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COEFFICIENTS BOUNDS IN SOME SUBCLASS

OF ANALYTIC FUNCTIONS

JANUSZ SOKÓŁ AND DEEPAK BANSAL

Abstract. In this paper we consider a class of analytic functions introduced by Mishra
and Gochhayat, Fekete-Szegö problem for a class defined by an integral operator, Kodai
Math. J., 33(2010) 310–328, which is connected with k-starlike functions through Noor
operator. We find inclusion relations and coefficients bounds in this class.

1. Introduction

Let H denote the class of analytic functions in the unit disc ∆ = {z ∈ C : |z| < 1}. Let

A ⊂H denote the class of functions of the form

f (z) = z +
∞
∑

m=2
am zm , (1.1)

which are analytic in the open unit disk ∆.

In [16] Noor defined an operator In : A →A for n ∈N∪ {0} as follows:

In f (z) = f †
n (z)∗ f (z), (1.2)

where f †
n is defined by the relation

z

(1− z)n+1
∗ f †

n (z)=
z

(1− z)2
. (1.3)

It is obvious that I0 f (z) = z f ′(z) and I1 f (z) = f (z). The operator In f defined by (1.2) is

called Noor operator and for n ≧ 2 it represent an integral operator of f . For details see [16].

It is well known that for α> 0

z

(1− z)α
=

∞
∑

m=0

(α)m

m!
zm+1 (z ∈∆),
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where (x)n is the Pochhammer symbol

(x)n =
Γ(x +n)

Γ(x)
=

{

1 for n = 0, x 6= 0,

x(x +1) · · · (x +n −1) for n ∈N= {1,2,3, . . .}.

By (1.3) we obtain
∞
∑

m=0

(n +1)m

m!
zm+1 ∗ f †

n (z) =
∞
∑

m=0

(2)m

m!
zm+1. (1.4)

Then (1.4) implies that

f †
n (z) =

∞
∑

m=0

(2)m

(n +1)m
zm+1 (z ∈∆).

Therefore, if f is of the form (1.1), then

In f (z) = z +
∞
∑

m=2

(2)m−1

(n +1)m−1
am zm = z +

∞
∑

m=2

m!

(n +1)m−1
am zm (z ∈∆). (1.5)

A function f (z) in A is said to be in class S
∗ of starlike functions if

ℜ
{

z f ′(z)

f (z)

}

> 0 (z ∈∆).

Let C V denote the class of all functions f ∈ A that are convex univalent. It is known that

f ∈C V if and only if z f ′ ∈S
∗, for details see [3].

Suppose that Γ is a smooth directed curve z = z(t ), t ∈ [t1, t2], the direction being that

determines as t increases. Let f (Γ) be the image of Γ under a function that is analytic on Γ.

The arc f (Γ) is said to be convex if the argument of the tangent to f (Γ) is a nondecreasing

function of t . In 1991 Goodman [4] investigated a class of functions mapping circular arcs

contained in the unit disk, with center at an arbitrarily chosen point in ∆, onto a convex arcs.

Goodman denoted the class of such functions by UC V . Recall here his definition.

Definition 1.1 ([4]). A function f ∈A is said to be uniformly convex in ∆, if f is convex in ∆,

and has the property that for every circular arc γ, contained in ∆, with center ζ ∈ ∆, the arc

f (γ) is convex.

In [18] Rønning and independently in [14] Ma and Minda gave a more applicable charac-

terization of the class UC V , stated below.

Definition 1.2 ([14, 18]). Let f ∈A . Then f ∈UC V if and only if

ℜ
{

1+
z f ′′(z)

f ′(z)

}

>
∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

(z ∈∆). (1.6)
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In [10] and in the next papers of these authors generalized the notions of starlikeness

and convexity. Let 0 ≤ k < ∞. A function f ∈ A is said to be k-uniformly convex in ∆, if

the image of every circular arc γ contained in ∆, with center ζ, is convex, where |ζ| ≤ k . For

fixed k , the class of all k-uniformly convex functions will be denoted by k −UC V . Clearly,

0−UC V = C V , and 1−UC V = UC V . As with the class UC V it is possible to get a one-

variable characterization of the class k −UC V .

