Available online at http://journals.math.tku.edu.tw/

L_p -WINTERNIZ PROBLEM ON FIREY PROJECTION OF CONVEX BODIES

TONG-YI MA AND LI-LI ZHANG

Abstract. For $p \ge 1$, Lutwak, Yang and Zhang introduced the concept of *p*-projection body, and Lutwak introduced the concept of L_p - affine surface area of convex body. In this paper, we develop the Minkowski-Funk transform approach in the L_p -Brunn-Minkowski theory. We consider the question of whether $\Pi_p K \subseteq \Pi_p L$ implies $\Omega_p(K) \le \Omega_p(L)$, where $\Pi_p K$ and $\Omega_p K$ denotes the *p*-projection body of convex body *K* and the L_p -affine surface area of convex body *K*, respectively. We also formulate and solve a generalized L_p -Winterniz problem for Firey projections.

1. Introduction

Let \mathcal{K}^n denote the set of convex bodies (compact, convex subsets with nonempty interiors) in \mathbb{R}^n . For the set of convex bodies containing the origin in their interiors and the set of origin-symmetric convex bodies in \mathbb{R}^n , we write \mathcal{K}_o^n and \mathcal{K}_c^n , respectively. Denote by $\operatorname{vol}_n(K)$ the n-dimensional volume of body K. Let B^n is a standard unit ball in \mathbb{R}^n with n-dimensional Lebesgue measure $\omega_n := \operatorname{vol}_n(B^n) = \pi^{n/2}/\Gamma(1 + n/2)$, for surface S^{n-1} of B^n , denote $\sigma_{n-1} := |S^{n-1}| = 2\pi^{n/2}/\Gamma(n/2)$.

If $K \in \mathcal{K}^n$, its support function, $h_K(\cdot) = h(K, \cdot) : \mathbb{R}^n \to (0, \infty)$, is defined by

$$h(K, x) = \max\{x \cdot y : y \in K\}, x \in \mathbb{R}^n,$$

where $x \cdot y$ denotes the standard inner product of *x* and *y* in \mathbb{R}^n .

If *K* is a compact star-shaped (about the origin) in \mathbb{R}^n , its radial function, $\rho_K(\cdot) = \rho(K, \cdot)$: $\mathbb{R}^n \setminus \{0\} \to [0, +\infty)$, is defined by

 $\rho(K, x) = \max\{\lambda \ge 0 : \lambda x \in K\}, x \in \mathbb{R}^n \setminus \{0\}.$

Corresponding author: Tong-Yi Ma.

Received October 12, 2011, accepted October 4, 2013.

²⁰¹⁰ Mathematics Subject Classification. 52A30, 52A40.

Key words and phrases. p-projection body, L_p -affine surface area, the generalized cosine transforms, L_p -Winterniz problem.

Supported by the NNSF of China(11161019, 11371224).

If $\rho(K, u)$ is positive and continuous, then K will be called a star body (about the origin). Let \mathscr{S}_o^n denote the set of star bodies (about the origin) in \mathbb{R}^n . Two star bodied K and L are said to be dilates (of one another) if $\rho_K(u)/\rho_L(u)$ is independent of $u \in S^{n-1}$.

For $K \in \mathcal{K}_0^n$, the polar body, K^* , of *K* is defined by

$$K^* = \{ x \in \mathbb{R}^n : x \cdot y \le 1, y \in K \}.$$

Obviously, we have $\rho(K^*, \cdot) = 1/h(K, \cdot)$.

The projection body was introduced at the turn of the previous century by Minkowski. For $K \in \mathcal{K}^n$, the projection body, ΠK , of K is centrally symmetric convex body whose support function is given by (see [3, 20])

$$h(\Pi K, \theta) := \operatorname{vol}_{n-1}(K|\theta^{\perp}) = \frac{1}{2} \int_{S^{n-1}} |\theta \cdot u| dS(K, u), \text{ for all } \theta \in S^{n-1},$$

where vol_{n-1} denotes (n-1)-dimensional volume, $K|\theta^{\perp}$ denotes the image of the orthogonal projection of *K* onto the codimensional 1 subspace orthogonal to θ , and $S(K, \cdot)$ is the surface area measure.

A convex body *K* is said to have a curvature function $f(K, \cdot) : S^{n-1} \to \mathbb{R}$, if its surface area measure $S(K, \cdot)$ is absolutely continuous with respect to Lebesgue measure *S* on S^{n-1} and

$$\frac{dS(K,\cdot)}{dS} = f(K,\cdot) \in L^1(S^{n-1}).$$

Let \mathscr{F}^n denote the set of all bodies in \mathscr{K}^n that has a positive continuous curvature function. If *K* is an infinitely smooth body with positive curvature, then $f(K,\theta)$ is the reciprocal of the Gauss curvature at the boundary point with unit normal θ , see [20, p.419]. Abusing notations, we will also denote by $f(K, \cdot)$ the extension of $f(K, \cdot)$ to \mathbb{R}^n as a homogeneous function of degree -n-1.

For a convex body *K* in \mathbb{R}^n with positive curvature $f(K, \cdot)$, the classical affine surface area, $\Omega(K)$, of *K* is defined by (see [7, 8, 9, 16])

$$\Omega(K) = \int_{S^{n-1}} f(K, u)^{\frac{n}{n+1}} dS(u).$$

In [4], Lutwak studied the following problems:

Winterniz problem for projection body (see [1]). Let *K* and *L* be two origin-symmetric convex bodies in \mathbb{R}^n , and both of them have a positive continuous curvature function, and suppose that

$$\Pi K \subset \Pi L,$$

Does it follow that

$$\Omega(K) \le \Omega(L)?$$

In order to study these problems, Lutwak defines a class specific set for elliptic convex bodies(see [8]):

$$\mathcal{W}^n = \{K \in \mathcal{F}^n : \exists Z \in \mathcal{Z}^n \text{ with } f(K, \cdot) = h(Z, \cdot)^{-n-1}\},\$$

where \mathcal{Z}^n is the set of projection bodies. And he proved that if $L \in \mathcal{W}^n$, then the condition $\Pi K \subseteq \Pi L$ implies $\Omega(K) \leq \Omega(L)$, while for $K \notin \mathcal{W}^n$ this is not necessarily true.

