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ESTIMATES FOR SOLUTIONS TO THE TRANSPORT EQUATION

UNDER THE PERTURBATION OF ITS ATTENUATION AND

SCATTERING TERMS

DAIKI TANAKA, NOBUYUKI HIGASHIMORI AND YUUSUKE ISO

Abstract. The aim of the paper is to give Lp -estimates for the weak solution to the trans-

port equation with L∞-perturbation both of the attenuation coefficient and of the scat-

tering kernel. We try to clarify the constants in our estimates, and we show the estimates

by a direct calculation. We introduce the albedo operator for the solutions, and we show

stability of perturbed albedo operators.

1. Introduction

The transport equation is one of the mathematical models to support the diffuse optical

tomography (DOT) (e.g. [2], [3], [7],[8] etc.), which is considered as a coming medical tomog-

raphy. We give Lp -estimates to solutions to the equation as a basic study of DOT.

The governing equation of light propagation in biomedical tissues is described by the

transport equation as a mathematical model, and it is well known that the solutions to the

transport equation are approximated by those to the diffusion equation (e.g. [3]). DOT is re-

duced, from a theoretical viewpoint, to an inverse problem of the transport equation or of the

diffusion equation, and the authors consider the former approach is more suitable to realize

high-resolution DOT. We regard DOT as the inverse problem to determine the unknown atten-

uation coefficient in the transport equation ([3] etc.), and we show some estimates, which are

expected to give so-called a priori information in the analysis of the inverse problem. More

in detail, we estimate the Lp -weak solutions to the transport equation in the case that the

attenuation coefficient and/or the scattering kernel are perturbed.

Let T be a positive number, let Ω be a domain of R3
x with a smooth boundary ∂Ω, and let

U be a bounded domain of R3
ξ

. We set

QT := (0,T )×Ω×U ,

Γ± := {(t , x,ξ)∈QT | x ∈ ∂Ω and ±n(x) ·ξ> 0},

where n(x) is the unit outer normal vector at x ∈ ∂Ω. We consider the initial-boundary value
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problem of the transport equation:
(

∂

∂t
+ξ ·∇x

)

u(t , x,ξ)=−µ(t , x,ξ)u(t , x,ξ)+

∫

U
k(t , x,ξ,ξ′)u(t , x,ξ′)dξ′, (t , x,ξ)∈QT , (1.1)

u(0, x,ξ)= u0(x,ξ), x ∈Ω,ξ ∈U , (1.2)

u(t , x,ξ)= q(t , x,ξ), (t , x,ξ)∈Γ−, (1.3)

and the aim of the paper is to give estimates of solutions for the case that the attenuation

coefficient µ and the scattering kernel k are perturbed in L∞ sense.

Prior to the discussion, we should define the Lp -weak solution to (1.1)–(1.3). Let us as-

sume µ(t , x,ξ) ∈ L∞(QT ) and k(t , x,ξ,ξ′) ∈ L∞(QT ×U ). We call a function u(t , x,ξ) ∈ Lp (QT )

(1 ≤ p <∞) a weak solution to (1.1)–(1.3), when u satisfies

∫

QT

u

(

∂

∂t
+ξ ·∇x

)

ϕ d t d xdξ+

∫

QT

(∫

U
ku dξ′−µu

)

ϕ d t d xdξ

=

∫

Γ−

n(x) ·ξ qϕ d t dνxdξ−

∫

Ω

u0ϕ|t=0 d xdξ (1.4)

for all ϕ ∈ V := {ϕ ∈ C∞
0 (QT ) | ϕ|Γ+

= 0 and ϕ(T, ·, ·) = 0}, where dνx denotes the surface ele-

ment along ∂Ω. Let us introduce the following notation. For (t , x,ξ) ∈ QT , the line l given by

l := {(t + s, x + sξ,ξ) | s ∈R} (1.5)

is called a characteristic line of the transport equation (1.1), and we set l±(t , x,ξ) and l0(t , x,ξ)

by

l±(t , x,ξ) := inf{s ≥ 0 | (t ± s, x ± sξ,ξ)∉QT },

l0(t , x,ξ) := l−(t , x,ξ)+ l+(t , x,ξ).

