COEFFICIENTS BOUNDS IN SOME SUBCLASS OF ANALYTIC FUNCTIONS

JANUSZ SOKÓŁ AND DEEPAK BANSAL

Abstract

In this paper we consider a class of analytic functions introduced by Mishra and Gochhayat, Fekete-Szegö problem for a class defined by an integral operator, Kodai Math. J., 33(2010) 310-328, which is connected with k-starlike functions through Noor operator. We find inclusion relations and coefficients bounds in this class.

1. Introduction

Let \mathscr{H} denote the class of analytic functions in the unit disc $\Delta=\{z \in \mathbb{C}:|z|<1\}$. Let $\mathscr{A} \subset \mathscr{H}$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk Δ.
In [16] Noor defined an operator $I_{n}: \mathscr{A} \rightarrow \mathscr{A}$ for $n \in \mathbb{N} \cup\{0\}$ as follows:

$$
\begin{equation*}
I_{n} f(z)=f_{n}^{\dagger}(z) * f(z) \tag{1.2}
\end{equation*}
$$

where f_{n}^{\dagger} is defined by the relation

$$
\begin{equation*}
\frac{z}{(1-z)^{n+1}} * f_{n}^{\dagger}(z)=\frac{z}{(1-z)^{2}} . \tag{1.3}
\end{equation*}
$$

It is obvious that $I_{0} f(z)=z f^{\prime}(z)$ and $I_{1} f(z)=f(z)$. The operator $I_{n} f$ defined by (1.2) is called Noor operator and for $n \geqq 2$ it represent an integral operator of f. For details see [16].

It is well known that for $\alpha>0$

$$
\frac{z}{(1-z)^{\alpha}}=\sum_{m=0}^{\infty} \frac{(\alpha)_{m}}{m!} z^{m+1} \quad(z \in \Delta),
$$

Corresponding author: Janusz Sokół.

2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic function, subordination, starlike function, convex function, k-starlike function, univalent function, uniformly convex function, noor-operator.
where $(x)_{n}$ is the Pochhammer symbol

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}= \begin{cases}1 & \text { for } n=0, x \neq 0, \\ x(x+1) \cdots(x+n-1) & \text { for } n \in \mathbb{N}=\{1,2,3, \ldots\} .\end{cases}
$$

By (1.3) we obtain

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{(n+1)_{m}}{m!} z^{m+1} * f_{n}^{\dagger}(z)=\sum_{m=0}^{\infty} \frac{(2)_{m}}{m!} z^{m+1} \tag{1.4}
\end{equation*}
$$

Then (1.4) implies that

$$
f_{n}^{\dagger}(z)=\sum_{m=0}^{\infty} \frac{(2)_{m}}{(n+1)_{m}} z^{m+1} \quad(z \in \Delta)
$$

Therefore, if f is of the form (1.1), then

$$
\begin{equation*}
I_{n} f(z)=z+\sum_{m=2}^{\infty} \frac{(2)_{m-1}}{(n+1)_{m-1}} a_{m} z^{m}=z+\sum_{m=2}^{\infty} \frac{m!}{(n+1)_{m-1}} a_{m} z^{m} \quad(z \in \Delta) . \tag{1.5}
\end{equation*}
$$

A function $f(z)$ in \mathscr{A} is said to be in class \mathscr{S}^{*} of starlike functions if

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \Delta)
$$

Let $\mathscr{C V}$ denote the class of all functions $f \in \mathscr{A}$ that are convex univalent. It is known that $f \in \mathscr{C} V$ if and only if $z f^{\prime} \in \mathscr{S}^{*}$, for details see [3].

Suppose that Γ is a smooth directed curve $z=z(t), t \in\left[t_{1}, t_{2}\right]$, the direction being that determines as t increases. Let $f(\Gamma)$ be the image of Γ under a function that is analytic on Γ. The arc $f(\Gamma)$ is said to be convex if the argument of the tangent to $f(\Gamma)$ is a nondecreasing function of t. In 1991 Goodman [4] investigated a class of functions mapping circular arcs contained in the unit disk, with center at an arbitrarily chosen point in Δ, onto a convex arcs. Goodman denoted the class of such functions by $\mathscr{U C V}$. Recall here his definition.