The main purpose of this paper is to give an answer of L_p -Winterniz problems by innovative methods of generalized cosine transform. To this end, we will use concept of a p-projection body, introduced by Lutwak [9, 10]. For each $K \in \mathcal{K}_o^n$ and real $p \ge 1$, then the p-projection body, $\prod_p K$, of K is an origin-symmetric convex body whose support function is given by

$$h(\Pi_p K, x)^p = \frac{1}{2n} \int_{S^{n-1}} |x \cdot u|^p dS_p(K, u), \quad x \in \mathbb{R}^n.$$
(1)

Here $S_p(K, \cdot)$ is the L_p -surface area measure. A convex body M is called a p-projection body if there is a convex body K such that $M = \prod_p K$. We say that the support function $h(\prod_p K, \cdot)$ of $\prod_p K$ defines L_p -Firey projection of a body K.

A convex body $K \in \mathcal{K}_o^n$ is said to have a L_p -curvature function (see [9]) $f_p(K, \cdot) : S^{n-1} \to \mathbb{R}$, if its L_p -surface area measure $S_p(K, \cdot)$ is absolutely continuous with respect to spherical Lebesgue measure S, and

$$\frac{dS_p(K,\cdot)}{dS} = f_p(K,\cdot).$$
⁽²⁾

Let $\mathscr{F}_o^n, \mathscr{F}_c^n$ denote the set of bodies in $\mathscr{K}_o^n, \mathscr{K}_c^n$, respectively, and both of them have a positive continuous curvature function.

Lutwak [9] showed the L_p -affine surface area as follow: For $K \in \mathscr{F}_o^n$, the L_p -affine surface area, $\Omega_p(K)$, of K is defined by

$$\Omega_p(K) = \int_{S^{n-1}} f_p(K, u)^{\frac{n}{n+p}} dS(u).$$
(3)

 L_p -Winterniz problem will be expressed as follows:

 L_p –Winterniz problem for Firey projection body. Consider two origin-symmetric convex bodies *K* and *L* in \mathbb{R}^n , and both of them have a positive continuous L_p –curvature function. Fix $p \ge 1$ and suppose that

$$\Pi_p K \subset \Pi_p L$$

Does it follow that

$$\Omega_p(K) \le \Omega_p(L)?$$

In the case p = 1, the problem is just the Winterniz's problem. In this paper, we give the L_p -form of Winterniz problems and study its general answer. Our main result is the following two Theorems.

Theorem 1.1. Winterniz monotonicity problem for projections bodied has a affirmative answer if and only if p = 1 and $n \le 2$.

Theorem 1.2. L_p -Winterniz monotonicity problem for L_p -Firey projections has a negative answer if and only if p > 1 and $n \ge 2$.

2. The Brunn-Minkowski Theory Background

2.1. The *L*_p-mixed volume

Firey [11] extended the concept of Minkowski linear combination. For $p \ge 1$, $K, L \in \mathcal{K}_o^n$ and $\alpha, \beta > 0$, the Firey L_p -combination $\alpha K +_p \beta L \in \mathcal{K}_o^n$ is defined by

$$h(\alpha K + {}_{p}\beta L, \cdot)^{p} = \alpha h(K, \cdot)^{p} + \beta h(L, \cdot)^{p}.$$

where " \cdot " in $\varepsilon \cdot L$ denotes the Firey scalar multiplication. For p = 1, $K +_p \varepsilon \cdot L$ is just the Minkowski linear combination of *K* and *L*.

Lutwak (see [11]) showed that the Firey L_p -combination lead to a Brunn-Minkowski theory for $p \ge 1$. He introduced the notion of L_p -mixed volume as follows: For $K, L \in \mathcal{K}_o^n$ and $p \ge 1$, the L_p -mixed volume of K and $L, V_p(K, L)$, is defined by

$$\frac{n}{p}V_p(K,L) = \lim_{\varepsilon \to 0} \frac{V(K+p\,\varepsilon L) - V(K)}{\varepsilon}.$$

Lutwak (see [11]) further proved that for each $K \in \mathcal{K}_o^n$, there exists a positive Borel measure $S_p(K, \cdot)$ on S^{n-1} so that

$$V_p(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p dS_p(K,u),$$

for all $L \in \mathcal{K}_o^n$. It turns out that the measure $S_p(K, \cdot)$ is absolutely continuous with respect to $S(K, \cdot)$, and has the Radon-Nikodym derivative

$$\frac{dS_p(K,\cdot)}{dS(K,\cdot)} = h^{1-p}(K,\cdot).$$

If $S_p(K, \cdot)$ is absolutely continuous with respect to spherical Lebesgue measure *S*, we have eq.(2).

From (2), we have

$$V_p(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p f_p(K,u) du_n$$

for all $L \in \mathcal{K}_o^n$. In particular,

$$\operatorname{vol}_{n}(K) = \frac{1}{n} \int_{S^{n-1}} h(K, u)^{p} f_{p}(K, u) du$$

If a convex body *K* has the curvature functions, then

$$f_p(K,\cdot) = h(K,\cdot)^{1-p} f(K,\cdot).$$

Lutwak also proved a generalization of the classical Minkowski theorem, which states that given p > 0, $p \neq n$, and a continuous even function $g : S^{n-1} \to \mathbb{R}^+$, there exists a unique convex body K such that $f_p(K, \cdot) = g$.