Definition 1.3 ([11]). Let f ∈A . Then f ∈ k −UC V iff

ℜ
{

1+
z f ′′(z)

f ′(z)

}

> k

∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

(z ∈∆).

The class k −S T consisting of k-starlike functions, is defined from k −UC V via the

Alexander’s transform (see [1]) i.e.

f ∈ k −UC V ⇐⇒ z f ′ ∈ k −S T .

Definition 1.4 ([11]). Let f ∈A . Then f ∈ k −S T if and only if

ℜ
{

z f ′(z)

f (z)

}

> k

∣

∣

∣

∣

z f ′(z)

f (z)
−1

∣

∣

∣

∣

(z ∈∆). (1.7)

The class k −S T for k = 1 becomes the class P S T , introduced earlier by Rønning

[18]. The class k −UC V started earlier in papers [2, 23] with some additional conditions

and without the geometric interpretation given in [11]. Recently Mishra and Gochhayat [15]

defined a new class of functions using Noor operator as follows:

Definition 1.5 ([15]). A function f ∈A is said to be in the class M (n,k), (0 ≤ k <∞; n ∈N∪{0})

if and only if In f ∈ k −S T . Or equivalently

ℜ
{

z(In f )′(z)

(In f )(z)

}

> k

∣

∣

∣

∣

z(In f )′(z)

(In f )(z)
−1

∣

∣

∣

∣

(z ∈∆). (1.8)

Note that the class M (n,k) unifies many subclasses of A . In particular, M (0,0) = C V ,

the class of convex functions; M (0,1) =UC V , the class of uniformly convex functions; M (1,0) =
S

∗, the class of starlike functions; M (1,1) =P S T , the class of parabolic starlike functions;

M (0,k)= k −UC V and M (1,k)= k −S T .

Let ϕ(z) = z +am zm . It is easy to verify that ϕ ∈ k −UC V if and only if |am | ≤ 1/[m(m +
k(m −1))], and ϕ ∈ k −S T if and only if |am | ≤ 1/(m +k(m −1)). It is easy to check that for

n ∈ {3,4,5, . . .} we have

1

m +k(m −1)

m!

(n +1)m−1
≤

1

m(m +k(m −1))
,
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hence, if ϕ ∈ k −S T , then

Inϕ(z) = z +
m!

(n +1)m−1
am zm

is in k−UC V for n ∈ {3,4,5, . . .}. Moreover, Inϕ 6∈ k−UC V for n ∈ {1,2}. It would be interesting

to check this property of the Noor operator for other functions in k −S T .

Conjecture. If f ∈ k −S T and n ∈ {3,4,5, . . .}, then

In f ∈ k −UC V .

Our aim in this paper is to find coefficient bounds and coefficient inequalities for the

class M (n,k).

In the present investigation we also need the following definitions and notations, for the

presentation of our results.

For arbitrary chosen k ∈ [0,∞) let Ωk denote the domain

Ωk = {u + i v : u2 > k2(u −1)2 +k2v 2,u > 0}. (1.9)

Note that 1 ∈Ωk for all k and each Ωk is convex and symmetric in the real axis. Ω0 is nothing

but the right half-plane and when 0 < k < 1, Ωk is an unbounded domain contained in the

right branch of a hyperbola. When k = 1, the domain Ω1 is still unbounded domain enclosed

by the parabola v 2 = 2u−1. When k > 1, the domain Ωk becomes bounded domain being the

interior of a ellipse. Note also that for no choice of parameter k, Ωk reduces to a disk.