Definition 1.1 ([4]). A function $f \in \mathscr{A}$ is said to be uniformly convex in Δ, if f is convex in Δ, and has the property that for every circular arc γ, contained in Δ, with center $\zeta \in \Delta$, the arc $f(\gamma)$ is convex.

In [18] Rønning and independently in [14] Ma and Minda gave a more applicable characterization of the class $\mathscr{U C} \mathscr{V}$, stated below.

Definition $1.2([14,18])$. Let $f \in \mathscr{A}$. Then $f \in \mathscr{U} \mathscr{C} V$ if and only if

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \Delta) . \tag{1.6}
\end{equation*}
$$

In [10] and in the next papers of these authors generalized the notions of starlikeness and convexity. Let $0 \leq k<\infty$. A function $f \in \mathscr{A}$ is said to be k-uniformly convex in Δ, if the image of every circular arc γ contained in Δ, with center ζ, is convex, where $|\zeta| \leq k$. For fixed k, the class of all k-uniformly convex functions will be denoted by $k-\mathscr{U} \mathscr{C V}$. Clearly, $0-\mathscr{U} \mathscr{C V}=\mathscr{C V}$, and $1-\mathscr{U} \mathscr{C V}=\mathscr{U} \mathscr{C V}$. As with the class $\mathscr{U} \mathscr{C V}$ it is possible to get a onevariable characterization of the class $k-\mathscr{U} \mathscr{C V}$.

Definition 1.3 ([11]). Let $f \in \mathscr{A}$. Then $f \in k-\mathscr{U} \mathscr{C V}$ iff

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|(z \in \Delta)
$$

The class $k-\mathscr{S} \mathscr{T}$ consisting of k-starlike functions, is defined from $k-\mathscr{U} \mathscr{C V}$ via the Alexander's transform (see [1]) i.e.

$$
f \in k-\mathscr{U} \mathscr{C V} \Longleftrightarrow z f^{\prime} \in k-\mathscr{S} \mathscr{T} .
$$

Definition 1.4 ([11]). Let $f \in \mathscr{A}$. Then $f \in k-\mathscr{S} \mathscr{T}$ if and only if

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \Delta) . \tag{1.7}
\end{equation*}
$$

The class $k-\mathscr{S} \mathscr{T}$ for $k=1$ becomes the class $\mathscr{P} \mathscr{S} \mathscr{T}$, introduced earlier by Rønning [18]. The class $k-\mathscr{U} \mathscr{C V}$ started earlier in papers [2,23] with some additional conditions and without the geometric interpretation given in [11]. Recently Mishra and Gochhayat [15] defined a new class of functions using Noor operator as follows:

Definition 1.5 ([15]). A function $f \in \mathscr{A}$ is said to be in the class $\mathscr{M}(n, k),(0 \leq k<\infty ; n \in \mathbb{N} \cup\{0\})$ if and only if $I_{n} f \in k-\mathscr{S} \mathscr{T}$. Or equivalently

$$
\begin{equation*}
\Re\left\{\frac{z\left(I_{n} f\right)^{\prime}(z)}{\left(I_{n} f\right)(z)}\right\}>k\left|\frac{z\left(I_{n} f\right)^{\prime}(z)}{\left(I_{n} f\right)(z)}-1\right|(z \in \Delta) . \tag{1.8}
\end{equation*}
$$

Note that the class $\mathscr{M}(n, k)$ unifies many subclasses of \mathscr{A}. In particular, $\mathscr{M}(0,0)=\mathscr{C V}$, the class of convex functions; $\mathscr{M}(0,1)=\mathscr{U} \mathscr{C V}$, the class of uniformly convex functions; $\mathscr{M}(1,0)=$ \mathscr{S}^{*}, the class of starlike functions; $\mathscr{M}(1,1)=\mathscr{P} \mathscr{S} \mathscr{T}$, the class of parabolic starlike functions; $\mathscr{M}(0, k)=k-\mathscr{U} \mathscr{C} V$ and $\mathscr{M}(1, k)=k-\mathscr{S} \mathscr{T}$.