2.2. The L_p -mixed affine surface area

Lutwak [9] showed the L_p -affine surface area as follows: For $K \in \mathscr{F}_o^n$, the L_p -affine surface area, $\Omega_p(K)$, of K is defined by

$$\Omega_p(K) = \int_{S^{n-1}} f_p(K, u)^{\frac{n}{n+p}} dS(u).$$
(4)

In [9], Lutwak gave an L_p -extension of Leichtwei β 's definition (see [15]) of extended affine surface area as follows: For $p \ge 1, K \in \mathcal{K}_o^n$. define $\Omega_p(K)$ by

$$n^{-\frac{p}{n}}\Omega_{p}(K)^{\frac{n+p}{n}} = \inf\{nV_{p}(K,Q^{*})V(Q)^{\frac{p}{n}}: Q \in \mathscr{S}_{o}^{n}\}.$$
(5)

When p = 1, the subscript will often be suppressed.

The definition of Blaschke L_p -combination for convex bodies was given by Lutwak (see [11]). For $K, L \in \mathcal{K}_o^n, p \ge 1, \lambda, \mu \ge 0$ (not both zero), the Blaschke L_p -combination, $\lambda K + \mu L \in \mathcal{K}_o^n$, of K and L is defined by

$$dS_p(\lambda K + p\mu L, \cdot) = \lambda dS_p(K, \cdot) + \mu dS_p(L, \cdot).$$
(6)

From (6) and (2), it is obvious that

$$f_p(\lambda K + \mu L, \cdot) = \lambda f_p(K, \cdot) + \mu f_p(L, \cdot).$$
(7)

For $p \ge 1$, the L_p -mixed affine surface area of $K, L \in \mathscr{F}_o^n, \Omega_{-p}(K, L)$, can be defined by

$$\Omega_{-p}(K,L) = \frac{n}{n+p} \lim_{\varepsilon \to 0^+} \frac{\Omega_p(L + \varepsilon K) - \Omega_p(L)}{\varepsilon}.$$
(8)

More accurately, we have the following:

Proposition 2.1. For $p \ge 1$, the L_p -mixed affine surface area of $K, L \in \mathscr{F}_o^n$, $\Omega_{-p}(K, L)$, has the following integral representation:

$$\Omega_{-p}(K,L) = \int_{S^{n-1}} f_p(K,u) f_p(L,u)^{-\frac{p}{n+p}} dS(u).$$
(9)

Proof. From (4), (7) and (8), we have

$$\begin{split} \lim_{\varepsilon \to 0^+} & \frac{\Omega_p(L + p\varepsilon K) - \Omega_p(L)}{\varepsilon} \\ &= \lim_{\varepsilon \to 0^+} \frac{\int_{S^{n-1}} \left(f_p(L + p\varepsilon K, u)^{\frac{n}{n+p}} - f_p(L, u)^{\frac{n}{n+p}} \right) dS(u)}{\varepsilon} \\ &= \lim_{\varepsilon \to 0^+} \frac{\int_{S^{n-1}} \left[\left(f_p(L, u) + \varepsilon f_p(K, u) \right)^{\frac{n}{n+p}} - f_p(L, u)^{\frac{n}{n+p}} \right] dS(u)}{\varepsilon} \\ &= \frac{n+p}{n} \int_{S^{n-1}} f_p(K, u) f_p(L, u)^{-\frac{p}{n+p}} dS(u). \end{split}$$

This completes the proof.

Clearly, from (9) and (4) it follows that for $p \ge 1$ and $K \in \mathcal{F}_o^n$,

$$\Omega_{-p}(K,K) = \Omega_p(K). \tag{10}$$

Since for any $K \in \mathcal{K}_o^n$, the L_p -surface area measure, $S_p(K, \cdot)$, is well-defined, we can give a natural extension of eq.(9) of the L_p -mixed affine surface area Ω_{-p} from $\mathcal{F}_o^n \times \mathcal{F}_o^n$ to $\mathcal{K}_o^n \times \mathcal{F}_o^n$. Specifically, for $K \in \mathcal{K}_o^n$ and $L \in \mathcal{F}_o^n$, let

$$\Omega_{-p}(K,L) = \int_{S^{n-1}} f_p(L,u)^{-\frac{p}{n+p}} dS_p(K,u).$$
(11)

It is well-known that for $K \in \mathscr{F}_o^n$, $dS_p(K, \cdot) = f_p(K, \cdot)dS(\cdot)$. Thus (11) boils down to (9) for $K \in \mathscr{F}_o^n$. Note that the case p = 1 was studies by Lutwak in [12].

Using Hölder's inequality, we can easily obtain the following inequality : If $p \ge 1$, and $K \in \mathcal{K}_o^n, L \in \mathcal{F}_c^n$, then

$$\Omega_{-p}(K,L)^n \ge \Omega_p(K)^{n+p} \Omega_p(L)^{-p}.$$
(12)

If $n \neq p > 1$ and $K, L \in \mathscr{F}_o^n$, then equality holds in (12) if and only if K and L are dilates. If p = 1, $K \in \mathscr{K}^n$ and $L \in \mathscr{F}_c^n$, then (12) equality hold if and only if K and L are homothetic.

2.3. *L*_{*p*}-curvature image

Lutwak (see [9]) showed the notion of L_p -curvature image as follows: For each $K \in \mathscr{F}_o^n$ and real $p \ge 1$, define $\Lambda_p K \in \mathscr{S}_o^n$ be a star body (about the origin) in \mathbb{R}^n , the L_p -curvature image of K, by

$$f_p(K,\cdot) = \frac{\omega_n}{\operatorname{vol}_n(\Lambda_p K)} \rho(\Lambda_p K, \cdot)^{n+p}.$$
(13)

Note that for p = 1, this definition differs from the definition of classical curvature image (see [8, 12, 13]).