Under the above notations we may rewrite the Definition 3, as follows

f ∈ k −UC V ⇔ f ∈A and 1+
z f ′′(z)

f ′(z)
∈Ωk (z ∈∆). (1.10)

Let P denote the class of Caratheodory functions, e.g.

P = {p : p analytic in ∆, p(0) = 1,ℜ
{

p(z)
}

> 0}, (1.11)

and let pk denote a conformal mapping of ∆ onto Ωk determined by conditions pk (0) = 1,

ℜ
{

p ′
k

(0)
}

> 0. Then we have

p1(z) = 1+
2

π2

(

log
1+

p
z

1−
p

z

)2

, z ∈∆, (1.12)

and if 0 ≤ k < 1, then

pk (z)=
1

1−k2
cosh

{(

2

π
arccos k

)

log
1+

p
z

1−
p

z

}

−
k2

1−k2
, z ∈∆, (1.13)
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moreover, if k > 1, then

pk (z) =
1

k2 −1
sin

(

π

2K (κ)

∫ u(z)p
κ

0

dt
p

1− t 2
p

1−κ2t 2

)

+
k2

k2 −1
, z ∈∆, (1.14)

where

u(z) =
z −

p
κ

1−
p
κz

, z ∈∆,

and κ ∈ (0,1) is chosen such that k = cosh(πK ′(κ)/(4K (κ))). Here K (κ) is Legendre’s complete

elliptic integral of first kind and K ′(κ)= K (
p

1−κ2). For more details about pk see [4-8].

If f , g ∈H , then the function f is said to be subordinate to g , written as f (z) ≺ g (z) (z ∈
∆), if there exists a Schwarz function w ∈ H with w (0) = 0 and |w (z)| < 1, z ∈ ∆ such that

f (z)= g (w (z)). In particular, if g is univalent in ∆, then we have the following equivalence:

f (z) ≺ g (z) ⇐⇒ f (0) = g (0) and f (∆) ⊂ g (∆). (1.15)

In terms of subordination we can write

f ∈M (n,k)⇔
[

f ∈A and
z[In f (z)]′

In f (z)
≺ pk (z) (z ∈∆)

]

. (1.16)

2. Preliminary lemmas

We need the following results in our investigation:

Lemma A.[7] Let k ∈ [0,∞), be fixed and pk be the Riemann map of ∆ on to Ωk , satisfying

pk (0) = 1, ℜ
{

p ′
k

(0)
}

> 0. If pk (z) = 1+Q1(k)z +Q2(k)z2 + . . ., (z ∈∆), then

Q1(k)=























2 f or k = 0,
2A2

1−k2 f or k ∈ (0,1),
8
π2 f or k = 1,

π2

4(k2−1)K 2(κ)(1+κ)
p
κ

f or k > 1,

(2.1)

where A = (2/π)arccos k while κ and K (κ) are the same as in (1.14).

Lemma B.[17] Let

h(z)= 1+
∞
∑

n=1
cn zn ≺ 1+

∞
∑

n=1
Cn zn = H (z) (z ∈∆). (2.2)

If the function H is univalent in ∆ and H (∆) is a convex set, then

|cn | ≤ |C1|. (2.3)
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Lemma C.[21] If f ∈C V , g ∈S
∗, then for each analytic function h in ∆,

( f ∗hg )(∆)

( f ∗ g )(∆)
⊂ coh(∆), (2.4)

where coh(∆) denotes the closed convex hull of h(∆).

Lemma D. Let 0 <α≤β. If β≥ 2 or if α+β≥ 3, then the function

h(z)=
∞
∑

m=0

(α)m

(β)m
zm+1 (z ∈∆) (2.5)

belongs to the class C V of convex functions.

Lemma D is a special case of Theorem 2.12 or Theorem 2.13 contained in [19].

3. Main results

Theorem 1. Let f be in the class M (n,k). If f is of the form (1.1), then

|a2| ≤
Q1(k)(n +1)

2
(3.1)

and

|am | ≤
(n +1)m−1 Q1(k)

(m −1)(2)m−1

m
∏

s=3

(

1+
Q1(k)

s −2

)

(m ≧ 3), (3.2)

where Q1(k) is described in (2.1).