Let $\varphi(z)=z+a_{m} z^{m}$. It is easy to verify that $\varphi \in k-\mathscr{U} \mathscr{C} V$ if and only if $\left|a_{m}\right| \leq 1 /[m(m+$ $k(m-1))]$, and $\varphi \in k-\mathscr{S} \mathscr{T}$ if and only if $\left|a_{m}\right| \leq 1 /(m+k(m-1))$. It is easy to check that for $n \in\{3,4,5, \ldots\}$ we have

$$
\frac{1}{m+k(m-1)} \frac{m!}{(n+1)_{m-1}} \leq \frac{1}{m(m+k(m-1))},
$$

hence, if $\varphi \in k-\mathscr{S} \mathscr{T}$, then

$$
I_{n} \varphi(z)=z+\frac{m!}{(n+1)_{m-1}} a_{m} z^{m}
$$

is in $k-\mathscr{U} \mathscr{C V}$ for $n \in\{3,4,5, \ldots\}$. Moreover, $I_{n} \varphi \notin k-\mathscr{U} \mathscr{C} V$ for $n \in\{1,2\}$. It would be interesting to check this property of the Noor operator for other functions in $k-\mathscr{S} \mathscr{T}$.

Conjecture. If $f \in k-\mathscr{S} \mathscr{T}$ and $n \in\{3,4,5, \ldots\}$, then

$$
I_{n} f \in k-\mathscr{U} \mathscr{C} V
$$

Our aim in this paper is to find coefficient bounds and coefficient inequalities for the class $\mathscr{M}(n, k)$.

In the present investigation we also need the following definitions and notations, for the presentation of our results.

For arbitrary chosen $k \in[0, \infty)$ let Ω_{k} denote the domain

$$
\begin{equation*}
\Omega_{k}=\left\{u+i v: u^{2}>k^{2}(u-1)^{2}+k^{2} v^{2}, u>0\right\} . \tag{1.9}
\end{equation*}
$$

Note that $1 \in \Omega_{k}$ for all k and each Ω_{k} is convex and symmetric in the real axis. Ω_{0} is nothing but the right half-plane and when $0<k<1, \Omega_{k}$ is an unbounded domain contained in the right branch of a hyperbola. When $k=1$, the domain Ω_{1} is still unbounded domain enclosed by the parabola $v^{2}=2 u-1$. When $k>1$, the domain Ω_{k} becomes bounded domain being the interior of a ellipse. Note also that for no choice of parameter k, Ω_{k} reduces to a disk.

Under the above notations we may rewrite the Definition 3, as follows

$$
\begin{equation*}
f \in k-\mathscr{U} \mathscr{C} V \Leftrightarrow f \in \mathscr{A} \text { and } 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \in \Omega_{k}(z \in \Delta) . \tag{1.10}
\end{equation*}
$$

Let \mathscr{P} denote the class of Caratheodory functions, e.g.

$$
\begin{equation*}
\mathscr{P}=\{p: p \text { analytic in } \Delta, p(0)=1, \Re\{p(z)\}>0\} \tag{1.11}
\end{equation*}
$$

and let p_{k} denote a conformal mapping of Δ onto Ω_{k} determined by conditions $p_{k}(0)=1$, $\Re\left\{p_{k}^{\prime}(0)\right\}>0$. Then we have

$$
\begin{equation*}
p_{1}(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, z \in \Delta, \tag{1.12}
\end{equation*}
$$