For the L_p -curvature image and L_p -affine surface area, we have the following result: If $K \in \mathscr{F}_o^n$, $p \ge 1$, then

$$\operatorname{vol}_{n}(\Lambda_{p}K)^{\frac{p}{n+p}} = \frac{1}{n}\omega_{n}^{-\frac{n}{n+p}}\Omega_{p}(K).$$
(14)

3. Analytic Families of The Generalized Cosine Transforms

3.1. Basic integral transforms

In the following, $\mathbb{N}^+ = \{1, 2, ...\}$ is the set of all non-zero natural numbers, $\mathbb{N} = \mathbb{N}^+ \cup \{0\}$. $C(S^{n-1})$ and $C_e(S^{n-1})$ denote the space of continuous functions on S^{n-1} and the space of even continuous functions on S^{n-1} , respectively. And the subset of $C_e(S^{n-1})$ that contains the infinitely differentiable functions will be denoted by $C_e^{\infty}(S^{n-1})$. $\mathcal{D}(S^{n-1})$ is the subspace of $C_e^{\infty}(S^{n-1})$ equipped with the standard topology, and $\mathcal{D}'(S^{n-1})$ stands for the corresponding dual space of distributions. The subspaces of even test functions (distribution) are denoted by $\mathcal{D}_e(S^{n-1})$ ($\mathcal{D}'_e(S^{n-1})$). We write $\mathcal{M}(S^{n-1})$ for the spaces of finite Borel measures on S^{n-1} . $\mathcal{M}_+(S^{n-1})$ are the relevant spaces of non-negative measures. $\mathcal{M}_{e+}(S^{n-1})$ denotes the space of even measures $\mu \in \mathcal{M}_+(S^{n-1})$.

The Minkowski-Funk transform is as follows:

$$(Mf)(u) = \int_{\{\theta: \ \theta \cdot u = 0\}} f(\theta) d_u \theta, \quad u \in S^{n-1},$$
(15)

which integrates a function f over great circles of codimension 1. This transform is a member of the analytic family^[17]:

$$(M^{\alpha}f)(u) = \gamma_{n}(\alpha) \int_{S^{n-1}} f(\theta) |\theta \cdot u|^{\alpha-1} d\theta,$$

$$\gamma_{n}(\alpha) = \frac{\sigma_{n-1} \Gamma((1-\alpha)/2)}{\rho_{n}(\alpha)}, \quad Re\alpha > 0, \quad \alpha \neq 1, 3, 5, \dots;$$
(16)

$$(\widetilde{M}^{\alpha}f)(u) = \int_{S^{n-1}} f(\theta) |\theta \cdot u|^{\alpha-1} d\theta, \quad \alpha = 1, 3, 5, \dots$$
(17)

Let $\{Y_{j,k}\}$ be an orthonormal basis of spherical harmonics on S^{n-1} . Here j = 0, 1, 2, ...,and $k = 1, 2, ..., d_n(j)$, where $d_n(j)$ is the dimension of the subspace of spherical harmonics of degree j. Each function $\omega \in \mathcal{D}(S^{n-1})$ admits a decomposition $\omega = \sum_{j,k} \omega_{j,k} Y_{j,k}$ with the Fourier-Laplace coefficients $\omega_{j,k} = \int_{S^{n-1}} \omega(\theta) Y_{j,k}(\theta) d\theta$, which decay rapidly as $j \to \infty$. Each distribution $f \in \mathcal{D}'(S^{n-1})$ can be defined by $(f, \omega) = \sum_{j,k} f_{j,k} \omega_{j,k}$ where $f_{j,k} = (f, Y_{j,k})$ grow not faster than j^m for some integer m. Analytic continuation of integrals (16) can be realized in spherical harmonics as

$$M^{\alpha}f = \sum_{j,k} m_{j,\alpha}f_{j,k}Y_{j,k},$$

where

$$m_{j,\alpha} = \begin{cases} (-1)^{j/2} \frac{\Gamma(j/2 + (1-\alpha)/2)}{\Gamma(j/2 + (n-1+\alpha)/2)}, \text{ if } j \text{ is even;} \\ 0, \qquad \text{if } j \text{ is odd ,} \end{cases}$$

see [18]. If $f \in \mathcal{D}'(S^{n-1})$, then $M^{\alpha}f$ is a distribution defined by

$$(M^{\alpha}f,\omega) = (f, M^{\alpha}\omega) = \sum_{j,k} m_{j,\alpha}f_{j,k}\omega_{j,k}, \ \omega \in \mathcal{D}(S^{n-1}); \ \alpha \neq 1,3,5,\dots$$
 (18)

Lemma 3.1 ([17]). Let $\alpha, \beta \in \mathbb{C}; \alpha, \beta \neq 1, 3, 5, \dots$ If $\alpha + \beta = 2 - n$ and $f \in \mathcal{D}_e(S^{n-1})$ (or $f \in \mathcal{D}'_e(S^{n-1})$), then

$$M^{\alpha}M^{\beta}f = f.$$
⁽¹⁹⁾

If $\alpha, 2 - n - \alpha \neq 1, 3, 5, ..., then M^{\alpha}$ is an automorphism of the spaces $\mathcal{D}_e(S^{n-1})$ and $\mathcal{D}'_e(S^{n-1})$.

Using (16), (17) and (2), the formula (1) can be rewritten by

$$\left(M^{p+1}f_p(K,\cdot)\right)(u) = 2n\gamma_n(p+1)h(\Pi_p K, u)^p, \text{ if } p \ge 1, p \ne 2, 4, 6\cdots;$$
(20)

$$[\widetilde{M}^{p+1}f_p(K,\cdot)](u) = 2nh(\Pi_p K, u)^p, \text{ if } p = 2,4,6\cdots,$$
(21)

where the constant

$$\gamma_n(p+1) = \frac{\sigma_{n-1}\Gamma(-p/2)}{2\pi^{(n-1)/2}\Gamma((1+p)/2)} = \frac{-2^{p-1}\sigma_{n-1}}{\pi^{(n-2)/2}\Gamma(1+p)\sin(\pi p/2)}$$

is positive for each $p \in (4k - 2, 4k)$ and negative for each $p \in (4k, 4k + 2)$, where $k \in \mathbb{N}$.

