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L,—WINTERNIZ PROBLEM ON FIREY PROJECTION
OF CONVEX BODIES

TONG-YI MA AND LI-LI ZHANG

Abstract. For p = 1, Lutwak, Yang and Zhang introduced the concept of p-projection
body, and Lutwak introduced the concept of L,— affine surface area of convex body.
In this paper, we develop the Minkowski-Funk transform approach in the L,-Brunn-
Minkowski theory. We consider the question of whether I1,K < I1, L implies Q) (K) <
Qp (L), where I1,K and QK denotes the p—projection body of convex body K and the
Lp,—affine surface area of convex body K, respectively. We also formulate and solve a
generalized L,—Winterniz problem for Firey projections.

1. Introduction

Let #" denote the set of convex bodies (compact, convex subsets with nonempty in-
teriors) in R”. For the set of convex bodies containing the origin in their interiors and the
set of origin-symmetric convex bodies in R"”, we write )" and £/, respectively. Denote
by vol,(K) the n-dimensional volume of body K. Let B” is a standard unit ball in R” with
n—dimensional Lebesgue measure w, := vol,,(B") = n™/2/T'(1 + n/2), for surface S"~! of B",
denote g, := S =222 /T (n/2).

If K e ", its support function, hg () = h(K,-) : R" — (0,00), is defined by
h(K,x)=max{x-y:y€eK}, xeR",

where x - y denotes the standard inner product of x and y in R".

If K is a compact star-shaped (about the origin) in R”, its radial function, pg(-) = p(K, ") :
R"\ {0} — [0, +00), is defined by

p(K,x) =max{1>0:Axe€ K}, xeR"\{0}.
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If p(K, u) is positive and continuous, then K will be called a star body (about the origin). Let
<t denote the set of star bodies (about the origin) in R”. Two star bodied K and L are said to

be dilates (of one another) if px(u)/pr(u) is independent of u € sn-1,

For K € %', the polar body, K*, of K is defined by
K'={xeR":x-y<1,ye K}

Obviously, we have p(K*,-) = 1/h(K,).
The projection body was introduced at the turn of the previous century by Minkowski.
For K € ", the projection body, I1K, of K is centrally symmetric convex body whose support

function is given by (see [3, 20])

1
h(I1K,0) := vol,,_ (K|0}) = Ef 0 uldS(K,u), forall@eS" !,
Sn—l
where vol,,_; denotes (n — 1)-dimensional volume, K|+ denotes the image of the orthogonal
projection of K onto the codimensional 1 subspace orthogonal to 6, and S(K, ) is the surface

area measure.
A convex body K is said to have a curvature function f(K,-): S ! — R, if its surface area

measure S(K, ) is absolutely continuous with respect to Lebesgue measure S on S "~1land

dS(K,-)
ds

= f(K,) e L' (8" ™.

Let " denote the set of all bodies in £ "* that has a positive continuous curvature func-
tion. If K is an infinitely smooth body with positive curvature, then f (K, 6) is the reciprocal of
the Gauss curvature at the boundary point with unit normal 6, see [20, p.419]. Abusing nota-
tions, we will also denote by f(K,-) the extension of f(K,-) to R as a homogeneous function
of degree —n —1.

For a convex body K in R" with positive curvature f(K,-), the classical affine surface area,
Q(K), of K is defined by (see [7, 8, 9, 16])

Q(K) = f FK, u) ™1 dS(u).
Snfl

In [4], Lutwak studied the following problem:s:

Winterniz problem for projection body (see [1]). Let K and L be two origin-symmetric con-
vex bodies in R", and both of them have a positive continuous curvature function, and sup-
pose that

I[IK cIIL,
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Does it follow that
QK)<Q)?

In order to study these problems, Lutwak defines a class specific set for elliptic convex
bodies(see [8]):
W"={KeZF":3Ze Z"with f(K,") = h(Z,) "1},

where Z" is the set of projection bodies. And he proved that if L € #", then the condition
IK < I1L implies Q(K) < Q(L), while for K ¢ #'"* this is not necessarily true.