and if $0 \leq k<1$, then

$$
\begin{equation*}
p_{k}(z)=\frac{1}{1-k^{2}} \cosh \left\{\left(\frac{2}{\pi} \arccos k\right) \log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right\}-\frac{k^{2}}{1-k^{2}}, \quad z \in \Delta, \tag{1.13}
\end{equation*}
$$

moreover, if $k>1$, then

$$
\begin{equation*}
p_{k}(z)=\frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2 K(\kappa)} \int_{0}^{\frac{u(z)}{\sqrt{k}}} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}} \sqrt{1-\kappa^{2} t^{2}}}\right)+\frac{k^{2}}{k^{2}-1}, \quad z \in \Delta, \tag{1.14}
\end{equation*}
$$

where

$$
u(z)=\frac{z-\sqrt{\kappa}}{1-\sqrt{\kappa} z}, z \in \Delta
$$

and $\kappa \in(0,1)$ is chosen such that $k=\cosh \left(\pi K^{\prime}(\kappa) /(4 K(\kappa))\right)$. Here $K(\kappa)$ is Legendre's complete elliptic integral of first kind and $K^{\prime}(\kappa)=K\left(\sqrt{1-\kappa^{2}}\right)$. For more details about p_{k} see [4-8].

If $f, g \in \mathscr{H}$, then the function f is said to be subordinate to g, written as $f(z)<g(z)(z \in$ Δ), if there exists a Schwarz function $w \in \mathscr{H}$ with $w(0)=0$ and $|w(z)|<1, z \in \Delta$ such that $f(z)=g(w(z))$. In particular, if g is univalent in Δ, then we have the following equivalence:

$$
\begin{equation*}
f(z)<g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\Delta) \subset g(\Delta) . \tag{1.15}
\end{equation*}
$$

In terms of subordination we can write

$$
\begin{equation*}
f \in \mathscr{M}(n, k) \Leftrightarrow\left[f \in \mathscr{A} \text { and } \frac{z\left[I_{n} f(z)\right]^{\prime}}{I_{n} f(z)}<p_{k}(z) \quad(z \in \Delta)\right] . \tag{1.16}
\end{equation*}
$$

2. Preliminary lemmas

We need the following results in our investigation:
Lemma A.[7] Let $k \in[0, \infty)$, be fixed and p_{k} be the Riemann map of Δ on to Ω_{k}, satisfying $p_{k}(0)=1, \Re\left\{p_{k}^{\prime}(0)\right\}>0$. If $p_{k}(z)=1+Q_{1}(k) z+Q_{2}(k) z^{2}+\ldots,(z \in \Delta)$, then

$$
Q_{1}(k)= \begin{cases}2 & \text { for } k=0, \tag{2.1}\\ \frac{2 A^{2}}{1-k^{2}} & \text { for } k \in(0,1), \\ \frac{8}{\pi^{2}} & \text { for } k=1, \\ \frac{\pi^{2}}{4\left(k^{2}-1\right) K^{2}(k)(1+k) \sqrt{k}} & \text { for } k>1,\end{cases}
$$

where $A=(2 / \pi) \arccos k$ while κ and $K(\kappa)$ are the same as in (1.14).
Lemma B.[17] Let

$$
\begin{equation*}
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}<1+\sum_{n=1}^{\infty} C_{n} z^{n}=H(z)(z \in \Delta) . \tag{2.2}
\end{equation*}
$$

If the function H is univalent in Δ and $H(\Delta)$ is a convex set, then

$$
\begin{equation*}
\left|c_{n}\right| \leq\left|C_{1}\right| . \tag{2.3}
\end{equation*}
$$

Lemma C.[21] If $f \in \mathscr{C V}, g \in \mathscr{S}^{*}$, then for each analytic function h in Δ,

$$
\begin{equation*}
\frac{(f * h g)(\Delta)}{(f * g)(\Delta)} \subset \overline{c o} h(\Delta) \tag{2.4}
\end{equation*}
$$

where $\overline{c o} h(\Delta)$ denotes the closed convex hull of $h(\Delta)$.
Lemma D. Let $0<\alpha \leq \beta$. If $\beta \geq 2$ or if $\alpha+\beta \geq 3$, then the function

$$
\begin{equation*}
h(z)=\sum_{m=0}^{\infty} \frac{(\alpha)_{m}}{(\beta)_{m}} z^{m+1}(z \in \Delta) \tag{2.5}
\end{equation*}
$$

belongs to the class $\mathscr{C V}$ of convex functions.
Lemma D is a special case of Theorem 2.12 or Theorem 2.13 contained in [19].