3.2. λ -intersection bodies and $(\mathbb{R}^n, || \cdot ||_K)$ isometric embedding L_p

Let λ be a real number,

$$s_{\lambda} = \begin{cases} 1, & \text{if } \lambda > 0, \ \lambda \neq n, n+2, n+4, \dots; \\ \Gamma(\lambda/2), & \text{if } \lambda < 0, \ \lambda \neq -2, -4, -6, -8, \dots. \end{cases}$$

The values $\lambda = 0, n, n+2, n+4, \dots$ will not be considered in the following, but values $\lambda = -2, -4, \dots$ will be included.

Definition 3.2 ([17]). Let $\lambda < n, \lambda \neq 0$. An origin-symmetric star body K in \mathbb{R}^n is said to be a λ -intersection body if there is a measure $\mu \in \mathcal{M}_{e+}(S^{n-1})$ such that $s_{\lambda}\rho_K^{\lambda} = M^{1-\lambda}\mu$ for $\lambda \neq -2l, l \in \mathbb{N}$, and $\rho_K^{-2l} = \widetilde{M}^{1+2l}\mu$ for $\lambda = -2l$.

We denote by \mathscr{I}^n_{λ} the set of all λ -intersection bodies of origin-symmetric star bodies in \mathbb{R}^n .

Definition 3.3 ([17]). For a star body $K \in \mathscr{S}_o^n$, the quasi-normed space $(\mathbb{R}^n, ||\cdot||_K)$ is said to be isometrically embedded in $L_p, p > 0$, if there is a linear operator $T : \mathbb{R}^n \longrightarrow L_p([0,1])$ such that $||x||_K = ||Tx||_{L_p([0,1])}$.

Lemma 3.4 ([17]). Let $p > -n, p \neq 0$. Then $(\mathbb{R}^n, ||\cdot||_K)$ embeds isometrically in L_p if and only if $K \in \mathscr{I}^n_{-p}$.

Lemma 3.5. (see [4, Lecture 6.1]) For p > 0, an n-dimensional space $(\mathbb{R}^n, ||\cdot||)$ embeds in L_p if and only if there exists a finite Borel measures $\mu \in \mathcal{M}(S^{n-1})$ such that for every $x \in \mathbb{R}^n$ satisfying

$$||x||^{p} = \int_{S^{n-1}} |(x,\xi)|^{p} d\mu(\xi).$$
(22)

On the other hand, this can be considered as the definition of embedding in L_p , -1 (see [5]).

Lemma 3.6 ([6]). Let *L* be an origin-symmetric star body in \mathbb{R}^n , $p \ge 1$, then following is equivalent:

- (1) *L* is a p-projection body;
- (2) $(\mathbb{R}^n, ||\cdot||_{L^*})$ is isometrically embedded to a subspace of L_p .

Combining Lemma 3.4 and Lemma 3.6, we can get the following Lemma:

Lemma 3.7. Let *L* be an origin-symmetric convex body in \mathbb{R}^n , $p \ge 1$, then the following is equivalent:

- (1) $L \in \mathscr{I}_{-p}^{n}$;
- (2) $(\mathbb{R}^n, ||\cdot||_L)$ is isometrically embedded to a subspace of L_p ;
- (3) L^* is a *p*-projection body.

We remind the notation

$$\Lambda_0 = \{n, n+2, n+4, \ldots\} \cup \{0, -2, -4, \cdots\}.$$

We also need to use the following results in [17]:

Lemma 3.8. For $\lambda \in \mathbb{R} \setminus \Lambda_0$, the following statements are equivalent: (1) $K \in \mathscr{I}_{\lambda}^n$;

- (2) The Fourier transform $[s_{\lambda}||\cdot||_{K}^{-\lambda}]^{\wedge}$ is a positive distribution on $\mathbb{R}^{n} \setminus \{0\}$ (for $\lambda > 0$, this can be replaced by $||\cdot||_{K}^{-\lambda}$ is a positive definite distribution on \mathbb{R}^{n});
- (3) $s_{\lambda}M^{1+\lambda-n}\rho_{K}^{\lambda} \in \mathcal{M}_{e+}(S^{n-1}).$

4. Main results and its proofs

In order to prove Theorem 1.1 and Theorem 1.2 that we proposed in the introduction, the following two main Lemma are required.

Lemma 4.1. Let $p \ge 1$, where p is not an even integer. Let K and L be two origin-symmetric convex bodies in \mathscr{F}_c^n , and let $\Lambda_p L \in \mathscr{S}_o^n$ be such that radial function $\rho(\Lambda_p L, \cdot)$ is infinitely smooth. Suppose also that the surface area measures of K and L are absolutely continuous. If $\Gamma(-p/2) \left(M^{1-p-n} f_p(L, \cdot)^{-\frac{p}{n+p}} \right)(\theta) \in \mathscr{M}_{e+}(S^{n-1})$ for all $\theta \in S^{n-1}$, and

$$\gamma_n (1+p)^{-1} \big(M^{1+p} f_p(K, \cdot) \big)(\theta) \le \gamma_n (1+p)^{-1} \big(M^{1+p} f_p(L, \cdot) \big)(\theta), \quad \theta \in S^{n-1},$$

then

$$\Omega_p(K) \le \Omega_p(L).$$

Proof. By the conditions we have

$$\Gamma(-p/2)\gamma_{n}(1+p)^{-1}\int_{S^{n-1}} \left(M^{1+p}f_{p}(K,\cdot)\right)(\theta)\left(M^{1-p-n}f_{p}(L,\cdot)^{-\frac{p}{n+p}}\right)(\theta)d\theta$$

$$\leq \Gamma(-p/2)\gamma_{n}(1+p)^{-1}\int_{S^{n-1}} \left(M^{1+p}f_{p}(L,\cdot)\right)(\theta)\left(M^{1-p-n}f_{p}(L,\cdot)^{-\frac{p}{n+p}}\right)(\theta)d\theta.$$
(23)

