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Lp−WINTERNIZ PROBLEM ON FIREY PROJECTION

OF CONVEX BODIES

TONG-YI MA AND LI-LI ZHANG

Abstract. For p ≥ 1, Lutwak, Yang and Zhang introduced the concept of p-projection

body, and Lutwak introduced the concept of Lp− affine surface area of convex body.

In this paper, we develop the Minkowski-Funk transform approach in the Lp -Brunn-

Minkowski theory. We consider the question of whether Πp K ⊆ Πp L implies Ωp (K ) ≤

Ωp (L), where Πp K and Ωp K denotes the p−projection body of convex body K and the

Lp−affine surface area of convex body K , respectively. We also formulate and solve a

generalized Lp−Winterniz problem for Firey projections.

1. Introduction

Let K
n denote the set of convex bodies (compact, convex subsets with nonempty in-

teriors) in R
n . For the set of convex bodies containing the origin in their interiors and the

set of origin-symmetric convex bodies in R
n , we write K

n
o and K

n
c , respectively. Denote

by voln(K ) the n-dimensional volume of body K . Let B n is a standard unit ball in R
n with

n−dimensional Lebesgue measure ωn := voln(B n) = πn/2/Γ(1+n/2), for surface Sn−1 of B n ,

denote σn−1 := |Sn−1| = 2πn/2/Γ(n/2).

If K ∈K
n , its support function, hK (·) = h(K , ·) : Rn → (0,∞), is defined by

h(K , x)= max{x · y : y ∈ K }, x ∈R
n ,

where x · y denotes the standard inner product of x and y in R
n .

If K is a compact star-shaped (about the origin) in R
n , its radial function, ρK (·) = ρ(K , ·) :

R
n \ {0} → [0,+∞), is defined by

ρ(K , x)= max{λ≥ 0 : λx ∈ K }, x ∈R
n \ {0}.

Received October 12, 2011, accepted October 4, 2013.
2010 Mathematics Subject Classification. 52A30, 52A40.
Key words and phrases. p-projection body, Lp -affine surface area, the generalized cosine transforms,

Lp−Winterniz problem.
Corresponding author: Tong-Yi Ma.
Supported by the NNSF of China(11161019, 11371224).

179

http://dx.doi.org/10.5556/j.tkjm.45.2014.1017


180 TONG-YI MA AND LI-LI ZHANG

If ρ(K ,u) is positive and continuous, then K will be called a star body (about the origin). Let

S
n

o denote the set of star bodies (about the origin) in R
n . Two star bodied K and L are said to

be dilates (of one another) if ρK (u)/ρL(u) is independent of u ∈ Sn−1.

For K ∈K
n

o , the polar body, K ∗, of K is defined by

K ∗
= {x ∈R

n : x · y ≤ 1, y ∈ K }.

Obviously, we have ρ(K ∗, ·) = 1/h(K , ·).

The projection body was introduced at the turn of the previous century by Minkowski.

For K ∈K
n , the projection body, ΠK , of K is centrally symmetric convex body whose support

function is given by (see [3, 20])

h(ΠK ,θ) := voln−1(K |θ⊥) =
1

2

∫

Sn−1
|θ ·u|dS(K ,u), for all θ ∈ Sn−1,

where voln−1 denotes (n−1)-dimensional volume, K |θ⊥ denotes the image of the orthogonal

projection of K onto the codimensional 1 subspace orthogonal to θ, and S(K , ·) is the surface

area measure.

A convex body K is said to have a curvature function f (K , ·) : Sn−1 →R, if its surface area

measure S(K , ·) is absolutely continuous with respect to Lebesgue measure S on Sn−1 and

dS(K , ·)

dS
= f (K , ·) ∈ L1(Sn−1).

Let F
n denote the set of all bodies in K

n that has a positive continuous curvature func-

tion. If K is an infinitely smooth body with positive curvature, then f (K ,θ) is the reciprocal of

the Gauss curvature at the boundary point with unit normal θ, see [20, p.419]. Abusing nota-

tions, we will also denote by f (K , ·) the extension of f (K , ·) to R
n as a homogeneous function

of degree −n −1.