3. Main results

Theorem 1. Let f be in the class $\mathscr{M}(n, k)$. If f is of the form (1.1), then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{Q_{1}(k)(n+1)}{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{m}\right| \leq \frac{(n+1)_{m-1} Q_{1}(k)}{(m-1)(2)_{m-1}} \prod_{s=3}^{m}\left(1+\frac{Q_{1}(k)}{s-2}\right)(m \geqq 3), \tag{3.2}
\end{equation*}
$$

where $Q_{1}(k)$ is described in (2.1).
Proof. Let f given by (1.1), belong to $\mathscr{M}(n, k)$, also let $I_{n} f(z)=z+\sum_{m=2}^{\infty} b_{m} z^{m}=F(z)$, where

$$
\begin{equation*}
b_{m}=\frac{(2)_{m-1}}{(n+1)_{m-1}} a_{m} \tag{3.3}
\end{equation*}
$$

and define

$$
\phi(z)=\frac{z F^{\prime}(z)}{F(z)}=1+\sum_{m=1}^{\infty} c_{m} z^{m} .
$$

Then $\phi<p_{k}$, where p_{k} is the function given by (1.12), (1.13) and (1.14) depending on k. The function p_{k} is univalent in Δ and $p_{k}(\Delta)=\Omega_{k}$ which is convex region (see (1.9)). Using Rogosinski's Lemma B and (2.1) of Lemma A, we have $\left|c_{m}\right| \leq Q_{1}$. Now, writing $z F^{\prime}(z)=\phi(z) F(z)$ and comparing the coefficients of z^{n} on both sides, we get

$$
(m-1) b_{m}=\sum_{k=1}^{m-1} c_{m-k} b_{k} .
$$

From this we get $\left|b_{2}\right|=\left|c_{1}\right| \leq Q_{1}$, which in view of (3.3) gives (3.1). If we choose f to be that function for which $\frac{z F^{\prime}(z)}{F(z)}=p_{k}(z)$, then f is a function in $\mathscr{M}(n, k)$ with $a_{2}=Q_{1}(n+1) / 2$, which shows that this result is sharp. Further

$$
\left|b_{3}\right| \leq \frac{1}{2}\left|c_{2}+c_{1} b_{2}\right| \leq \frac{1}{2}\left(\left|c_{2}\right|+\left|c_{1}\right|\left|b_{2}\right|\right) \leq \frac{1}{2} Q_{1}\left(1+Q_{1}\right) .
$$

We now proceed by induction. Assume that

$$
\left|b_{k}\right| \leq \frac{Q_{1}}{k-1}\left(1+Q_{1}\right)\left(1+Q_{1} / 2\right) \ldots\left(1+Q_{1} /(m-2)\right), \text { for } k=3,4, \ldots, m-1
$$

Then

$$
\begin{aligned}
(m-1)\left|b_{m}\right| & \leq \sum_{k=1}^{m-1}\left|c_{m-k}\right|\left|b_{k}\right| \leq Q_{1} \sum_{k=1}^{m-1}\left|b_{k}\right| \\
& \leq Q_{1}\left(1+Q_{1}+\frac{Q_{1}}{2}\left(1+Q_{1}\right)+\frac{Q_{1}}{3}\left(1+Q_{1}\right)\left(1+\frac{Q_{1}}{2}\right)+\ldots\right. \\
& \left.+\frac{Q_{1}}{m-2}\left(1+Q_{1}\right)\left(1+Q_{1} / 2\right) \ldots\left(1+\frac{Q_{1}}{m-3}\right)\right) \\
& =Q_{1}\left(1+Q_{1}\right)\left(1+Q_{1} / 2\right) \ldots\left(1+\frac{Q_{1}}{m-2}\right)
\end{aligned}
$$

and hence

$$
\left|b_{m}\right| \leq \frac{Q_{1}}{(m-1)} \prod_{s=3}^{m}\left(1+\frac{Q_{1}}{s-2}\right) \quad(m \geqq 3) .
$$