Using Lemma 3.1 in (23), we have

$$\Gamma(-p/2)\gamma_{n}(1+p)^{-1}\int_{S^{n-1}}f_{p}(K,u)f_{p}(L,u)^{-\frac{p}{n+p}}du$$

$$\leq \Gamma(-p/2)\gamma_{n}(1+p)^{-1}\int_{S^{n-1}}f_{p}(L,u)f_{p}(L,u)^{-\frac{p}{n+p}}du.$$
(24)

By formula (9) of the L_p -mixed affine surface area, we know that (24) is equivalent to

$$\Gamma(-p/2)\gamma_n(1+p)^{-1}\Omega_{-p}(K,L) \le \Gamma(-p/2)\gamma_n(1+p)^{-1}\Omega_p(L).$$
(25)

Note that $p \ge 1$, $\Gamma(-p/2)\gamma_n(1+p)^{-1}$ is positive all along, thus

$$\Omega_{-p}(K,L) \le \Omega_p(L). \tag{26}$$

Now we apply inequality (12), then

$$\Omega_p(L) \ge \Omega_{-p}(K,L) \ge \Omega_p(K)^{\frac{n+p}{n}} \Omega_p(L)^{-\frac{p}{n}},$$

this implies

$$\Omega_p(K) \le \Omega_p(L).$$

Remark 4.2. From formula (13), Lemma 3.7 and Lemma 3.8, we know that for $p \ge 1$ and p is not an even integer the following statements are equivalent:

(1)
$$\Lambda_p L \in \mathscr{I}_{-p}^n$$
;
(2) $(\mathbb{R}^n, ||\cdot||_{\Lambda_p L})$ is isometrically embedded to a subspace of L_p ;
(3) $\Gamma(-p/2) \left(M^{1-p-n} f_p(L, \cdot)^{-\frac{p}{n+p}} \right)(\theta) \in \mathscr{M}_{e+}(S^{n-1});$
(4) $\Gamma(-p/2) \left(M^{1-p-n} \rho(\Lambda_p L,)^{-p} \right)(\theta) \in \mathscr{M}_{e+}(S^{n-1}).$

Lemma 4.3. Let $p \ge 1$, where p is not an even integer. Let K be an origin-symmetric convex bodies in \mathscr{F}_c^n and such that $\Lambda_p K \in \mathscr{S}_o^n$. If $\Gamma(-p/2) \left(M^{1-p-n} f_p(K, \cdot)^{-\frac{p}{n+p}} \right)(\theta)$ is negative on an open subset of S^{n-1} , then there exists an origin-symmetric convex body L in \mathbb{R}^n , such that

$$\gamma_n (1+p)^{-1} (M^{1+p} f_p(K, \cdot))(\theta) \le \gamma_n (1+p)^{-1} (M^{1+p} f_p(L, \cdot))(\theta),$$

but

$$\Omega_p(K) > \Omega_p(L).$$

Proof. Let $\Omega = \{\theta \in S^{n-1} : \Gamma(-p/2) \left(M^{1-p-n} f_p(K, \cdot)^{-\frac{p}{n+p}} \right)(\theta) < 0 \}$. From this and Remark 4.2 we know $\Lambda_p K \notin \mathscr{I}_{-p}^n$. Then by Definition 3.2, there exists a finite Borel measure $\mu \in \mathscr{M}_e(S^{n-1})$, which is negative on some open origin-symmetric set $\Omega \subset S^{n-1}$ and such that $\Gamma(-p/2)\rho_{\Lambda_p K}^{-p} = M^{1+p}\mu$. From Definition (13), this is equivalent to $\Gamma(-p/2)f_p(K, \cdot)^{-\frac{p}{n+p}} = M^{1+p}\mu$.

We choose an even Borel measure $v \in \mathcal{M}_e(S^{n-1})$ such that the $(\gamma_n(1-p))^{-1}v$ constant is not equal to zero, $(\gamma_n(1-p))^{-1}v(\theta) \ge 0$ for $\theta \in \Omega$, and $(\gamma_n(1-p))^{-1}v(\theta) \equiv 0$, otherwise. Because $v \in \mathcal{M}_e(S^{n-1})$ and $f_p(K,\theta) = h_K^{1-p}(\theta)f_K(\theta) > 0$, one can choose a small $\varepsilon > 0$ so that, for $\theta \in S^{n-1}$ and r > 0,

$$f_p(L, r\theta) = f_p(K, r\theta) + \varepsilon M^{1-p-n} \nu(\theta) > 0.$$

By Lutwak's [14] extension of the Minkowski's existence theorem, $f_p(L, \cdot)$ defines an originsymmetric convex body $L \in \mathcal{K}_c^n$.