The main purpose of this paper is to give an answer of L,—Winterniz problems by in-
novative methods of generalized cosine transform. To this end, we will use concept of a
p—projection body, introduced by Lutwak [9, 10]. For each K € %" and real p = 1, then the
p-projection body, IT, K, of K is an origin-symmetric convex body whose support function is
given by

h(HpK,x)”zif lx-ulPdS,(K,u), xeR". (1)
2n Jgn-1

Here S, (K,) is the L,—surface area measure. A convex body M is called a p—projection body
if there is a convex body K such that M = I1,K. We say that the support function h(I1,K,-) of
I1,K defines L,—Firey projection of a body K.

A convex body K € £ is said to have a L,—curvature function (see [9]) f,(K,") : S n=l,
R, if its Lp—surface area measure S,(K,-) is absolutely continuous with respect to spherical

Lebesgue measure S, and
dS,(K,-)

as

Let #)!,Z/" denote the set of bodies in £, Z", respectively, and both of them have a
positive continuous curvature function.

= f,(K,"). @)

Lutwak [9] showed the Lj,—affine surface area as follow: For K € Z, the L, —affine sur-
face area, 2, (K), of K is defined by

Q,(K) = fs KW dsw). 3)

L,—Winterniz problem will be expressed as follows:

L,—Winterniz problem for Firey projection body. Consider two origin-symmetric convex
bodies K and L in R", and both of them have a positive continuous L, —curvature function.
Fix p = 1 and suppose that

K clly,L.

Does it follow that
Q,(K) < Q,(L)?
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In the case p = 1, the problem is just the Winterniz’s problem. In this paper, we give the
Lj,-form of Winterniz problems and study its general answer. Our main result is the following

two Theorems.

Theorem 1.1. Winterniz monotonicity problem for projections bodied has a affirmative an-

swerifandonlyifp=1andn<2.

Theorem 1.2. L,—Winterniz monotonicity problem for L,—Firey projections has a negative
answer ifand onlyifp >1 andn = 2.

2. The Brunn-Minkowski Theory Background
2.1. The L,-mixed volume

Firey [11] extended the concept of Minkowski linear combination. For p = 1, K,L € %}
and a, § > 0, the Firey L,-combination aK +, BL € £ is defined by

h(aK +, BL,-)P = ah(K,)? + Bh(L,)".

n n

where in €- L denotes the Firey scalar multiplication. For p =1, K+, ¢- L is just the

Minkowski linear combination of K and L.

Lutwak (see [11]) showed that the Firey L,-combination lead to a Brunn-Minkowski the-
ory for p = 1. He introduced the notion of L,-mixed volume as follows: For K, L € %" and
p =1, the L,-mixed volume of K and L, V, (K, L), is defined by

V(K+peLl)-V(K)

n .
—Vp(K,L) = lim
p e—0 £

Lutwak (see [11]) further proved that for each K € %", there exists a positive Borel mea-
sure Sp(K,-) on " so that

1
Vp(K,L) = — h(L,u)PdS,(K,u),
n Jgn-1
forall L € £ It turns out that the measure S, (K, ) is absolutely continuous with respect to

S(K,-), and has the Radon-Nikodym derivative

ds,(K,")

—pl-pr .
T h"P(K,).

If S, (K,-) is absolutely continuous with respect to spherical Lebesgue measure S, we have
eq.(2).
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From (2), we have )
Vy(K, L) = ;f h(L, u)pfp(K, wdu,
Snfl

forall Le .#,. In particular,
1
Voln(K):—f h(K, w)? f,(K, w)du.
nJsn-1

If a convex body K has the curvature functions, then
fp(K,)=hK,)PFEK,).

Lutwak also proved a generalization of the classical Minkowski theorem, which states
that given p > 0, p # n, and a continuous even function g : §"~1 . R*, there exists a unique
convex body K such that f,(K,) = g.

2.2. The L,-mixed affine surface area

Lutwak [9] showed the Lj—affine surface area as follows: For K € #, the L,—affine sur-
face area, Q,(K), of K is defined by

Q,(K) = fs K, wTrdS(w), @)

In [9], Lutwak gave an L,—extension of Leichtweif’s definition (see [15]) of extended
affine surface area as follows: For p=1,K € %'. define Q p(K) by

n"hQ,(K) W =inf{nV,(K,Q)V(Q)" : Qe &) 5)

When p = 1, the subscript will often be suppressed.