Putting the value of b_{m} from (3.3) we get the desired result.
Theorem 2. The function $k(z)=z /(1-A z)^{2}$ is in $\mathscr{M}(1, k)=k-\mathscr{S} \mathscr{T}$ if and only if

$$
\begin{equation*}
|A| \leq \frac{1}{2 k+1} \tag{3.4}
\end{equation*}
$$

Proof. Using Definition $4, k(z) \in k-\mathscr{S} \mathscr{T}$ if and only if

$$
k\left|\frac{2 A z}{1-A z}\right|<\Re\left(\frac{1+A z}{1-A z}\right)(z \in \Delta) .
$$

It is suffices to study above for $|z|=1$. Setting $|A|=r$ and $A z=r e^{i \phi}$ in above, we have

$$
\begin{equation*}
k\left|\frac{2 r e^{i \phi}}{1-r e^{i \phi}}\right| \leq \Re\left(\frac{1+r e^{i \phi}}{1-r e^{i \phi}}\right) . \tag{3.5}
\end{equation*}
$$

On simplification, we see that

$$
\Re\left(\frac{1+r e^{i \phi}}{1-r e^{i \phi}}\right)=\frac{1-r^{2}}{\left|1-r e^{i \phi}\right|^{2}} .
$$

So (3.5) is equivalent to

$$
\begin{equation*}
2 k r \leq \frac{1-r^{2}}{\left[1-2 r \cos \phi+r^{2}\right]^{1 / 2}} \tag{3.6}
\end{equation*}
$$

The right-hand side of (3.6) is seen to have a minimum for $\phi=\pi$, and this minimal value is $1-r$. Hence, a necessary and sufficient condition for (3.6) is $2 r k \leq 1-r$ or $|A|=r \leq$ $1 / 2 k+1$.

Remark 1. If $A=1$, then $k(z)$ is a Koebe function and (3.4) forces $k=0$, i.e. Koebe function belongs to class $k-\mathscr{S} \mathscr{T}$ if and only if $k=0$.

Theorem 3. The function $f(z)=z+a_{m} z^{m}$ is in $\mathscr{M}(n, k)$ if and only if

$$
\left|a_{m}\right| \leq \frac{(n+1)_{m-1}}{(2)_{m-1}(m k+m-k)}(m \geqq 2)
$$

Proof. Let $I_{n} f(z)=z+b_{m} z^{m}=F(z)$, where b_{m} is given by (3.3). It is sufficient to study (1.8) for $|z|=1$. Setting $\left|b_{m}\right|=r$ and $b_{m} z^{m-1}=r e^{i \phi}$. Then (1.8) for this f will be

$$
k\left|\frac{(m-1) r e^{i \phi}}{1-r e^{i \phi}}\right| \leq \Re\left(\frac{1+m r e^{i \phi}}{1-r e^{i \phi}}\right) .
$$

Following the same steps as in Theorem 2, we get desired result.
Remark 2. For particular values of m, n, k, Theorem 3, provides functions belonging to the class $\mathscr{M}(n, k)$. For example, if $m=2, n=1, k=1$ then $\left|a_{2}\right| \leq 1 / 3$. So, if we take $f(z)=z+z^{2} / 3$, then $f \in \mathscr{P} \mathscr{S} \mathscr{T}$.

Remark 3. Putting $n=1$ and $k=1$ in Theorem 1, 2 and 3 we get the Theorem 5,3 and 2 of Rønning [18] respectively.