We note 0 ≤ l−(t , x,ξ) ≤ t ≤ T . We introduce weighted function spaces:

Lp (Ω×U ; l0) :=

{

v :Ω×U →R

∣

∣

∣

∣

∫

Ω×U
|v(x,ξ)|p l0(0, x,ξ)d xdξ<∞

}

,

Lp (Γ−;ρ−) :=

{

q : Γ− →R

∣

∣

∣

∣

∫

Γ−

∣

∣q(t , x,ξ)
∣

∣

p
ρ−(t , x,ξ)d t dνxdξ<∞

}

,

where ρ−(t , x,ξ) := l0(t , x,ξ) |n(x) ·ξ| for (t , x,ξ) ∈ Γ−. It is easily checked that these spaces are

Banach spaces with the norms

‖v‖Lp (Ω×U ;l0) :=

(
∫

Ω×U
|v(x,ξ)|p l0(0, x,ξ)d xdξ

) 1
p

,

∥

∥q
∥

∥

Lp (Γ−;ρ−) :=

(∫

Γ−

∣

∣q(t , x,ξ)
∣

∣

p
ρ−(t , x,ξ)d t dνxdξ

) 1
p

respectively. Under the preparations above, we state the results about well-posedness of (1.1)–

(1.3), which are well-known ([5], [11]).
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Proposition 1.1. For u0 ∈ Lp (Ω×U ; l0) and q ∈ Lp (Γ−;ρ−), there exists a unique weak solution

u(t , x,ξ)∈ Lp (QT ) to (1.1)–(1.3).

Proposition 1.2. Let K be

K :=
∥

∥µ
∥

∥

L∞(QT ) +|U |‖k‖L∞(QT ×U ) , (1.6)

where |U | denotes the Lebesgue measure of U . We have, if u0 ∈ Lp (Ω×U ; l0) and q ∈ Lp (Γ−;ρ−),

‖u‖Lp (QT ) ≤

(

1−
K

λ

)−1

eλT
(

‖u0‖Lp (Ω×U ;l0) +
∥

∥q
∥

∥

Lp (Γ−;ρ−)

)

(1.7)

for λ> K .

We may abbreviate the estimate (1.7) as

‖u‖Lp (QT ) ≤C
(

‖u0‖Lp (Ω×U ;l0) +
∥

∥q
∥

∥

Lp (Γ−;ρ−)

)

in order to show well-posedness of (1.1)–(1.3), but we prefer (1.7) in order to clarify dependent

relations in constants appeared in the estimates, since we will aim at an inverse problem of

(1.1)–(1.3) in future.

According to Ukai [11], the derivative of the weak solution along a characteristic line
(

∂u

∂l

)

(t , x,ξ) :=

(

∂

∂t
+ξ ·∇x

)

u(t , x,ξ) ((t , x,ξ)∈QT ) belongs to Lp (QT ), and it has the estimate

∥

∥

∥

∥

∂u

∂l

∥

∥

∥

∥

Lp (QT )

≤ K ‖u‖Lp (QT ) . (1.8)

The estimate (1.7) follows from (1.8) and the fact that the weak solution satisfies the integral

formula

u(t , x,ξ) = u(t − l−(t , x,ξ), x − l−(t , x,ξ)ξ,ξ)

+

∫l−(t ,x,ξ)

0

{

−µ(t − s, x − sξ,ξ)u(t − s, x − sξ,ξ)

+

∫

U
k(t − s, x − sξ,ξ,ξ′)u(t − s, x − sξ,ξ′)dξ′

}

d s. (1.9)

Remark 1.1. We can minimize the constant in (1.7) as a function of the parameter λ, and

minλ>K

(

1− K
λ

)

eλK = (1+L)eL , where L = 1
2

K T
(

1+
√

1+ 4
K T

)

.

Let u(t ) be the weak solution to (1.1)–(1.3), and let ũ(t ) be the one with perturbation,

and we will estimate ‖ũ(t )−u(t )‖Lp (Ω×U ) in the next section. We show, in §3, stability of the

albedo operator under perturbation as an application of the main theorem stated in §2.
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The transport equation is considered as the fundamental mathematical model to de-

scribe propagation of lights in biomedical tissue, and the scattering kernel, such as the Henyey-

Greenstein kernel (see [3], [8]), is proposed through experimental data. We should remark that

the mathematical model of the scattering kernel needs to admit observation errors, and we

think it necessary to estimate their influence to the solutions before starting analysis of the

inverse problem aimed at DOT; we expect our estimates to give a clue to guarantitative dis-

cussion on a priori information which is necessary in the analysis of the inverse problem.

2. Estimates of the solutions under L∞-perturbation

We give an estimate of the solutions ‖ũ(t )−u(t )‖Lp (Ω×U ), where we denote the solution

to the perturbed system by ũ. The results mean stability of the Lp -weak solution under L∞-

perturbation of the attenuation coefficient µ and of the scattering kernel k , and it implies dif-

ficulty in solving the inverse problem related with DOT. We may estimate ‖ũ(t )−u(t )‖Lp (Ω×U )

by the reduction of the errors caused by the perturbation to the inhomogeneous term of the

equation (1.1), but we choose a direct calculation to clarify the constants in the final estimate

(2.4).