For a convex body K in R
n with positive curvature f (K , ·), the classical affine surface area,

Ω(K ), of K is defined by (see [7, 8, 9, 16])

Ω(K ) =

∫

Sn−1
f (K ,u)

n
n+1 dS(u).

In [4], Lutwak studied the following problems:

Winterniz problem for projection body (see [1]). Let K and L be two origin-symmetric con-

vex bodies in R
n , and both of them have a positive continuous curvature function, and sup-

pose that

ΠK ⊂ΠL,
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Does it follow that

Ω(K ) ≤Ω(L)?

In order to study these problems, Lutwak defines a class specific set for elliptic convex

bodies(see [8]):

W
n
= {K ∈F

n : ∃Z ∈Z
n with f (K , ·) =h(Z , ·)−n−1},

where Z
n is the set of projection bodies. And he proved that if L ∈ W

n , then the condition

ΠK ⊆ΠL implies Ω(K ) ≤Ω(L), while for K 6∈W
n this is not necessarily true.

The main purpose of this paper is to give an answer of Lp−Winterniz problems by in-

novative methods of generalized cosine transform. To this end, we will use concept of a

p−projection body, introduced by Lutwak [9, 10]. For each K ∈ K
n

o and real p ≥ 1, then the

p-projection body, Πp K , of K is an origin-symmetric convex body whose support function is

given by

h(Πp K , x)p
=

1

2n

∫

Sn−1
|x ·u|

p dSp(K ,u), x ∈R
n . (1)

Here Sp (K , ·) is the Lp−surface area measure. A convex body M is called a p−projection body

if there is a convex body K such that M =Πp K . We say that the support function h(Πp K , ·) of

Πp K defines Lp−Firey projection of a body K .

A convex body K ∈K
n

o is said to have a Lp−curvature function (see [9]) fp (K , ·) : Sn−1 →

R, if its Lp−surface area measure Sp (K , ·) is absolutely continuous with respect to spherical

Lebesgue measure S, and
dSp(K , ·)

dS
= fp (K , ·). (2)

Let F
n
o ,F n

c denote the set of bodies in K
n

o ,K n
c , respectively, and both of them have a

positive continuous curvature function.

Lutwak [9] showed the Lp−affine surface area as follow: For K ∈ F
n
o , the Lp−affine sur-

face area, Ωp (K ), of K is defined by

Ωp (K ) =

∫

Sn−1
fp (K ,u)

n
n+p dS(u). (3)

Lp−Winterniz problem will be expressed as follows:

Lp−Winterniz problem for Firey projection body. Consider two origin-symmetric convex

bodies K and L in R
n , and both of them have a positive continuous Lp−curvature function.

Fix p ≥ 1 and suppose that

Πp K ⊂Πp L.

Does it follow that

Ωp (K ) ≤Ωp (L)?
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In the case p = 1, the problem is just the Winterniz’s problem. In this paper, we give the

Lp -form of Winterniz problems and study its general answer. Our main result is the following

two Theorems.

Theorem 1.1. Winterniz monotonicity problem for projections bodied has a affirmative an-

swer if and only if p = 1 and n ≤ 2.

Theorem 1.2. Lp−Winterniz monotonicity problem for Lp−Firey projections has a negative

answer if and only if p > 1 and n ≥ 2.

2. The Brunn-Minkowski Theory Background

2.1. The Lp -mixed volume

Firey [11] extended the concept of Minkowski linear combination. For p ≥ 1, K ,L ∈ K
n

o

and α,β> 0, the Firey Lp -combination αK +p βL ∈K
n

o is defined by

h(αK +p βL, ·)p
=αh(K , ·)p

+βh(L, ·)p .

where " · " in ε · L denotes the Firey scalar multiplication. For p = 1, K +p ε · L is just the

Minkowski linear combination of K and L.

Lutwak (see [11]) showed that the Firey Lp -combination lead to a Brunn-Minkowski the-

ory for p ≥ 1. He introduced the notion of Lp -mixed volume as follows: For K ,L ∈ K
n

o and

p ≥ 1, the Lp -mixed volume of K and L, Vp (K ,L), is defined by

n

p
Vp (K ,L) = lim

ε→0

V (K +p εL)−V (K )

ε
.