Proof. Let f given by (1.1), belong to M (n,k), also let In f (z) = z +
∞
∑

m=2
bm zm = F (z), where

bm =
(2)m−1

(n +1)m−1
am (3.3)

and define

φ(z) =
zF ′(z)

F (z)
= 1+

∞
∑

m=1
cm zm .

Then φ≺ pk , where pk is the function given by (1.12), (1.13) and (1.14) depending on k . The

function pk is univalent in ∆ and pk (∆) = Ωk which is convex region (see (1.9)). Using Ro-

gosinski’s Lemma B and (2.1) of Lemma A, we have |cm | ≤Q1. Now, writing zF ′(z) =φ(z)F (z)

and comparing the coefficients of zn on both sides, we get

(m −1)bm =
m−1
∑

k=1

cm−k bk .

From this we get |b2| = |c1| ≤ Q1, which in view of (3.3) gives (3.1). If we choose f to be that

function for which zF ′(z)
F (z) = pk (z), then f is a function in M (n,k) with a2 =Q1(n +1)/2, which

shows that this result is sharp. Further

|b3| ≤
1

2
|c2 +c1b2| ≤

1

2
(|c2|+ |c1||b2|) ≤

1

2
Q1(1+Q1).
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We now proceed by induction. Assume that

|bk | ≤
Q1

k −1
(1+Q1)(1+Q1/2) . . . (1+Q1/(m −2)), for k = 3, 4, . . . ,m −1.

Then

(m −1)|bm | ≤
m−1
∑

k=1

|cm−k ||bk | ≤Q1

m−1
∑

k=1

|bk |

≤ Q1

(

1+Q1 +
Q1

2
(1+Q1)+

Q1

3
(1+Q1)(1+

Q1

2
)+ . . .

+
Q1

m −2
(1+Q1)(1+Q1/2) . . .

(

1+
Q1

m −3

))

= Q1(1+Q1)(1+Q1/2) . . .

(

1+
Q1

m −2

)

,

and hence

|bm | ≤
Q1

(m −1)

m
∏

s=3

(

1+
Q1

s −2

)

(m ≧ 3).

Putting the value of bm from (3.3) we get the desired result. ���

Theorem 2. The function k(z)= z/(1− Az)2 is in M (1,k)= k −S T if and only if

|A| ≤
1

2k +1
. (3.4)

Proof. Using Definition 4, k(z)∈ k −S T if and only if

k

∣

∣

∣

∣

2Az

1− Az

∣

∣

∣

∣

<ℜ
(

1+ Az

1− Az

)

(z ∈∆).

It is suffices to study above for |z| = 1. Setting |A| = r and Az = r e iφ in above, we have

k

∣

∣

∣

∣

2r e iφ

1− r e iφ

∣

∣

∣

∣

≤ℜ
(

1+ r e iφ

1− r e iφ

)

. (3.5)

On simplification, we see that

ℜ
(

1+ r e iφ

1− r e iφ

)

=
1− r 2

|1− r e iφ|2
.

So (3.5) is equivalent to

2kr ≤
1− r 2

[1−2r cosφ+ r 2]1/2
. (3.6)

The right-hand side of (3.6) is seen to have a minimum for φ= π, and this minimal

value is 1−r . Hence, a necessary and sufficient condition for (3.6) is 2r k ≤ 1−r or |A| = r ≤
1/2k +1. ���
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Remark 1. If A = 1, then k(z) is a Koebe function and (3.4) forces k = 0, i.e. Koebe function

belongs to class k −S T if and only if k = 0.

Theorem 3. The function f (z) = z +am zm is in M (n,k) if and only if

|am | ≤
(n +1)m−1

(2)m−1 (mk +m −k)
(m ≧ 2).