Let us consider the following initial-boundary value problem:

(

∂

∂t
+ξ ·∇x

)

ũ(t , x,ξ)=−µ̃(t , x,ξ)ũ(t , x,ξ)+

∫

U
k̃(t , x,ξ,ξ′)ũ(t , x,ξ′)dξ′, (t , x,ξ)∈QT , (2.1)

ũ(0, x,ξ) = u0(x,ξ), x ∈Ω,ξ ∈U , (2.2)

ũ(t , x,ξ)= q(t , x,ξ), (t , x,ξ)∈Γ−, (2.3)

where µ̃(t , x,ξ)∈ L∞(QT ) and k̃(t , x,ξ,ξ′) ∈ L∞(QT ×U ). The problem (2.1)–(2.3) is a perturbed

system of (1.1)–(1.3), but we note that the initial data and the boundary data are the same. To

state our estimate, we introduce constants K̃ and ∆K by

K̃ :=
∥

∥µ̃
∥

∥

L∞(QT ) +|U |
∥

∥k̃
∥

∥

L∞(QT ×U ) , ∆K :=
∥

∥µ̃−µ
∥

∥

L∞(QT ) +|U |
∥

∥k̃ −k
∥

∥

L∞(QT ×U ) .

Theorem 2.1. Let u ∈ Lp (QT ) (1 ≤ p <∞) be the Lp -weak solution to (1.1)–(1.3), and let ũ ∈

Lp (QT ) be that to (2.1)–(2.3). We have

‖ũ(t )−u(t )‖Lp (Ω×U ) ≤ 2
1− 1

p ∆K t
1− 1

p exp

(

2p−1K̃ p t p

p2

)

‖u‖Lp (QT ) . (2.4)

Proof. We recall the integral equation (1.9) which the Lp -weak solution to (1.1)–(1.3) satisfies,

and we obtain

ũ(t , x,ξ)−u(t , x,ξ)=−

∫l−(t ,x,ξ)

0

{

µ̃(t − s, x − sξ,ξ)ũ(t − s, x − sξ,ξ)
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−µ(t − s, x − sξ,ξ)u(t − s, x − sξ,ξ)
}

d s

+

∫l−(t ,x,ξ)

0

{

∫

U

{

k̃(t − s, x − sξ,ξ,ξ′)ũ(t − s, x − sξ,ξ′)

−k(t − s, x − sξ,ξ,ξ′)u(t − s, x − sξ,ξ′)
}

dξ′
}

d s. (2.5)

We are going to give the proof of (2.4) in two steps.

(1) 1st step: estimation of ‖ũ(t )−u(t )‖Lp (Ω×U ).

From (2.5), we have

‖ũ(t )−u(t )‖Lp (Ω×U ) ≤

∥

∥

∥

∥

∫l−(t ,·,·)

0
(µ̃ũ −µu)d s

∥

∥

∥

∥

Lp (Ω×U )

+

∥

∥

∥

∥

∫l−(t ,·,·)

0

(∫

U
(k̃ ũ −ku)dξ′

)

d s

∥

∥

∥

∥

Lp (Ω×U )

.

(2.6)

Since
∥

∥

∥

∥

∫l−

0
(µ̃ũ −µu)d s

∥

∥

∥

∥

Lp

≤
∥

∥µ̃
∥

∥

L∞

∥

∥

∥

∥

∫l−

0
|ũ −u|d s

∥

∥

∥

∥

Lp

+
∥

∥µ̃−µ
∥

∥

L∞

∥

∥

∥

∥

∫l−

0
|u|d s

∥

∥

∥

∥

Lp

,

we estimate the first term of the right hand side of (2.6) as follows;

∥

∥

∥

∥

∫l−(t ,·,·)

0
(µ̃ũ −µu)d s

∥

∥

∥

∥

Lp (Ω×U )

≤
∥

∥µ̃
∥

∥

L∞

(

∫

Ω×U

(∫l−(t ,x,ξ)

0
|ũ −u|d s

)p

d xdξ

) 1
p

+
∥

∥µ̃−µ
∥

∥

L∞

(

∫

Ω×U

(∫l−(t ,x,ξ)

0
|u|d s

)p

d xdξ

) 1
p

≤
∥

∥µ̃
∥

∥

L∞

(∫

Ω×U
l p−1
−

(∫l−(t ,x,ξ)

0
|ũ −u|

p d s

)

d xdξ

)