Lutwak (see [11]) further proved that for each K ∈K
n

o , there exists a positive Borel mea-

sure Sp (K , ·) on Sn−1 so that

Vp (K ,L) =
1

n

∫

Sn−1
h(L,u)p dSp (K ,u),

for all L ∈K
n

o . It turns out that the measure Sp (K , ·) is absolutely continuous with respect to

S(K , ·), and has the Radon-Nikodym derivative

dSp (K , ·)

dS(K , ·)
=h1−p (K , ·).

If Sp (K , ·) is absolutely continuous with respect to spherical Lebesgue measure S, we have

eq.(2).
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From (2), we have

Vp (K ,L) =
1

n

∫

Sn−1
h(L,u)p fp (K ,u)du,

for all L ∈K
n

o . In particular,

voln(K ) =
1

n

∫

Sn−1
h(K ,u)p fp (K ,u)du.

If a convex body K has the curvature functions, then

fp (K , ·) =h(K , ·)1−p f (K , ·).

Lutwak also proved a generalization of the classical Minkowski theorem, which states

that given p > 0, p 6= n, and a continuous even function g : Sn−1 → R
+, there exists a unique

convex body K such that fp (K , ·) = g .

2.2. The Lp−mixed affine surface area

Lutwak [9] showed the Lp−affine surface area as follows: For K ∈F
n
o , the Lp−affine sur-

face area, Ωp (K ), of K is defined by

Ωp (K ) =

∫

Sn−1
fp (K ,u)

n
n+p dS(u). (4)

In [9], Lutwak gave an Lp−extension of Leichtweiβ’s definition (see [15]) of extended

affine surface area as follows: For p ≥ 1,K ∈K
n

o . define Ωp (K ) by

n−
p

n Ωp (K )
n+p

n = inf{nVp (K ,Q∗)V (Q)
p

n : Q ∈S
n

o }. (5)

When p = 1, the subscript will often be suppressed.

The definition of Blaschke Lp−combination for convex bodies was given by Lutwak (see

[11]). For K ,L ∈K
n

o , p ≥ 1, λ,µ≥ 0 (not both zero), the Blaschke Lp−combination, λK +̆pµL ∈

K
n

o , of K and L is defined by

dSp(λK +̆pµL, ·) =λdSp(K , ·)+µdSp (L, ·). (6)

From (6) and (2), it is obvious that

fp (λK +̆pµL, ·) =λ fp (K , ·)+µ fp (L, ·). (7)

For p ≥ 1, the Lp−mixed affine surface area of K ,L ∈F
n
o ,Ω−p (K ,L), can be defined by

Ω−p (K ,L) =
n

n +p
lim
ε→0+

Ωp (L+̆pεK )−Ωp (L)

ε
. (8)

More accurately, we have the following:
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Proposition 2.1. For p ≥ 1, the Lp−mixed affine surface area of K ,L ∈F
n
o , Ω−p (K ,L), has the

following integral representation:

Ω−p (K ,L) =

∫

Sn−1
fp (K ,u) fp (L,u)

−
p

n+p dS(u). (9)

Proof. From (4), (7) and (8), we have

lim
ε→0+

Ωp (L+̆pεK )−Ωp (L)

ε

= lim
ε→0+

∫
Sn−1

(
fp (L+̆pεK ,u)

n
n+p − fp (L,u)

n
n+p

)
dS(u)

ε

= lim
ε→0+

∫
Sn−1

[(
fp (L,u)+ε fp (K ,u)

) n
n+p − fp (L,u)

n
n+p

]
dS(u)

ε

=
n +p

n

∫

Sn−1
fp (K ,u) fp (L,u)

−
p

n+p dS(u).

This completes the proof.

Clearly, from (9) and (4) it follows that for p ≥ 1 and K ∈F
n
o ,

Ω−p (K ,K ) =Ωp (K ). (10)

Since for any K ∈ K
n

o , the Lp−surface area measure, Sp (K , ·), is well-defined, we can

give a natural extension of eq.(9) of the Lp−mixed affine surface area Ω−p from F
n
o ×F

n
o to

K
n

o ×F
n
o . Specifically, for K ∈K

n
o and L ∈F

n
o ,let

Ω−p (K ,L) =

∫

Sn−1
fp (L,u)

−
p

n+p dSp(K ,u). (11)

It is well-known that for K ∈ F
n
o ,dSp(K , ·) = fp (K , ·)dS(·). Thus (11) boils down to (9) for

K ∈F
n
o . Note that the case p = 1 was studies by Lutwak in [12].