Using Lemma 3.1, we have

$$\gamma_n (1+p)^{-1} M^{1+p} M^{1-p-n} v = \gamma_n (1+p)^{-1} v \ge 0,$$

then

$$\gamma_n (1+p)^{-1} (M^{1+p} f_p(L, \cdot)) (r\theta) - \gamma_n (1+p)^{-1} (M^{1+p} f_p(K, \cdot)) (r\theta)$$

= $\varepsilon \gamma_n (1+p)^{-1} M^{1+p} M^{1-p-n} v(\theta) = \varepsilon \gamma_n (1+p)^{-1} v(\theta) \ge 0,$

that is

$$\gamma_n(1+p)\left(M^{1+p}f_p(K,\cdot)\right)(r\theta) \le \gamma_n(1+p)\left(M^{1+p}f_p(L,\cdot)\right)(r\theta).$$

Next, by the definition of μ , we have

$$\begin{split} &\Gamma(-p/2)\gamma_n(1+p)^{-1} \big(f_p(K,\cdot)^{-\frac{p}{n+p}}, \ f_p(L,\cdot) - f_p(K,\cdot) \big) \\ &= \gamma_n(1+p)^{-1} \big(M^{1+p}\mu, \ \varepsilon M^{1-p-n}v \big) \\ &= \gamma_n(1+p)^{-1} \varepsilon(\mu, \ v) < 0. \end{split}$$

From this we get

$$\Gamma(-p/2)\gamma_n(1+p)^{-1}(f_p(K,\theta)^{-\frac{p}{n+p}}, f_p(L,\theta)) < \Gamma(-p/2)\gamma_n(1+p)^{-1}(f_p(K,\theta)^{-\frac{p}{n+p}}, f_p(K,\theta)),$$

or

$$\Gamma(-p/2)\gamma_n(1+p)^{-1}\Omega_{-p}(L,K) < \Gamma(-p/2)\gamma_n(1+p)^{-1}\Omega_p(K).$$

Note that $p \ge 1$, $\Gamma(-p/2)\gamma_n(1+p)^{-1}$ is positive all along, thus

$$\Omega_{-p}(L,K) < \Omega_p(L).$$

Now we apply inequality (12), then

$$\Omega_p(L) > \Omega_{-p}(L, K) \ge \Omega_p(L)^{\frac{n+p}{n}} \Omega_p(K)^{-\frac{p}{n}},$$

this implies

$$\Omega_p(K) > \Omega_p(L).$$

Below, we begin to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. From Lemma 4.1 and (20) we know that $\Pi K \subset \Pi L$ is equivalent to

$$\gamma_n(2)^{-1} \big(M^2 f(K, \cdot) \big)(\theta) \le \gamma_n(2)^{-1} \big(M^2 f(L, \cdot) \big)(\theta), \theta \in S^{n-1}.$$

Taking p = 1 in Lemma 4.1, if the condition $\Gamma(-1/2)(M^{-n}f(L, \cdot)^{-\frac{1}{n+1}})(\theta) \in \mathcal{M}_{e+}(S^{n-1})$ is true for all $\theta \in S^{n-1}$, then Winterniz problem for projection bodies has an affirmative answer for this *L* and any *K*.

Similarly, taking p = 1 in Lemma 4.3, if the curvature function $f(K, \cdot)$ is positive on S^{n-1} and $\Gamma(-1/2) \times \left(M^{-n}f(K, \cdot)^{-\frac{1}{n+1}}\right)(\theta)$ is negative on an open subset of S^{n-1} , then there exists an origin-symmetric convex body *L* such that Winterniz problem for projection bodies has an negative answer.

Therefore, using the equivalence of (1) and (3) in Remark 4.2, we can seen that for a given dimension *n* the answer of Winterniz problem for projection bodies is affirmative if and only if all convex bodies $Q \in \mathscr{F}_o^n$ with $\Lambda_1 Q \in \mathscr{S}_o^n$, such that $\Lambda_1 Q \in \mathscr{I}_{-1}^n$. According to the equivalence of (1) and (2) in Lemma 3.7, then this is equivalent to saying that any *n*-dimension normed

190

space $(\mathbb{R}^n, ||\cdot||_{\Lambda_1Q})$ can be isometrically embedded into L_1 , which is true if and only if for any $n \leq 2$ (see [2, 6]).

Proof of Theorem 1.2. Let p > 1 and p is not an even integer. We will prove that for a given dimension n the answer of L_p -Winterniz problem for Firey projections is affirmative if and only if all convex bodies $Q \in \mathscr{F}_o^n$ with $\Lambda_p Q \in \mathscr{F}_o^n$, such that $\Lambda_p Q \in \mathscr{F}_{-p}^n$. Using the same argument as in Theorem 1.1 of the proof, we according to Lemma 3.7, this is equivalent to saying that any n-dimensional normed space $(\mathbb{R}^n, || \cdot ||_{\Lambda_p Q})$ can be isometrically embedded into L_p , which is not true for $n \ge 2$ (see [6]). Thus, for p > 1 and p is not an even integer, L_p -Winterniz monotonicity problem for L_p -Firey projections has a negative answer if and only if for p > 1 and $n \ge 2$.

Finally, we prove that the answer is always negative if p is an even integer. It turns out that for any body $K \subset \mathbb{R}^n$ there exists a body $L \subset \mathbb{R}^n$ such that the Firey projections of bodies K and L are equal but their L_p -affine surface area are different.

Let *p* be an even integer. Then $|x \cdot \xi|^p = (x \cdot \xi)^p$, and there exists a nonzero continuous even function *g* on S^{n-1} such that (see [19])

$$\int_{S^{n-1}} |x \cdot \xi|^p g(x) dx = 0, \quad \forall \xi \in S^{n-1}.$$
(27)

Indeed, if p = 2k, then $(x \cdot \xi)^{2k}$ is a polynomial of degree 2k with coefficients depending on ξ . So, it is enough to construct a nontrivial even function g, satisfying

$$\int_{S^{n-1}} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} g(x) dx = 0,$$

for all integer powers $0 \le i_j \le 2k$ such that $i_1 + i_2 + \dots + i_n = 2k$. Taking $g(x) = \sum_{l=1}^m c_l x_1^{2l}$ and solving the system of linear equations, one can find a nontrivial solution c_1, c_2, \dots, c_m provided *m* is big enough.