1
p

+
∥

∥µ̃−µ
∥

∥

L∞

(
∫

Ω×U
l p−1
−

(
∫l−(t ,x,ξ)

0
|u|

p d s

)

d xdξ

)

1
p

≤
∥

∥µ̃
∥

∥

L∞ t
1− 1

p

(
∫t

0

∥

∥ũ(t ′, ·, ·)−u(t ′, ·, ·)
∥

∥

p

Lp (Ω×U )
d t ′

)
1
p

+
∥

∥µ̃−µ
∥

∥

L∞ t
1− 1

p ‖u‖Lp (QT ) . (2.7)

We recall 0 ≤ l−(t , x,ξ)≤ t ≤ T , and we remark the above estimation is justified by the Fubini-

Tonelli theorem. By the same manner, the second term is estimated as

∥

∥

∥

∥

∫l−(t ,·,·)

0

(∫

U
(k̃ũ −ku)dξ′

)

d s

∥

∥

∥

∥

Lp (Ω×U )

≤

{∫

Ω×U
l p−1
−

(∫l−

0

∣

∣

∣

∣

∫

U
k̃(ũ −u)dξ′

∣

∣

∣

∣

p

d s

)

d xdξ

}

1
p

+

{∫

Ω×U
l p−1
−

(∫l−

0

∣

∣

∣

∣

∫

U
(k̃ −k)udξ′

∣

∣

∣

∣

p

d s

)

d xdξ

}

1
p

≤ |U |
1− 1

p t
1− 1

p
∥

∥k̃
∥

∥

L∞

(∫

U

∫t

0

∥

∥ũ(t ′, ·, ·)−u(t ′, ·, ·)
∥

∥

p

Lp (Ω×U )
d t ′dξ′

)
1
p

+|U |
1− 1

p t
1− 1

p
∥

∥k̃ −k
∥

∥

L∞

(∫

U

∫t

0

∥

∥u(t ′, ·, ·)
∥

∥

p

Lp (Ω×U )
d t ′dξ′

)
1
p
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≤ |U | t
1− 1

p
∥

∥k̃
∥

∥

L∞

(∫t

0

∥

∥ũ(t ′, ·, ·)−u(t ′, ·, ·)
∥

∥

p

Lp (Ω×U )
d t ′

)
1
p

+|U |
∥

∥k̃ −k
∥

∥

L∞ t
1− 1

p ‖u‖Lp (QT ) . (2.8)

Since we know (a +b)p ≤ 2p−1(ap +bp ) for a > 0,b > 0, we conclude, from (2.7) and (2.8),

‖ũ(t )−u(t )‖
p

Lp (Ω×U )
≤ t p−12p−1K̃ p

(∫t

0

∥

∥ũ(t ′)−u(t ′)
∥

∥

p

Lp (Ω×U )
d t ′+

∆K p

K̃ p
‖u‖

p

Lp (QT )

)

. (2.9)

(2) 2nd step: Gronwall type estimation.

Let us define a function F (t ) by

F (t ) :=

∫t

0

∥

∥ũ(t ′)−u(t ′)
∥

∥

p

Lp (Ω×U )
d t ′+

∆K p

K̃ p
‖u‖

p

Lp (QT )
,

then we have, from (2.9), dF
dt ≤ 2p−1K̃ p t p−1F . Hence we have

d

d t

(

exp

(

−
2p−1K̃ p

p
t p

)

F (t )

)

≤ 0,

and immediately we obtain

‖ũ(t )−u(t )‖
p

Lp (Ω×U )
=

dF

d t
≤ 2p−1K̃ p t p−1 exp

(

2p−1K̃ p

p
t p

)

F (0).

Thus we obtain the estimate (2.4) ���

Remark 2.2. Substitution of the estimate ‖u‖Lp (QT ) of (1.7) into (2.4) leads us to the estimate

‖ũ(t )−u(t )‖Lp (Ω×U ) ≤ 2
1− 1

p ∆K t
1− 1

p exp

(

2p−1K̃ p t p

p2

)

×

(

1−
K

λ

)−1

eλT
(

‖u0‖Lp (Ω×U ;l0) +
∥

∥q
∥

∥

Lp (Γ−;ρ−)

)

.

3. Stability estimate for the Albedo operator

Applied mathematicians ([9], [4], [12] etc.) have defined the Albedo operator for the

transport equation and have discussed inverse problems, and we also give an estimate to

the operator under the same perturbation as in §2. Let us define the Albedo operator for the

transport equation with the homogeneous Cauchy data. Before starting discussion, we in-

troduce the Banach space Lp (Γ+;ρ+) in the same manner with Lp (Γ−;ρ−), which is defined

in § 1.