Using Hölder’s inequality, we can easily obtain the following inequality : If p ≥ 1, and

K ∈K
n

o ,L ∈F
n
c , then

Ω−p (K ,L)n
≥Ωp (K )n+p

Ωp (L)−p . (12)

If n 6= p > 1 and K ,L ∈F
n
o , then equality holds in (12) if and only if K and L are dilates. If p = 1,

K ∈K
n and L ∈F

n
c , then (12) equality hold if and only if K and L are homothetic.

2.3. Lp -curvature image

Lutwak (see [9]) showed the notion of Lp -curvature image as follows: For each K ∈ F
n
o

and real p ≥ 1, define Λp K ∈ S
n

o be a star body (about the origin) in R
n , the Lp -curvature

image of K , by

fp (K , ·) =
ωn

voln(Λp K )
ρ(ΛpK , ·)n+p . (13)
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Note that for p = 1, this definition differs from the definition of classical curvature image (see

[8, 12, 13]).

For the Lp -curvature image and Lp -affine surface area, we have the following result: If

K ∈F
n
o , p ≥ 1, then

voln(Λp K )
p

n+p =
1

n
ω
−

n
n+p

n Ωp (K ). (14)

3. Analytic Families of The Generalized Cosine Transforms

3.1. Basic integral transforms

In the following, N+ = {1,2, . . .} is the set of all non-zero natural numbers, N = N
+ ∪ {0}.

C (Sn−1) and Ce (Sn−1) denote the space of continuous functions on Sn−1 and the space of

even continuous functions on Sn−1, respectively. And the subset of Ce (Sn−1) that contains the

infinitely differentiable functions will be denoted by C∞
e (Sn−1). D(Sn−1) is the subspace of

C∞
e (Sn−1) equipped with the standard topology, and D

′(Sn−1) stands for the corresponding

dual space of distributions. The subspaces of even test functions (distribution) are denoted

by De (Sn−1) (D′
e (Sn−1)). We write M (Sn−1) for the spaces of finite Borel measures on Sn−1.

M+(Sn−1) are the relevant spaces of non-negative measures. Me+(Sn−1) denotes the space of

even measures µ ∈M+(Sn−1).

The Minkowski-Funk transform is as follows:

(M f )(u)=

∫

{θ: θ·u=0}
f (θ)duθ, u ∈ Sn−1, (15)

which integrates a function f over great circles of codimension 1. This transform is a member

of the analytic family[17]:

(Mα f )(u) = γn(α)

∫

Sn−1
f (θ)|θ ·u|

α−1dθ, (16)

γn(α) =
σn−1Γ((1−α)/2)

2π(n−1)/2Γ(α/2)
, Reα> 0, α 6= 1,3,5, . . . ;

(M̃α f )(u) =

∫

Sn−1
f (θ)|θ ·u|

α−1dθ, α= 1,3,5, . . . . (17)

Let {Y j ,k } be an orthonormal basis of spherical harmonics on Sn−1. Here j = 0,1,2, . . .,

and k = 1,2, . . . ,dn( j ), where dn( j ) is the dimension of the subspace of spherical harmonics

of degree j . Each function ω ∈ D(Sn−1) admits a decomposition ω =
∑

j ,k ω j ,k Y j ,k with the

Fourier-Laplace coefficients ω j ,k =
∫

Sn−1 ω(θ)Y j ,k (θ)dθ, which decay rapidly as j →∞. Each

distribution f ∈ D
′(Sn−1) can be defined by ( f ,ω) =

∑
j ,k f j ,kω j ,k where f j ,k = ( f ,Y j ,k ) grow

not faster than j m for some integer m.
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Analytic continuation of integrals (16) can be realized in spherical harmonics as

Mα f =
∑

j ,k

m j ,α f j ,kY j ,k ,

where

m j ,α =

{
(−1) j /2 Γ( j /2+(1−α)/2)