Theorem 4. Assume that $n_{1} \leq n_{2}, n_{1}, n_{2} \in \mathbb{N} \cup\{0\}$. Then

$$
\begin{equation*}
\mathscr{M}\left(n_{1}, k\right) \subset \mathscr{M}\left(n_{2}, k\right) \tag{3.7}
\end{equation*}
$$

for all $k \in[0, \infty)$.

Proof. Let $f \in \mathscr{M}\left(n_{1}, k\right)$. By the definition of the class $\mathscr{M}\left(n_{1}, k\right)$ we have

$$
\begin{equation*}
\frac{z\left[I_{n_{1}} f(z)\right]^{\prime}}{I_{n_{1}} f(z)}=p_{k}\{\omega(z)\} \quad(z \in \Delta) \tag{3.8}
\end{equation*}
$$

where p_{k} is convex univalent with $p_{k}(\Delta)=\Omega_{k}$ and $|\omega(z)|<1$ in Δ with $\omega(0)=0=p_{k}(0)-1$. Let us denote

$$
\begin{equation*}
f_{n_{1}, n_{2}}(z)=\sum_{m=0}^{\infty} \frac{\left(n_{1}+1\right)_{m}}{\left(n_{2}+1\right)_{m}} z^{m+1} \quad(z \in \Delta) . \tag{3.9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
f_{n_{2}}^{\dagger}(z)=f_{n_{1}}^{\dagger}(z) * f_{n_{1}, n_{2}}(z) \tag{3.10}
\end{equation*}
$$

Applying (1.2), (3.8), (3.10) and the properties of convolution we get

$$
\frac{z\left[I_{n_{2}} f(z)\right]^{\prime}}{I_{n_{2}} f(z)}=\frac{z\left(f_{n_{2}}^{\dagger} * f\right)^{\prime}(z)}{\left(f_{n_{2}}^{\dagger} * f\right)(z)}=\frac{z\left(f_{n_{1}}^{\dagger} * f_{n_{1}, n_{2}} * f\right)^{\prime}(z)}{\left(f_{n_{1}}^{\dagger} * f_{n_{1}, n_{2}} * f\right)(z)}
$$

$$
\begin{align*}
& =\frac{f_{n_{1}, n_{2}}(z) * z\left[I_{n_{1}} f(z)\right]^{\prime}}{f_{n_{1}, n_{2}}(z) * I_{n_{1}} f(z)} \\
& =\frac{f_{n_{1}, n_{2}}(z) * p_{k}[\omega(z)] I_{n_{1}} f(z)}{f_{n_{1}, n_{2}}(z) * I_{n_{1}} f(z)} . \tag{3.11}
\end{align*}
$$

Moreover, it follows from (3.8) that $I_{n_{1}} f \in k-\mathscr{S} \mathscr{T} \subset \mathscr{S}^{*}$ and it follows from Lemma D that $f_{n_{1}, n_{2}} \in \mathscr{C V}$. Then using Lemma C to (3.11), we obtain

$$
\begin{equation*}
\frac{f_{n_{1}, n_{2}} * p_{k}(\omega) I_{n_{1}} f}{f_{n_{1}, n_{2}} * I_{n_{1}} f}(\Delta) \subset \overline{c o} p_{k}[\omega(\Delta)] \subset p_{k}(\Delta) \tag{3.12}
\end{equation*}
$$

because p_{k} is convex univalent. By (1.15) the function (3.11) is subordinated to p_{k}, and so $f \in \mathscr{M}\left(n_{2}, k\right)$.

Corollary 1. The following relations are satisfied

$$
k-\mathscr{S} \mathscr{T}=\mathscr{M}(1, k) \subset \mathscr{M}(n, k),
$$

for all $k \in[0, \infty)$ and for all $n \in \mathbb{N}$.
Theorem 5. Assume that $0 \leq k_{1} \leq k_{2}<\infty$. Then

$$
\begin{equation*}
\mathscr{M}\left(n, k_{2}\right) \subset \mathscr{M}\left(n, k_{1}\right) \tag{3.13}
\end{equation*}
$$

for all $n \in \mathbb{N} \cup\{0\}$.