The definition of Blaschke L,—combination for convex bodies was given by Lutwak (see
(11]). For K,Le #',p =2 1, A, u = 0 (not both zero), the Blaschke L, —combination, AK+,uL €
&, of K and L is defined by

dSp(AK¥puL, ) = AdSy(K, ") + pudS,(L, ). 6)
From (6) and (2), it is obvious that
fpAK+puL,) = Af,(K,) + pufp(L,-). (7

For p = 1, the L, —mixed affine surface area of K, L € #',Q_, (K, L), can be defined by

n Qp(LFpeK) = Qp(L)
Q_p(K,L)= lim ——" Ay
n+pe—0* €

(8)

More accurately, we have the following:
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Proposition 2.1. For p = 1, the L,,—mixed affine surface area of K, L € Fr, Q_,(K, L), has the

following integral representation:
_r
Q_p(K,L) :fsnl fp(K,u) fp(L, ) ™7 dS(u). 9

Proof. From (4), (7) and (8), we have
Qp (LY peK) = Qp (L)

lim
e—0" E
Joret (o LF K, 75 = iy (L, 175 ) dS(w)
= lim
e—07 &
Syt | (Fp (L) + £ £ (K, 1) 77 = (L1075 | dS(w)
= lim
e—0" E
- ";’”fsn_l oK, 1) f (L) 77 dS(w).

This completes the proof.
Clearly, from (9) and (4) it follows that for p =1 and K € &/,

Q_p(K,K) = Qp(K). (10)

Since for any K € %, the L,—surface area measure, S,(K,-), is well-defined, we can
give a natural extension of eq.(9) of the L,—mixed affine surface area Q_), from &J x # to
K x F. Specifically, for K € £ and L € &' let

Q_,(K, L) :f Follw) ™7 dS, (K, ). an
Snfl

It is well-known that for K € &[,dSy(K,-) = f,(K,-)dS(). Thus (11) boils down to (9) for
K e #['. Note that the case p = 1 was studies by Lutwak in [12].

Using Holder’s inequality, we can easily obtain the following inequality : If p = 1, and
Kex]',Le /', then
Q_p(K,1)" 2 Q,(K)"PQ, (L) 7. (12)

If n# p>1landK,Le %/, then equality holds in (12) ifand only if K and L are dilates. If p =1,
Ke x™"and Le Z!, then (12) equality hold if and only if K and L are homothetic.

2.3. Lp-curvature image

Lutwak (see [9]) showed the notion of L,-curvature image as follows: For each K € &
and real p = 1, define ApK € &' be a star body (about the origin) in R”, the Ly-curvature
image of K, by

K, = p(ALK,)"P. (13)

n
vol, (A, K)
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Note that for p = 1, this definition differs from the definition of classical curvature image (see
[8, 12, 13]).
For the L,-curvature image and L, -affine surface area, we have the following result: If
KeZl',p=1,then
vol, (A, K) ™7 = %w;#Qp(I(). (14)

3. Analytic Families of The Generalized Cosine Transforms
3.1. Basic integral transforms

In the following, N* = {1,2,...} is the set of all non-zero natural numbers, N = N* u {0}.
C(8"™ 1) and C,(S"™ 1) denote the space of continuous functions on S§" 1 and the space of
even continuous functions on §"~!, respectively. And the subset of C,(S"!) that contains the
infinitely differentiable functions will be denoted by C°(S"™1). 2(S"!) is the subspace of
C (8" 1) equipped with the standard topology, and 2'(S"!) stands for the corresponding
dual space of distributions. The subspaces of even test functions (distribution) are denoted
by 2.(S" 1) (2,(S"™1)). We write .4 (S 1) for the spaces of finite Borel measures on S""!.
M (8™ 1) are the relevant spaces of non-negative measures. %, (S™ 1) denotes the space of

even measures p € ./, (S"71).