Γ( j /2+(n−1+α)/2) , if j is even;

0, if j is odd ,

see [18]. If f ∈D
′(Sn−1), then Mα f is a distribution defined by

(Mα f ,ω) = ( f , Mαω) =
∑

j ,k

m j ,α f j ,kω j ,k , ω ∈D(Sn−1); α 6= 1,3,5, . . . . (18)

Lemma 3.1 ([17]). Let α,β ∈ C;α,β 6= 1,3,5, . . .. If α+β = 2 − n and f ∈ De (Sn−1) (or f ∈

D
′
e (Sn−1)), then

MαMβ f = f . (19)

If α,2−n −α 6= 1,3,5, . . ., then Mα is an automorphism of the spaces De (Sn−1) and D
′
e (Sn−1).

Using (16), (17) and (2), the formula (1) can be rewritten by

(
M p+1 fp (K , ·)

)
(u) = 2nγn(p +1)h(Πp K ,u)p , if p ≥ 1, p 6= 2,4,6 · · · ; (20)

(
M̃ p+1 fp (K , ·)

)
(u) = 2nh(ΠpK ,u)p , if p = 2,4,6 · · · , (21)

where the constant

γn(p +1) =
σn−1Γ(−p/2)

2π(n−1)/2Γ((1+p)/2)
=

−2p−1σn−1

π(n−2)/2Γ(1+p)sin(πp/2)

is positive for each p ∈ (4k −2, 4k) and negative for each p ∈ (4k , 4k +2), where k ∈N.

3.2. λ−intersection bodies and (Rn , || · ||K ) isometric embedding Lp

Let λ be a real number,

sλ=

{
1, if λ> 0, λ 6= n,n +2,n +4, . . . ;

Γ(λ/2), if λ< 0, λ 6= −2,−4,−6,−8, . . . .

The values λ= 0,n,n +2,n +4, . . . will not be considered in the following, but values λ=

−2,−4, . . . will be included.

Definition 3.2 ([17]). Let λ < n,λ 6= 0. An origin-symmetric star body K in R
n is said to be

a λ−intersection body if there is a measure µ ∈ Me+(Sn−1) such that sλρ
λ
K = M 1−λµ for λ 6=

−2l , l ∈N, and ρ−2l
K = M̃ 1+2lµ for λ=−2l .
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We denote by I
n
λ

the set of all λ−intersection bodies of origin-symmetric star bodies in

R
n .

Definition 3.3 ([17]). For a star body K ∈S
n

o , the quasi-normed space (Rn , || · ||K ) is said to be

isometrically embedded in Lp , p > 0, if there is a linear operator T : Rn −→ Lp ([0,1]) such that

||x||K = ||T x||Lp ([0,1]).

Lemma 3.4 ([17]). Let p >−n, p 6= 0. Then (Rn , || · ||K ) embeds isometrically in Lp if and only if

K ∈I
n
−p .

Lemma 3.5. (see [4, Lecture 6.1]) For p > 0, an n−dimensional space (Rn , || · ||) embeds in Lp if

and only if there exists a finite Borel measures µ ∈M (Sn−1) such that for every x ∈R
n satisfying

||x||p =

∫

Sn−1
|(x,ξ)|p dµ(ξ). (22)

On the other hand, this can be considered as the definition of embedding in Lp ,−1 < p < 0 (see

[5]).

Lemma 3.6 ([6]). Let L be an origin-symmetric star body in R
n , p ≥ 1, then following is equiv-

alent:

(1) L is a p−projection body;

(2) (Rn , || · ||L∗ ) is isometrically embedded to a subspace of Lp .

Combining Lemma 3.4 and Lemma 3.6, we can get the following Lemma:

Lemma 3.7. Let L be an origin-symmetric convex body in R
n , p ≥ 1, then the following is equiv-

alent:

(1) L ∈I
n
−p ;

(2) (Rn , || · ||L) is isometrically embedded to a subspace of Lp ;

(3) L∗ is a p−projection body.

We remind the notation

Λ0 = {n,n +2,n +4, . . .}∪ {0,−2,−4, · · · }.