Proof. Let In f (z) = z +bm zm = F (z), where bm is given by (3.3). It is sufficient to study (1.8)

for |z| = 1. Setting |bm | = r and bmzm−1 = r e iφ. Then (1.8) for this f will be

k

∣

∣

∣

∣

(m −1)r e iφ

1− r e iφ

∣

∣

∣

∣

≤ℜ
(

1+mr e iφ

1− r e iφ

)

.

Following the same steps as in Theorem 2, we get desired result. ���

Remark 2. For particular values of m, n, k , Theorem 3, provides functions belonging to the

class M (n,k). For example, if m = 2, n = 1, k = 1 then |a2| ≤ 1/3. So, if we take f (z) = z + z2/3,

then f ∈P S T .

Remark 3. Putting n = 1 and k = 1 in Theorem 1, 2 and 3 we get the Theorem 5, 3 and 2 of

Rønning [18] respectively.

Theorem 4. Assume that n1 ≤ n2, n1,n2 ∈N∪ {0}. Then

M (n1,k)⊂M (n2,k) (3.7)

for all k ∈ [0,∞).

Proof. Let f ∈M (n1,k). By the definition of the class M (n1,k) we have

z[In1 f (z)]′

In1 f (z)
= pk {ω(z)} (z ∈∆), (3.8)

where pk is convex univalent with pk (∆)=Ωk and |ω(z)| < 1 in ∆ with ω(0) = 0 = pk (0)−1. Let

us denote

fn1,n2 (z)=
∞
∑

m=0

(n1 +1)m

(n2 +1)m
zm+1 (z ∈∆). (3.9)

Then we have

f †
n2

(z) = f †
n1

(z)∗ fn1,n2 (z). (3.10)

Applying (1.2), (3.8), (3.10) and the properties of convolution we get

z
[

In2 f (z)
]′

In2 f (z)
=

z( f †
n2

∗ f )′(z)

( f †
n2

∗ f )(z)
=

z
(

f †
n1

∗ fn1,n2 ∗ f
)′

(z)

( f †
n1

∗ fn1,n2 ∗ f )(z)



COEFFICIENTS BOUNDS 629

=
fn1,n2 (z)∗ z

[

In1 f (z)
]′

fn1,n2 (z)∗ In1 f (z)

=
fn1,n2 (z)∗pk [ω(z)]In1 f (z)

fn1,n2 (z)∗ In1 f (z)
. (3.11)

Moreover, it follows from (3.8) that In1 f ∈ k −S T ⊂ S
∗ and it follows from Lemma D that

fn1,n2 ∈C V . Then using Lemma C to (3.11), we obtain

fn1,n2 ∗pk (ω)In1 f

fn1,n2 ∗ In1 f
(∆) ⊂ copk [ω(∆)] ⊂ pk (∆), (3.12)

because pk is convex univalent. By (1.15) the function (3.11) is subordinated to pk , and so

f ∈M (n2,k). ���

Corollary 1. The following relations are satisfied

k −S T =M (1,k)⊂M (n,k),

for all k ∈ [0,∞) and for all n ∈N.

Theorem 5. Assume that 0 ≤ k1 ≤ k2 <∞. Then

M (n,k2) ⊂M (n,k1) (3.13)

for all n ∈N∪ {0}.

Proof. Let f ∈M (n,k2). By the definition of the class M (n,k2) we have

z[In f (z)]′

In f (z)
= pk2 {ω(z)} ⊂ pk1 {ω(z)} (z ∈∆), (3.14)

because pki
, i = 1,2, are convex univalent with pk2 ≺ pk1 . Therefore, f ∈M (n,k1). ���

Corollary 2. The following inclusion relations are satisfied

M (n,k)⊂M (n,0)⊃M (1,0) =S
∗,

for all k ∈ [0,∞) and for all n ∈N∪ {0}.

Proof. The first relation is a simple consequence of Theorem 5 while the second one of The-

orem 4. ���
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