The Minkowski-Funk transform is as follows:

Mpw=[  fOd6, ues 15)
{0: 0-u=0}
which integrates a function f over great circles of codimension 1. This transform is a member
of the analytic family!!”):
(MYf)(w) = Yn((x)fs 71f(9)|9-u|“_1d9, (16)
op-1I'((1-a)/2)
Yal@) = 22(;—1)/21“(61/2) , Rea>0, a#1,3,5,...;
(M f)(u) = f f@10-ul*tds, a=1,3,5,.... (17)
Snfl

Let {Y; x} be an orthonormal basis of spherical harmonics on §"-1 Here j =0,1,2,...,
and k=1,2,...,d,(j), where d,(j) is the dimension of the subspace of spherical harmonics
of degree j. Each function w € 2 (8""1) admits a decomposition w = Y i k@j kY with the
Fourier-Laplace coefficients w k= J gn1 w(0) Y; (0)d6, which decay rapidly as j — co. Each
distribution f € 2'(S""!) can be defined by (f,w) = X ; x fj k@, where fj = (f, Y] ) grow

not faster than j” for some integer m.
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Analytic continuation of integrals (16) can be realized in spherical harmonics as
MYf =% mjafikYjk
ik

where e
jr2_L(R2+0-a e s s )
Mjq = { D simrmotray i T s even;

0, if jisodd,
see [18]. If f € 2'(S""1), then M? f is a distribution defined by

(M%f,w) = (f,Mw) = ij,afj,kwj,k, weDS" Y a#1,3,5,.... (18)
J.k

Lemma 3.1 ([17]). Let a,f € C;a,B # 1,3,5,.... Ifa+B=2-nand f € D.(S"') (or f €
28" 1Y), then
MeMPf=7. (19)

Ifa,2—-n—-a+#1,3,5,..., then M is an automorphism of the spaces@e(S”_l) and@;(S”_l).
Using (16), (17) and (2), the formula (1) can be rewritten by

(MP* £, (K, )) @) = 2nyn(p+ DR(IK, WP, if p21,p#2,4,6:; =0
(Mp+1fp(Kr ))w) = 2nh(I1,K, w)", if p=2,4,6---, @D

where the constant

onal(=pl2) -2 lg,
an=DI20(1+p)/2)  a=22T 1+ p)sin(np/2)

Yn(p"'l) = 2

is positive for each p € (4k — 2, 4k) and negative for each p € (4k, 4k + 2), where k € N.

3.2. A—intersection bodies and (R", |- [|x) isometric embedding Ly
Let A be a real number,

3 1, ifA>0 A#nn+2,n+4,...;
YT T/2), i A <0, A #—2,—4,—6,—8, ...

The values A = 0,n,n+2,n+4,... will not be considered in the following, but values 1 =
—2,—4,...will be included.

Definition 3.2 ([17]). Let 1 < n,A # 0. An origin-symmetric star body K in R” is said to be
a A—intersection body if there is a measure y € (8" 1) such that slp%( = Ml"lu for A #
-21,leN, and p;fl = M1+21u for A = -21.
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We denote by .4} the set of all A—intersection bodies of origin-symmetric star bodies in
R™.

Definition 3.3 ([17]). For a star body K € .}, the quasi-normed space (R", |- ||x) is said to be
isometrically embedded in Ly, p > 0, if there is a linear operator T : R" — L,([0,1]) such that

lxllk = 1T, q0,17)-

Lemma 3.4 ([17]). Let p>—n,p #0. Then (R",||-||x) embeds isometrically in Ly ifand only if
Ke f_”p.

Lemma 3.5. (see [4, Lecture 6.1]) For p >0, an n—dimensional space (R",||-||) embeds in Ly if

and only if there exists a finite Borel measures € 4 (S"™1) such that for every x € R" satisfying

I = [ 1o, @2)

On the other hand, this can be considered as the definition of embedding in L,,—1 < p <0 (see
[5D).

Lemma 3.6 ([6]). Let L be an origin-symmetric star body in R", p = 1, then following is equiv-
alent:

(1) L isa p—projection body;

(2) (R, 1]-1lz+) is isometrically embedded to a subspace opr .

Combining Lemma 3.4 and Lemma 3.6, we can get the following Lemma:

Lemma3.7. Let L be an origin-symmetric convex body inR", p = 1, then the following is equiv-
alent:

1) Le J_”p ;
(2) (R™,11-11L) is isometrically embedded to a subspace of Ly;

(3) L* isa p—projection body.
We remind the notation
ANo={n,n+2,n+4,..1uU{0,-2,-4,---}.

We also need to use the following results in [17]:

Lemma 3.8. For A € R\ Ay, the following statements are equivalent:

(1) Ke s,
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(2) The Fourier transform [SAH . III}A] Nisa positive distribution on R™ \ {0} (for A > 0, this can
be replaced by || - ||1_<’1 is a positive definite distribution on R" );

3) saM" At e . (STTY).