We also need to use the following results in [17]:

Lemma 3.8. For λ ∈R\Λ0, the following statements are equivalent:

(1) K ∈I
n
λ

;
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(2) The Fourier transform
[
sλ|| · ||

−λ
K

]∧
is a positive distribution on R

n \ {0} (for λ > 0, this can

be replaced by || · ||−λK is a positive definite distribution on R
n );

(3) sλM 1+λ−nρλ
K ∈Me+(Sn−1).

4. Main results and its proofs

In order to prove Theorem 1.1 and Theorem 1.2 that we proposed in the introduction, the

following two main Lemma are required.

Lemma 4.1. Let p ≥ 1, where p is not an even integer. Let K and L be two origin-symmetric

convex bodies in F
n
c , and let Λp L ∈ S

n
o be such that radial function ρ(Λp L, ·) is infinitely

smooth. Suppose also that the surface area measures of K and L are absolutely continuous.

If Γ(−p/2)
(
M 1−p−n fp (L, ·)

−
p

n+p
)
(θ) ∈Me+(Sn−1) for all θ ∈ Sn−1, and

γn(1+p)−1
(
M 1+p fp (K , ·)

)
(θ) ≤γn(1+p)−1

(
M 1+p fp (L, ·)

)
(θ), θ ∈ Sn−1,

then

Ωp (K ) ≤Ωp (L).

Proof. By the conditions we have

Γ(−p/2)γn(1+p)−1
∫

Sn−1

(
M 1+p fp (K , ·)

)
(θ)

(
M 1−p−n fp (L, ·)

−
p

n+p
)
(θ)dθ

≤ Γ(−p/2)γn (1+p)−1
∫

Sn−1

(
M 1+p fp (L, ·)

)
(θ)

(
M 1−p−n fp (L, ·)

−
p

n+p
)
(θ)dθ. (23)

Using Lemma 3.1 in (23), we have

Γ(−p/2)γn (1+p)−1
∫

Sn−1
fp (K ,u) fp (L,u)

−
p

n+p du

≤ Γ(−p/2)γn (1+p)−1
∫

Sn−1
fp (L,u) fp (L,u)

−
p

n+p du. (24)

By formula (9) of the Lp−mixed affine surface area, we know that (24) is equivalent to

Γ(−p/2)γn (1+p)−1
Ω−p (K ,L) ≤Γ(−p/2)γn (1+p)−1

Ωp (L). (25)

Note that p ≥ 1,Γ(−p/2)γn (1+p)−1 is positive all along, thus

Ω−p (K ,L) ≤Ωp (L). (26)

Now we apply inequality (12), then

Ωp (L) ≥Ω−p (K ,L) ≥Ωp (K )
n+p

n Ωp (L)−
p

n ,

this implies

Ωp (K ) ≤Ωp (L).
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Remark 4.2. From formula (13), Lemma 3.7 and Lemma 3.8, we know that for p ≥ 1 and p is

not an even integer the following statements are equivalent:

(1) Λp L ∈I
n
−p ;

(2) (Rn , || · ||Λp L) is isometrically embedded to a subspace of Lp ;

(3) Γ(−p/2)
(
M 1−p−n fp (L, ·)

−
p

n+p
)
(θ) ∈Me+(Sn−1);

(4) Γ(−p/2)
(
M 1−p−nρ(Λp L, )−p

)
(θ) ∈Me+(Sn−1).

Lemma 4.3. Let p ≥ 1, where p is not an even integer. Let K be an origin-symmetric convex

bodies in F
n
c and such that Λp K ∈ S

n
o . If Γ(−p/2)

(
M 1−p−n fp (K , ·)

−
p

n+p
)
(θ) is negative on an

open subset of Sn−1, then there exists an origin-symmetric convex body L in R
n , such that

γn(1+p)−1
(
M 1+p fp (K , ·)

)
(θ) ≤ γn(1+p)−1

(
M 1+p fp (L, ·)

)
(θ),

but

Ωp (K ) > Ωp (L).