Consider an origin-symmetric convex body K in \mathbb{R}^n with a strictly positive L_p -curvature function (i.e., $f_p(K,\xi) > 0, \forall \xi \in S^{n-1}$). Without loss of generality, we may assume that

$$\int_{S^{n-1}} f_p(K,\xi)^{-\frac{p}{n+p}} g(\xi) d\xi \ge 0,$$
(28)

(otherwise consider – $g(\xi)$ instead of $g(\xi)$). Choose $\varepsilon > 0$ such that

$$f_p(K,\xi) - \varepsilon g(\xi) > 0, \quad \forall \xi \in S^{n-1}$$

Since $f_p(K,\theta) = h_K^{1-p}(\theta) f(K,\theta) > 0$, using the existence theorem for L_p -curvature functions (see [14]), we conclude that there exists an origin-symmetric convex body L in \mathbb{R}^n such that

$$f_p(L,\xi) = f_p(K,\xi) - \varepsilon g(\xi).$$
⁽²⁹⁾

Now multiply both sides by $|x \cdot \xi|^p$ and integrating, then

$$\int_{S^{n-1}} |x \cdot \xi|^p f_p(L,\xi) d\xi = \int_{S^{n-1}} |x \cdot \xi|^p f_p(K,\xi) d\xi - \varepsilon \int_{S^{n-1}} |x \cdot \xi|^p g(\xi) d\xi$$

Applying (27) and (1), we get that $h(\Pi_p L, x) = h(\Pi_p K, x)$, i.e., $\Pi_p L = \Pi_p K$.

On the other hand, using (28), (29) and inequality (12), we have

$$\begin{split} \Omega_p(K) &= \int_{S^{n-1}} f_p(K,\xi)^{\frac{n}{n+p}} d\xi \\ &= \int_{S^{n-1}} f_p(K,\xi)^{-\frac{p}{n+p}} f_p(K,\xi) d\xi \\ &= \int_{S^{n-1}} f_p(K,\xi)^{-\frac{p}{n+p}} (f_p(L,\xi) + \varepsilon g(\xi)) d\xi \\ &\geq \int_{S^{n-1}} f_p(K,\xi)^{-\frac{p}{n+p}} f_p(L,\xi) d\xi \\ &= \Omega_{-p}(L,K) \\ &\geq \Omega_p(L)^{\frac{n+p}{n}} \Omega_p(K)^{-\frac{p}{n}}. \end{split}$$

The last inequality in the above formula is the equality holds if and only if *K* and *L* are dilates. Therefore, $\Omega_p(K) = \Omega_p(L)$ must implies that K = L, but by (29) this contradicts with the uniqueness of L_p -curvature function. Then there must be $\Omega_p(K) > \Omega_p(L)$. The proof of Theorem 1.2 is completed.

References

- [1] W. Blaschke, Vorlesungen über Differentialgeometric, II:Affine Differentialgeometrie, Springer, Berlin, 1923.
- [2] L. Dor, Potentials and isometric embeddings in L_1 , Israel J. Math., 24(1976), 260–268.
- [3] R. J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Application 58, Cambridge University Press, New York, 1995.
- [4] A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, American Mathematical Society, Providence RI, 2005.
- [5] A. Koldobsky, Positive definite distributions and subspaces of L_{-p} with applications to stable processes, Canad. Math. Bull., **42**(1999), 344–353.
- [6] A. Koldobsky, Generalized Lévy representation of norms and isometric embeddings into L_p spaces, Ann. Inst. H. Poincaré Sér. B., 28(1992), 335–353.
- [7] E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125(1987), 351-360.
- [8] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math.Soc., 60(1990), 365–391.
- [9] E. Lutwak, *The Brunn-Minkowski-Firey theory II: Affine and geominimal surface area*, Adv. Math., **118**(1996), 244–294.
- [10] E. Lutwak, D. Yang and G. Zhang, L_p affine isoperimetric inequalities, J. Differential Geom., 56(2000), 111–132.
- E. Lutwak, The Brunn-Minkowski-Firey Theory i: Mixed volumes and the Minkowski Problem, J. Differential Geom., 38(1993), 131–150.
- [12] E. Lutwak, Extended affine surface area, Adv. Math., 85(1991), 39-68.
- [13] E. Lutwak, On some affine isoperimetric inequalities, J. Differential Geom., 23(1986), 1-13.

- [14] E. Lutwak, D. Yang and G. Zhang, On the L_p -Minkowski problem, Trans. Amer. Math. Soc., **356**(2004), 4359-4370.
- [15] K. Leichtweiß, Bemerkungen zur Definition einer erweiterten Affinoberfläche von E.Lutwak, Manuscripta Math., 65(1989), 181–197.
- [16] C. M. Petty, Affine isoperimetric problems, Ann. New York Acad. Sci., 440(1985), 113–127.
- [17] B. Rubin, Intersection bodies and generalized cosine transforms, Advances in Mathematics, 218(2008), 696– 727. In: http://arxiv.org/PS_cache/arxiv/pdf/0704/0704.0061v2.pdf.
- [18] B. Rubin, *Inversion of fractional integrals related to the spherical Radon transform*, Journal of Functional Analysis, **157**(1998), 470–487.
- [19] D. Ryabogin and A. Zvavitch, *The Fourier transform and Firey projections of convex bodies*, Indiana Univ. Math. J., **53**(2004), 667–682.
- [20] R. Schneider, Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ.Press, Cambridge, 1993.

College of Mathematics and Statistics, Hexi University, Zhangye, Gansu 734000, P.R. China.

E-mail: matongyi@126.com; gsmatongyi@hotmail.com; matongyi_123@163.com

College of Mathematics and Statistics, Northwest Normal University, Lanzhou Gansu 730070, P.R. China

E-mail: zhanglili.823@163.com