4. Main results and its proofs

In order to prove Theorem 1.1 and Theorem 1.2 that we proposed in the introduction, the
following two main Lemma are required.

Lemma 4.1. Let p = 1, where p is not an even integer. Let K and L be two origin-symmetric
convex bodies in [, and let AL € #' be such that radial function p(ApL,-) is infinitely
smooth. Suppose also that the surface area measures of K and L are absolutely continuous.
IFT(=pi2) (MY~ £, (L, )77 ) (0) € My, (S"V) for allO € S™Y, and

Yn@+p) (MYP [, (K,0)0) < y,(1+ p) " (MYP£,(L,)©), 0eS",

then
Q,(K) = Qp(L).

Proof. By the conditions we have

T(-p/2)y,(1+p)~! f (M7 £, (K, ) @) (M P~ £, (L, "77 ) (0)dO

Snfl

<T(-p/2y,(1+p)~" f (M™P £, (L, ) @) (M" ™" £, (L,)" 77 ) 0)dO. (23)

Sn-1

Using Lemma 3.1 in (23), we have
__r
F(—p/Z)Yn(1+p)_1fS B fp(K,u) fp(L,u) ™7 du

<T(=p/2)ynl+p)" fsn_l Follyw) fo (L, )" du. (24)
By formula (9) of the L, —mixed affine surface area, we know that (24) is equivalent to
T(=p/2)y,(1+p) ' Q_p(K,L) <T(-p/2)y,(1+p) ' QD). (25)
Note that p = 1,T'(-p/2)y,(1 + p)_1 is positive all along, thus
Q- (K, L) <Qp(L). (26)
Now we apply inequality (12), then
Q, (1) =0, (K, 1) = 0, (K) % QD)7

this implies
Qp(K) =Qp(L0).
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Remark 4.2. From formula (13), Lemma 3.7 and Lemma 3.8, we know that for p =1 and p is

not an even integer the following statements are equivalent:
() ApLe.sm;

2) (R, ]]-1| Ay 1) is isometrically embedded to a subspace of Lp;
(3) T(=p/2)(MYP £ (L,) "7 ) (0) € Moy (S™);

@) T(=p/2)(M'"P " p(ApL,)"P)(O) € Mer(S"7).

Lemma 4.3. Let p = 1, where p is not an even integer. Let K be an origin-symmetric convex
_r

bodies in ' and such that A,K € F'. IfF(—p/Z)(Ml‘p‘”fp(K, )" ") (0) is negative on an

open subset of S, then there exists an origin-symmetric convex body L in R", such that

Yn(+p) H(MYP [, (K,0)0) < yp(L+p) ™ (MP £, (L,) 0),
but
Qp(K) > Q, ().

Proof. Let Q= {0 € S" 1 :T'(—p/2)(M'7P" f,, (K, -)_%’)(9) < 0}. From this and Remark 4.2 we
know A,K ¢ & _”p. Then by Definition 3.2, there exists a finite Borel measure y € .#,(S n—1y
which is negative on some open origin-symmetric set Q < $”~! and such that T'(—p/2) p;\’; K=

M'*P . From Definition (13), this is equivalent to I'(—p/2) f, (K, -)_% =M"Py,

We choose an even Borel measure v € .#,(S"!) such that the (Yn( - p))_1 v constant
is not equal to zero, (y,(1 - p))~'v@) =0 for 6 € Q, and (y,(1 - p))~'v(0) = 0, otherwise.
Because v € ./,(S""!) and fp(K,0) = h}g”(e)f,((e) > 0, one can choose a small € > 0 so that,
for@e S™ landr >0,

fp(L,10) = f,(K,10) +eM' P~ "1(6) > 0.

By Lutwak’s [14] extension of the Minkowski’s existence theorem, fp (L,-) defines an origin-

symmetric convex body L € #.

Using Lemma 3.1, we have
YA+ p) TMYPMIPT =y 1+ p) v 20,
then

Yn@+p) (MYP [, (L)) (r0) —yn(L+ p)~H (M™P £, (K, ) (r0)
= ey, (L+p) ' MPMIPT0) = ey, (1 + p)tvd) 20,

that is
Y@+ p)(M"P £,(K,))(r0) < v, (1+ p)(M*P £, (L, ) (r0).
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Next, by the definition of u, we have

T(=pi2yn+p) (£ K, )77, foL,) = fo(K,")
=yn(1+p) (M Pu, eM P ")
=yn(1+ p)_le(p, v) <O0.