Proof. Let Ω= {θ ∈ Sn−1 : Γ(−p/2)
(
M 1−p−n fp (K , ·)

−
p

n+p
)
(θ) < 0}. From this and Remark 4.2 we

know Λp K 6∈ I
n
−p . Then by Definition 3.2, there exists a finite Borel measure µ ∈ Me (Sn−1),

which is negative on some open origin-symmetric set Ω⊂ Sn−1 and such that Γ(−p/2)ρ
−p

Λp K
=

M 1+pµ. From Definition (13), this is equivalent to Γ(−p/2) fp (K , ·)
−

p

n+p = M 1+pµ.

We choose an even Borel measure v ∈ Me (Sn−1) such that the (γn(1− p))−1v constant

is not equal to zero, (γn(1 − p))−1v(θ) ≥ 0 for θ ∈ Ω, and (γn(1 − p))−1v(θ) ≡ 0, otherwise.

Because v ∈ Me (Sn−1) and fp (K ,θ) = h
1−p

K (θ) fK (θ) > 0, one can choose a small ε > 0 so that,

for θ ∈ Sn−1 and r > 0,

fp (L,rθ) = fp (K ,rθ)+εM 1−p−n v(θ)> 0.

By Lutwak’s [14] extension of the Minkowski’s existence theorem, fp (L, ·) defines an origin-

symmetric convex body L ∈K
n

c .

Using Lemma 3.1, we have

γn(1+p)−1M 1+p M 1−p−n v =γn(1+p)−1v ≥ 0,

then

γn(1+p)−1
(
M 1+p fp (L, ·)

)
(rθ)−γn (1+p)−1

(
M 1+p fp (K , ·)

)
(rθ)

= εγn(1+p)−1M 1+p M 1−p−n v(θ) = εγn(1+p)−1v(θ) ≥ 0,

that is

γn(1+p)
(
M 1+p fp (K , ·)

)
(rθ) ≤ γn(1+p)

(
M 1+p fp (L, ·)

)
(rθ).
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Next, by the definition of µ, we have

Γ(−p/2)γn (1+p)−1
(

fp (K , ·)
−

p

n+p , fp (L, ·)− fp (K , ·)
)

= γn(1+p)−1
(
M 1+pµ, εM 1−p−n v

)

= γn(1+p)−1ε(µ, v)< 0.

From this we get

Γ(−p/2)γn (1+p)−1
(

fp (K ,θ)
−

p

n+p , fp (L,θ)
)
< Γ(−p/2)γn (1+p)−1

(
fp (K ,θ)

−
p

n+p , fp (K ,θ)
)
,

or

Γ(−p/2)γn (1+p)−1
Ω−p (L,K )< Γ(−p/2)γn (1+p)−1

Ωp (K ).

Note that p ≥ 1,Γ(−p/2)γn (1+p)−1 is positive all along, thus

Ω−p (L,K ) <Ωp (L).

Now we apply inequality (12), then

Ωp (L) >Ω−p (L,K ) ≥Ωp (L)
n+p

n Ωp (K )−
p

n ,

this implies

Ωp (K ) >Ωp (L).

Below, we begin to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. From Lemma 4.1 and (20) we know that ΠK ⊂ΠL is equivalent to

γn(2)−1
(
M 2 f (K , ·)

)
(θ) ≤ γn(2)−1

(
M 2 f (L, ·)

)
(θ),θ ∈ Sn−1.

Taking p = 1 in Lemma 4.1, if the condition Γ(−1/2)
(
M−n f (L, ·)−

1
n+1

)
(θ) ∈ Me+(Sn−1) is

true for all θ ∈ Sn−1, then Winterniz problem for projection bodies has an affirmative answer

for this L and any K .

Similarly, taking p = 1 in Lemma 4.3, if the curvature function f (K , ·) is positive on Sn−1

and Γ(−1/2)×
(
M−n f (K , ·)−

1
n+1

)
(θ) is negative on an open subset of Sn−1, then there exists an

origin-symmetric convex body L such that Winterniz problem for projection bodies has an

negative answer.

Therefore, using the equivalence of (1) and (3) in Remark 4.2, we can seen that for a given

dimension n the answer of Winterniz problem for projection bodies is affirmative if and only if

all convex bodies Q ∈F
n
o with Λ1Q ∈S

n
o , such that Λ1Q ∈I

n
−1. According to the equivalence

of (1) and (2) in Lemma 3.7, then this is equivalent to saying that any n−dimension normed
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space (Rn , || · ||Λ1Q) can be isometrically embedded into L1 , which is true if and only if for any

n ≤ 2 (see [2, 6]).

