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COMPLETELY MONOTONIC FUNCTION ASSOCIATED WITH

THE GAMMA FUNCTIONS AND PROOF OF WALLIS’ INEQUALITY

CHAO-PING CHEN AND FENG QI

Abstract. We prove: (i) A logarithmically completely monotonic function is completely mono-

tonic. (ii) For x > 0 and n = 0, 1, 2, . . ., then

(−1)n

(

ln
xΓ(x)

√

x + 1/4Γ(x + 1/2)

)(n)

> 0.

(iii) For all natural numbers n, then

1
√

π(n + 4/π − 1)
≤

(2n − 1)!!

(2n)!!
<

1
√

π(n + 1/4)
.

The constants 4
π

− 1 and 1
4 are the best possible.

A function f is said to be completely monotonic on an interval I, if f has derivatives
of all orders on I and satisfies

(−1)nf (n)(x) ≥ 0 (x ∈ I; n = 0, 1, 2, . . .). (1)

If the inequality (1) is strict, then f is said to be strictly completely monotonic on I.

Completely monotonic functions have remarkable applications in different branches. For
instance, they play a role in potential theory [2], probability theory [4, 7, 9], physics [6],

numerical and asymptotic analysis [8, 14], and combinatorics [1]. A detailed collection

of the most important properties of completely monotonic functions can be found in [13,
Chapter IV], and in an abstract in [3].

A positive function f is said to be logarithmically completely monotonic on an interval
I if its logarithm ln f satisfies

(−1)n[ln f(x)](n) ≥ 0 (x ∈ I; n = 1, 2, . . .). (2)
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If the inequality (2) is strict, then f is said to be strictly logarithmically completely

monotonic, see [10].

The gamma function

Γ(z) =

∫ ∞

0

tz−1e−tdt (Rez > 0)

is one of the most important function in analysis and its applications. The history and

the development of this function are described in detail in [5]. The logarithm of the

gamma function can be expressed [11, p.152] as

ln Γ(z) =

∫ ∞

0

[

e−t(z − 1) +
e−zt − e−t

1 − e−t

]

dt

t
(Rez > 0). (3)

In this paper, we obtain the following results.

Theorem 1. If the function φ defined on an interval I is (strictly) completely

monotonic, then exp φ is also (strictly) completely monotonic on I.

Proof. Since φ is completely monotonic on I, we have

(−1)kφ(k)(x) ≥ 0 (x ∈ I; k = 0, 1, 2, . . .).

It is clear that expφ(x) ≥ 1, [expφ(x)]′ = φ′(x) exp φ(x) ≤ 0 and [expφ(x)]′′ = {φ′′(x) +

[φ′(x)]2} expφ(x) ≥ 0, that is, for x ∈ I and k = 0, 1, 2, we have

(−1)k[exp φ(x)](k) ≥ 0. (4)

Suppose (4) holds for all nonnegative integers k ≤ n. By Leibnitz’s formula, we have

(−1)n+1[exp φ(x)](n+1) = (−1)n+1{[exp φ(x)]′}(n)

= (−1)n+1[φ′(x) exp φ(x)](n) = (−1)n+1
n
∑

i=0

(

n

i

)

φ(i+1)(x)[exp φ(x)](n−i)

=

n
∑

i=0

(

n

i

)

[

(−1)i+1φ(i+1)(x)
]{

(−1)n−i[expφ(x)](n−i)
}

≥ 0.

By induction, it is proved that the function expφ is completely monotonic on I.

In the proof of Theorem 1, we see that if the function φ is strictly completely mono-

tonic on I, then expφ is also strictly completely monotonic on I. The proof is complete.

Theorem 2. For x > 0 and n = 0, 1, 2, . . ., then

(−1)n

(

ln
xΓ(x)

√

x + 1/4Γ(x + 1/2)

)(n)

> 0.
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Proof. Using (3) and the representation

lnx =

∫ ∞

0

e−t − e−xt

t
dt (x > 0),

we conclude that

ln
xΓ(x)

√

x + 1/4Γ(x + 1/2)

= ln Γ(x) − ln Γ(x + 1/2) + lnx − 1

2
ln(x + 1/4)

=
1

2

∫ ∞

0

et/4 + e−t/4 − 2

1 + et/2
· e−xt

t
dt > 0 (x > 0). (5)

From (5) we conclude that

(−1)n

(

ln
xΓ(x)

√

x + 1/4Γ(x + 1/2)

)(n)

=
1

2

∫ ∞

0

et/4 + e−t/4 − 2

1 + et/2
· e−xt

t1−n
dt > 0

for x > 0 and n = 0, 1, 2 . . .. The proof is complete.

Remark. From (5) we get

xΓ(x)
√

x + 1/4Γ(x + 1/2)
> 1 (x > 0). (6)

In fact, using the asymptotic expansion (see [8])

xb−a Γ(x + a)

Γ(x + b)
= 1 +

(a − b)(a + b − 1)

2x
+ O(x−2) (x → ∞), (7)

we conclude that

lim
x→∞

xΓ(x)
√

x + 1/4Γ(x + 1/2)
= 1.

By Theorem 1, the function f(x) = xΓ(x)√
x+1/4Γ(x+1/2)

− 1 is strictly completely monotonic

on (0,∞).

As an application of (6), we prove the following Wallis’ inequality [12].

Theorem 3. For all natural numbers n, then

1
√

π(n + 4/π − 1)
≤ (2n − 1)!!

(2n)!!
<

1
√

π(n + 1/4)
, (8)

where (2n)!! =
∏n

k=1(2k) and (2n− 1)!! =
∏n

k=1(2k− 1). The constants 4
π − 1 and 1

4 are

the best possible.
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Proof. First, we show that the sequence

Qn =

[

Γ(n + 1)

Γ(n + 1
2 )

]2

− n (n = 1, 2, . . .)

is strictly decreasing. It is sufficient to show that Qn+1 < Qn, which is equivalent to

Γ(n + 1)

Γ(n + 1
2 )

<
2n + 1√
4n + 3

. (9)

Take in (6) x = n + 1
2 , (9) holds clearly.

Now, we prove (8). Since

Γ(n + 1) = n!, Γ
(

n +
1

2

)

=
(2n − 1)!!

2n

√
π, 2nn! = (2n)!!,

the inequality (8) is equivalent to

1

4
< Qn =

[

Γ(n + 1)

Γ(n + 1
2 )

]2

− n ≤ 4

π
− 1.

From the monotonicity of the sequence Qn, it follows that

lim
n→∞

Qn < Qn ≤ Q1 =
4

π
− 1.

Using the asymptotic expansion (7) we conclude from

Qn = n

[

n− 1
2

Γ(n + 1)

Γ(n + 1
2 )

− 1

] [

n− 1
2

Γ(n + 1)

Γ(n + 1
2 )

+ 1

]

that

lim
n→∞

Qn =
1

4
.

Thus, the inequality (8) follows. The proof is complete.
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