Since we have (1.8), we can introduce a Banach space W p (QT ) by

W p (QT ) :=

{

u ∈ Lp (QT )

∣

∣

∣

∣

∂u

∂l
∈ Lp (QT )

}
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with the norm ‖u‖W p (QT ) := ‖u‖Lp (QT ) +T

∥

∥

∥

∥

∂u

∂l

∥

∥

∥

∥

Lp (QT )

, and we note that the weak solution to

(1.1)–(1.3) belongs to W p (QT ). Let us define the trace operator γ± : W p (QT ) → Lp (Γ±;ρ±) as

follows. For φ ∈C∞
0 (QT ), integration along the characteristic line gives

φ(t − l−(t , x,ξ), x −ξl−(t , x,ξ),ξ)=

∫l−(t ,x,ξ)

0

∂φ

∂l
(t − s, x − sξ,ξ)d s +φ(t , x,ξ),

which leads us to
∥

∥φ|Γ−

∥

∥

Lp (Γ−;ρ−) ≤
∥

∥φ
∥

∥

W p (QT ). Hence we can define the trace operator γ− as

continuous extention of the restriction operator |Γ−
. It is quite the same for γ+. We remark,

from (1.3), that γ−u = q for the weak solution u, and we note that the trace γ+u belongs to

Lp (Γ+;ρ+), since we have u ∈W p (QT ). Thus we define the Albedo operator.

Definition 3.1. (Albedo operator)

Let u ∈ Lp (QT ) be the weak solution to (1.1)–(1.3) with the homogeneous Cauchy data;

u0(x,ξ) = 0 in (1.2). We define an operator A : Lp (Γ−;ρ−) → Lp (Γ+;ρ+) by Aq := γ+u, and we

call it the Albedo operator.

Since we assume u0(x,ξ) = 0, we have, from (1.8) and Proposition 1.2,

∥

∥Aq
∥

∥

Lp (Γ+;ρ+) ≤‖u‖W p (QT ) ≤ (1+K T )

(

1−
K

λ

)−1

eλT
∥

∥q
∥

∥

LP (Γ−;ρ−)

for λ>K and the albedo operator is well-defined as a bounded operator. We state our result.

Theorem 3.1. Suppose 1 ≤ p <∞. Let A be the albedo operator connected with (1.1)–(1.3), and

let Ã be the one connected with (2.1)–(2.3). Then we have

∥

∥Ã− A
∥

∥

B (Lp (Γ−;ρ−),Lp (Γ+;ρ+)) ≤

(

1−
K

λ

)−1
eλT

∆K
{1+ K̃ T

K̃

(

exp
( (2K̃ T )p

2p

)

−1
) 1

p
+T

}

(3.1)

for λ> K .

Proof. We firstly remark, by integrating the both side of (2.4) that

‖ũ −u‖Lp (QT ) ≤
∆K

K̃

(

exp

(

2p−1K̃ p

p
t p

)

−1

)

1
p

‖u‖Lp (QT ) (3.2)

Since we assume u0(x,ξ) = 0 in (1.2) and (2.2), we have

(

∂

∂t
+ξ ·∇x

)

(ũ −u) = −µ̃(ũ −u)+

∫

U
k̃(ũ −u)dξ′−

(

µ̃−µ
)

u +

∫

U

(

k̃ −k
)

udξ′,

and
∥

∥Ãq − Aq
∥

∥

Lp (Γ+;ρ+) ≤ ‖ũ −u‖W p (QT ) = ‖ũ −u‖Lp (QT ) +T

∥

∥

∥

∥

∂ũ

∂l
−
∂u

∂l

∥

∥

∥

∥

Lp (QT )

≤ ‖ũ −u‖Lp (QT ) + K̃ T ‖ũ −u‖Lp (QT ) +∆K T ‖u‖Lp (QT ) .
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Substituting the estimates (1.7) and (3.2), we conclude

∥

∥Ãq − Aq
∥

∥

Lp (Γ+;ρ+) ≤ (1+ K̃ T )
∆K

K̃

(

exp

(

2p−1K̃ p

p
T p

)

−1

)

1
p

‖u‖Lp (QT ) +∆K T ‖u‖Lp (QT )

≤

(

1−
K

λ

)−1

eλT
∥

∥q
∥

∥

Lp (Γ−;ρ−)∆K

{

1+ K̃ T

K̃

(

exp

(

(2K̃ T )p

2p

)

−1

)

1
p

+T

}

.

Hence we obtain our final estimate. ���
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