From this we get
T(=pl2y a1+ p) (£, (K077, f,(L0) <T(=p/2)y,A+p) " (f(K,0 77, f,(K,0),

or
T(—=p/2)y,(1+p) 'Q_p(L,K) <T(-p/2)y,(1+ p) ' Qp(K).

Note that p = 1,T'(-p/2)y,(1 + p)_1 is positive all along, thus
Q_p(L,K) <Qp(L).
Now we apply inequality (12), then
Qp(L)>Q_p(L,K) = Qp(L)WTpr(K)_ﬁ,

this implies
Qp(K) > Qp(L).

Below, we begin to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. From Lemma 4.1 and (20) we know that ITK c I1L is equivalent to
Yn@) N MPFK,))O) <y, (M f(L,)©6),0€ 8"

Taking p = 1 in Lemma 4.1, if the condition I'(-1/2)(M~" f(L, -)—ﬁ)(e) € Moy (S™1) is
true for all § € S"~!, then Winterniz problem for projection bodies has an affirmative answer
for this L and any K.

Similarly, taking p = 1 in Lemma 4.3, if the curvature function f(K,-) is positive on gn-1
andI'(-1/2) x (M_”f(K, -)—ﬁ)(e) is negative on an open subset of S§"1 then there exists an
origin-symmetric convex body L such that Winterniz problem for projection bodies has an

negative answer.

Therefore, using the equivalence of (1) and (3) in Remark 4.2, we can seen that for a given
dimension 7 the answer of Winterniz problem for projection bodies is affirmative if and only if
all convex bodies Q € #/ with A;1Q € /7, such that A1Q € #",. According to the equivalence

of (1) and (2) in Lemma 3.7, then this is equivalent to saying that any n—dimension normed
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space (R", || A, Q) can be isometrically embedded into L; , which is true if and only if for any
n<2(seel2,6]).

Proof of Theorem 1.2. Let p > 1 and p is not an even integer. We will prove that for a given
dimension 7 the answer of L,—Winterniz problem for Firey projections is affirmative if and
only if all convex bodies Q € Zj with A,Q € FJ, such that A,Q € #,. Using the same
argument as in Theorem 1.1 of the proof, we according to Lemma 3.7, this is equivalent to
saying that any n—dimensional normed space (R",[|-|/5,q) can be isometrically embedded
into Ly, which is not true for n > 2 (see [6]). Thus, for p > 1 and p is not an even integer,
L,—Winterniz monotonicity problem for L,—Firey projections has a negative answer if and
onlyiffor p>1and n=2.

Finally, we prove that the answer is always negative if p is an even integer. It turns out
that for any body K < R” there exists a body L < R” such that the Firey projections of bodies

K and L are equal but their L, —affine surface area are different.

Let p be an even integer. Then |x-¢|P = (x-¢)P, and there exists a nonzero continuous

even function g on $”~! such that (see [19])
fsnl lx-&Pg(x)dx =0, VEes" !, @27

Indeed, if p = 2k, then (x- 5)2" is a polynomial of degree 2k with coefficients depending on ¢.
So, it is enough to construct a nontrivial even function g, satisfying

i1 02 in _
fsnl X)Xy Xy gx)dx =0,

for all integer powers 0 < i; < 2k such that iy + i + -+ + i, = 2k. Taking g(x) = L] clel and
solving the system of linear equations, one can find a nontrivial solution ¢y, ¢y, .. ., ¢, provided

m is big enough.

Consider an origin-symmetric convex body K in R" with a strictly positive L,-curvature
function (i.e., f,(K,{) >0,V € Sy, without loss of generality, we may assume that

[, o Fg@ae=o (28)
(otherwise consider—g(¢) instead of g(¢)). Choose € > 0 such that
fp(K,§)—€g(&) >0, VY¢e sl

Since f,(K,0) = h}{p @) f(K,0) > 0, using the existence theorem for L,-curvature func-
tions (see [14]), we conclude that there exists an origin-symmetric convex body L in R” such
that

fp(@L, ) = fp(K, &) —eg(&). (29)
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Now multiply both sides by |x - ¢|P and integrating, then

LEIP = LEIP — &P
[ s pwode= [ xerpeodi-e [ 1xarg@de

Applying (27) and (1), we get that h(IT, L, x) = h(I1, K, x), i.e., I, L =TI, K.

