n!

∏n
k=2

(k −2α)

n
+
|h′(0) |

n

n−1
∑

k=2

1

k !

k
∏

j=2

( j −2α).

This completes the proof of Theorem 1. ���
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In view of Remark 1, if we set

h(z)=
1+ Az

1+B z
(z ∈ D,−1 ≤ B < A ≤ 1),

α = 0 in Theorem 1, we have the following coefficient bounds for functions belonging to the

class J (A,B ), which we merely state here without proof.

Corollary 1. Let the function f (z) be analytic in D and defined by (1). If f ∈J (A,B ) , then

| an |≤
1

n
+

(n −1)(A−B )

n
(n ≥ 2).

Remark 2. Corollary 1 was proven by B. S. Mehrok and G. Singh [2, Theorem 3.1]. However,

by using Theorem 1, we are able to deduce this result as an easy consequence of Theorem 1.

Theorem 2. Let the function f (z) be analytic in D and defined by (1), and f ∈ Jα(h) (1) If

α 6=
1
2 , then for | z |= r,0< r < 1, we have

min{h(−r ),h(r )}
(1+ r )2α−1 −1

(2α−1)r
≤ | f ′(z)| ≤

1− (1− r )2α−1

(2α−1)r
max{h(−r ),h(r )} (7)

and

∫r

0
min{h(−τ),h(τ)}

(1+τ)2α−1 −1

(2α−1)τ
dτ

≤ | f (z)| ≤

∫r

0

1− (1−τ)2α−1

(2α−1)τ
max{h(−τ),h(τ)}dτ. (8)

(2) If α=
1
2 , then for | z |= r,0< r < 1, we have

min{h(−r ),h(r )}
log(1+ r )

r
≤ | f ′(z)| ≤ −

log(1− r )

r
max{h(−r ),h(r )} (9)

and
∫r

0
min{h(−τ),h(τ)}

log(1+τ)

τ
dτ

≤ | f (z)| ≤

∫r

0
−

log(1−τ)

τ
max{h(−τ),h(τ)}dτ. (10)

Proof. Since f ∈Jα(h), there exist a function g ∈K (α), such that

z f ′(z)

g (z)
≺ h(D) (z ∈ D).

From Definition 3, we find that

min {h(−r ),h(r )}≤

∣

∣

∣

∣

z f ′(z)

g (z)

∣

∣

∣

∣

≤ max{h(−r ),h(r )} (|z| = r,0 ≤ r < 1). (11)
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Again, g (z) ∈K (α). We have (see[8]) (1) If α 6=
1
2 ,

(1+ r )2α−1 −1

2α−1
≤| g (z) |≤

1− (1− r )2α−1

2α−1
(|z| = r,0 ≤ r < 1). (12)

(2) If α=
1
2 ,

log(1+ r ) ≤ |g (z)| ≤ − log(1− r ) (13)

Combining (11), (12) and (13), we can get the inequalities (7) and (9). To prove the inequalities

(8), let z = r e iθ(0 < r < 1). If ε denotes the closed line-segment in the complex ζ-plane from

ζ= 0 and ζ= z, we have

f (z) =

∫

ε
f ′(ζ)dζ=

∫r

0
f ′(τe iθe iθ)dτ (|z| = r,0≤ r < 1).

Thus, by using the upper estimate in (7). If α 6=
1
2 , we have

| f (z) | = |

∫z

0
f ′(ζ)dζ |≤

∫r

0
| f ′(τe iθ)|dτ

≤

∫r

0

1− (1−τ)2α−1

(2α−1)τ
max{h(−τ),h(τ)}dτ (|z| = r,0≤ r < 1).

To prove the lower bound of f (z), it is sufficient to show that it holds true for the nearest point

f (z0) from zero, where

|z| = r (0 < r < 1).

Moreover. we have

| f (z)| ≥ | f (z0)| (|z| = r,0 ≤ r < 1),

Since f (z) is a close-to-convex function in the open unit disk D, it is univalent in D. We deduce

that the original image of the closed line-segment ε0 in the complex ζ-plane from ζ = 0 and

ζ= f (0) is a piece of arc Γ in the disk Dr given by

Dr = {z : z ∈C and |z| ≤ r (0 ≤ r < 1)}.

Hence. We have

| f (z0)| =

∫

f (Γ)
|d w | =

∫

Γ

| f ′(z)||d z|

≥

∫r

0
min{h(−τ),h(τ)}

(1+τ)2α−1 −1

(2α−1)τ
dτ (|z| = r,0≤ r < 1).

Similarly we can prove (10). This completes the proof of Theorem 2. ���

In view of Review 1, if we set

h(z) =
1+ Az

1+B z
(z ∈ D,−1 ≤B < A ≤ 1)

α = 0 in Theorem 2, we have the following the distortion and growth theorems for functions

belonging to the class J (A,B ), which we merely state here without proof.
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Corollary 2. If f ∈J (A,B), then |z| = r < 1,0 < r < 1, we have

1− Ar

(1+ r )(1−Br )
≤ | f ′(z)| ≤

1+ Ar

(1− r )(1−Br )
,

and
∫r

0

1− At

(1+ t )(1−B t )
d t ≤| f (z) |≤

∫r

0

1+ At

(1− t )(1−B t )
d t .

Remark 3. Corollary 2 was proven by B. S. Mehrok and G. Singh [2, Theorem 4.1]. However,

by using Theorem 2, we are able to derive this result much more easily as consequence of

Theorem 2.
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