Proof of Theorem 1.2. Let p > 1 and p is not an even integer. We will prove that for a given

dimension n the answer of Lp−Winterniz problem for Firey projections is affirmative if and

only if all convex bodies Q ∈ F
n
o with ΛpQ ∈ S

n
o , such that ΛpQ ∈ I

n
−p . Using the same

argument as in Theorem 1.1 of the proof, we according to Lemma 3.7, this is equivalent to

saying that any n−dimensional normed space (Rn , || · ||Λp Q ) can be isometrically embedded

into Lp , which is not true for n ≥ 2 (see [6]). Thus, for p > 1 and p is not an even integer,

Lp−Winterniz monotonicity problem for Lp−Firey projections has a negative answer if and

only if for p > 1 and n ≥ 2.

Finally, we prove that the answer is always negative if p is an even integer. It turns out

that for any body K ⊂ R
n there exists a body L ⊂ R

n such that the Firey projections of bodies

K and L are equal but their Lp−affine surface area are different.

Let p be an even integer. Then |x ·ξ|p = (x ·ξ)p , and there exists a nonzero continuous

even function g on Sn−1 such that (see [19])

∫

Sn−1
|x ·ξ|p g (x)d x = 0, ∀ξ ∈ Sn−1. (27)

Indeed, if p = 2k , then (x ·ξ)2k is a polynomial of degree 2k with coefficients depending on ξ.

So, it is enough to construct a nontrivial even function g , satisfying

∫

Sn−1
x

i1

1 x
i2

2 · · ·x
in
n g (x)d x = 0,

for all integer powers 0 ≤ i j ≤ 2k such that i1 + i2 +·· ·+ in = 2k . Taking g (x) =
∑m

l=1
cl x2l

1 and

solving the system of linear equations, one can find a nontrivial solution c1,c2, . . . ,cm provided

m is big enough.

Consider an origin-symmetric convex body K in R
n with a strictly positive Lp -curvature

function (i.e., fp (K ,ξ) > 0,∀ ξ ∈ Sn−1). Without loss of generality, we may assume that

∫

Sn−1
fp (K ,ξ)

−
p

n+p g (ξ)dξ≥ 0, (28)

(otherwise consider−g (ξ) instead of g (ξ)). Choose ε> 0 such that

fp (K ,ξ)−εg (ξ) > 0, ∀ξ ∈ Sn−1.

Since fp (K ,θ) = h
1−p

K
(θ) f (K ,θ) > 0, using the existence theorem for Lp -curvature func-

tions (see [14]), we conclude that there exists an origin-symmetric convex body L in R
n such

that

fp (L,ξ) = fp (K ,ξ)−εg (ξ). (29)
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Now multiply both sides by |x ·ξ|p and integrating, then

∫

Sn−1
|x ·ξ|p fp (L,ξ)dξ=

∫

Sn−1
|x ·ξ|p fp (K ,ξ)dξ−ε

∫

Sn−1
|x ·ξ|p g (ξ)dξ.

Applying (27) and (1), we get that h(Πp L, x) = h(ΠpK , x), i.e., Πp L =Πp K .

On the other hand, using (28), (29) and inequality (12), we have

Ωp (K ) =

∫

Sn−1
fp (K ,ξ)

n
n+p dξ

=

∫

Sn−1
fp (K ,ξ)

−
p

n+p fp (K ,ξ)dξ

=

∫

Sn−1
fp (K ,ξ)

−
p

n+p ( fp (L,ξ)+εg (ξ))dξ

≥

∫

Sn−1
fp (K ,ξ)

−
p

n+p fp (L,ξ)dξ

= Ω−p (L,K )

≥ Ωp (L)
n+p

n Ωp (K )−
p

n .

The last inequality in the above formula is the equality holds if and only if K and L are di-

lates. Therefore, Ωp (K ) = Ωp (L) must implies that K = L, but by (29) this contradicts with

the uniqueness of Lp−curvature function. Then there must be Ωp (K ) >Ωp (L). The proof of

Theorem 1.2 is completed.
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