On the other hand, using (28), (29) and inequality (12), we have

QK0 = [ k.o a

fsnl Fo (K, &7 f, (K, )&
:/Sn_l Fo K, &7 (£, (L, &) + £g(E)dé

= | w0 L odt
= Q (LK)
> Q, (D)% Q,(K) 7.

The last inequality in the above formula is the equality holds if and only if K and L are di-
lates. Therefore, Qp(K) = Qp(L) must implies that K = L, but by (29) this contradicts with
the uniqueness of L,—curvature function. Then there must be Q,(K) > Q,(L). The proof of

Theorem 1.2 is completed.

(10]

(11]

(12]
[13]

References

W. Blaschke, Vorlesungen tiber Differentialgeometric, II:Affine Differentialgeometrie, Springer, Berlin, 1923.
L. Dor, Potentials and isometric embeddings in Ly, Israel J. Math., 24(1976), 260-268.

R.J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Application 58, Cambridge Uni-
versity Press, New York, 1995.

A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, American Math-
ematical Society, Providence RI, 2005.

A. Koldobsky, Positive definite distributions and subspaces of L—, with applications to stable processes, Canad.
Math. Bull., 42(1999), 344-353.

A. Koldobsky, Generalized Lévy representation of norms and isometric embeddings into Ly spaces, Ann. Inst.
H. Poincaré Sér. B., 28(1992), 335-353.

E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125(1987), 351-360.

E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math.Soc., 60(1990), 365-391.

E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface area, Adv. Math., 118(1996),
244-294.

E. Lutwak, D. Yang and G. Zhang, L), affine isoperimetric inequalities, ]. Differential Geom., 56(2000), 111~
132.

E. Lutwak, The Brunn-Minkowski-Firey Theory i : Mixed volumes and the Minkowski Problem, J. Differential
Geom., 38(1993), 131-150.

E. Lutwak, Extended affine surface area, Adv. Math., 85(1991), 39-68.

E. Lutwak, On some affine isoperimetric inequalities, ]. Differential Geom., 23(1986), 1-13.



[19]

[20]

L, —WINTERNIZ PROBLEM ON FIREY PROJECTION OF CONVEX BODIES 193

E. Lutwak, D. Yang and G. Zhang, On the Lp—Minkowski problem, Trans. Amer. Math. Soc., 356(2004), 4359—
4370.

K. Leichtweill, Bemerkungen zur Definition einer erweiterten Affinoberfliche von E.Lutwak, Manuscripta
Math., 65(1989), 181-197.

C. M. Petty, Affine isoperimetric problems, Ann. New York Acad. Sci., 440(1985), 113-127.

B. Rubin, Intersection bodies and generalized cosine transforms, Advances in Mathematics, 218(2008), 696—
727.In: http://arxiv.org/PS_cache/arxiv/pdf/0704/0704.0061v2.pdf.

B. Rubin, Inversion of fractional integrals related to the spherical Radon transform, Journal of Functional
Analysis, 157(1998), 470-487.

D. Ryabogin and A. Zvavitch, The Fourier transform and Firey projections of convex bodies, Indiana Univ.
Math.J., 53(2004), 667-682.

R. Schneider, Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ.Press, Cambridge, 1993.

College of Mathematics and Statistics, Hexi University, Zhangye, Gansu 734000, PR. China.

E-mail: matongyi@126.com; gsmatongyi@hotmail.com; matongyi-123@163.com

College of Mathematics and Statistics, Northwest Normal University, Lanzhou Gansu 730070, PR. China

E-mail: zhanglili.823@163.com


http://arxiv.org/PS_cache/arxiv/pdf/0704/0704.0061v2.pdf
mailto:matongyi@126.com
mailto:gsmatongyi@hotmail.com
mailto:matongyi_123@163.com
mailto:zhanglili.823@163.com

	1. Introduction
	2. The Brunn-Minkowski Theory Background
	2.1. The Lp-mixed volume
	2.2. The Lp-mixed affine surface area
	2.3. Lp-curvature image

	3. Analytic Families of The Generalized Cosine Transforms 
	3.1. Basic integral transforms

	4. Main results and its proofs
	References