Proof. Let $f \in \mathscr{M}\left(n, k_{2}\right)$. By the definition of the class $\mathscr{M}\left(n, k_{2}\right)$ we have

$$
\begin{equation*}
\frac{z\left[I_{n} f(z)\right]^{\prime}}{I_{n} f(z)}=p_{k_{2}}\{\omega(z)\} \subset p_{k_{1}}\{\omega(z)\} \quad(z \in \Delta) \tag{3.14}
\end{equation*}
$$

because $p_{k_{i}}, i=1,2$, are convex univalent with $p_{k_{2}}<p_{k_{1}}$. Therefore, $f \in \mathscr{M}\left(n, k_{1}\right)$.
Corollary 2. The following inclusion relations are satisfied

$$
\mathscr{M}(n, k) \subset \mathscr{M}(n, 0) \supset \mathscr{M}(1,0)=\mathscr{S}^{*}
$$

for all $k \in[0, \infty)$ and for all $n \in \mathbb{N} \cup\{0\}$.

Proof. The first relation is a simple consequence of Theorem 5 while the second one of Theorem 4.

Acknowledgement

The present investigation of second author is supported by Department of Science and Technology, New Delhi, Government of India. Sanction Letter No. SR/FTP/MS-015/2010.

References

[1] G. D. Anderson, M. K. Vamanamurth and M. K. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal Maps, Wiley-Interscience, 1997.
[2] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), 17-32.
[3] P. L. Duren, Univalent Functions, Springer-Verlag, Berlin, 1983.
[4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991) 87-92.
[5] S. Kanas, Stability of convolution and dual sets for the class of k-uniformly convex and k-starlike functions, Folia Sci. Univ. Tech. Resov., 170(1998), 51-64.
[6] S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, IJMMS, 38(2003), 2389-2400.
[7] S. Kanas, Coefficient estimates in subclasses of the Caratheodory class related to conical domains, Acta Math. Univ. Comenian, 74(2005), 149-161.
[8] S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct., 9(2000), 121-132.
[9] S. Kanas and T. Sugawa, On conformal representations of the interior of an ellipse, Ann. Acad. Sci. Fenn. Math., 31 (2006), 329-348.
[10] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., 170(1998), 65-78.
[11] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327-336.
[12] S. Kanas and A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., 45(2000), 647-657.
[13] A. Lecko and A. Wiśniowska, Geometric properties of subclasse of starlike functions, J. Comp. Appl. Math., 155(2003), 383-387.
[14] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 165-175.
[15] A. K. Mishra and P. Gochhayat, Fekete-Szegö problem for a class defined by an integral operator, Kodai Math. J., 33(2010) 310-328.
[16] K. I. Noor, On new class of integral operator, J. Natur. Geom., 16(1999), 71-80.
[17] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48(1943), 48-82.
[18] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1993), 189-196.
[19] St. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math. Sup. 83, Presses Univ. Montreal, 1982.
[20] St. Ruscheweyh, New criteria for univalent function, Proc. Amer. Math. Soc., 49(1975), 109-115.
[21] St. Ruscheweyh and T. Sheil-Small, Hadamard product of schlicht functions and the Poyla-Schoenberg conjecture, Comm. Math. Helv., 48(1973), 119-135.
[22] H. M. Srivastava, Generalized hypergeometric functions and associated families of k-starlike functions, Gen. Math., 15(2007), 201-226.
[23] K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japon., 42(1995), 517-522.

Department of Mathematics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

E-mail: jsokol@prz.edu.pl
Department of Mathematics, College of Engg. and Technology, Bikaner 334004, Rajasthan, India.
E-mail: deepakbansal_79@yahoo.com

