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COEFFICIENTS BOUNDS IN SOME SUBCLASS
OF ANALYTIC FUNCTIONS

JANUSZ SOKOE. AND DEEPAK BANSAL

Abstract. In this paper we consider a class of analytic functions introduced by Mishra
and Gochhayat, Fekete-Szeg6 problem for a class defined by an integral operator, Kodai
Math. J., 33(2010) 310-328, which is connected with k-starlike functions through Noor
operator. We find inclusion relations and coefficients bounds in this class.

1. Introduction

Let # denote the class of analytic functions in the unit disc A = {z € C: |z|] < 1}. Let
of < A/ denote the class of functions of the form

f@=z+) anz™, (1.1)

m=2

which are analytic in the open unit disk A.
In [16] Noor defined an operator [, : of — <« for n e Nu {0} as follows:

I.f(2) = fi(2) * f(2), (1.2)

where f; is defined by the relation

* fi(2) = 1.3)

z
(l_z)n+1 (1_2)2'

It is obvious that Iy f(z) = zf'(z) and I f(z) = f(z). The operator I, f defined by (1.2) is
called Noor operator and for n = 2 it represent an integral operator of f. For details see [16].
It is well known that for a >0

z
(1-2)¢

(&)
= Z (C:r)l:n ZWH‘1 (ZeA),
m=0 :
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where (x), is the Pochhammer symbol

T'(x+n) 1 forn=0,x#0,
(x)n: =
I'(x) x(x+1)--(x+n-1)forneN=1{1,2,3,...}.
By (1.3) we obtain
© +Dm i e @m

Then (1.4) implies that

X (©
T _ m m+1
fn(z)—n;()—(n+l)mz (ze ).

Therefore, if f is of the form (1.1), then

Inf(2)=z+ P 7(’1 Do anmz" =z+ mZ:‘E 7(’1 Do anz" (zeA). (1.5)

A function f(z) in & is said to be in class .#* of starlike functions if

/
R { zf'(2)
f(2)
Let €7 denote the class of all functions f € o that are convex univalent. It is known that
fe€Vifand onlyif zf' € &, for details see [3].
Suppose that I is a smooth directed curve z = z(?), t € [f1, f2], the direction being that

}>0 (ze ).

determines as ¢ increases. Let f(I') be the image of I under a function that is analytic on T.
The arc f(I') is said to be convex if the argument of the tangent to f(I') is a nondecreasing
function of . In 1991 Goodman [4] investigated a class of functions mapping circular arcs
contained in the unit disk, with center at an arbitrarily chosen point in A, onto a convex arcs.

Goodman denoted the class of such functions by €7 . Recall here his definition.

Definition 1.1 ([4]). A function f € «/ is said to be uniformly convex in A, if f is convex in A,
and has the property that for every circular arc y, contained in A, with center { € A, the arc

f(y) is convex.

In [18] Ronning and independently in [14] Ma and Minda gave a more applicable charac-
terization of the class % €7, stated below.

Definition 1.2 ([14, 18]). Let f € «. Then f € %€V if and only if

Zfl/(z)
%{1 + e } >

Zf//(z)
f'(2)

‘ (z€A). (1.6)



COEFFICIENTS BOUNDS 623

In [10] and in the next papers of these authors generalized the notions of starlikeness
and convexity. Let 0 < k < co. A function f € «f is said to be k-uniformly convex in A, if
the image of every circular arc y contained in A, with center {, is convex, where |{| < k. For
fixed k, the class of all k-uniformly convex functions will be denoted by k — % €7 . Clearly,
0-UCV =€V,and 1 -U€V =€V . As with the class %Z€7 it is possible to get a one-
variable characterization of the class k — %€V .

Definition 1.3 ([11]). Let f € «/. Then f € k—% €7 iff

Zfl/(z) Zf//(z)
m{H ) }>k e

(zeA).

The class k — .9 consisting of k-starlike functions, is defined from k — €7V via the
Alexander’s transform (see [1]) i.e.

fek-UCV — zf ek-FT.
Definition 1.4 ([11]). Let f € /. Then f € k—.%9 if and only if

dﬁ@} zf'(2)
R k -1
{fW) g f(@)

The class k — 9 for k = 1 becomes the class 229, introduced earlier by Renning
[18]. The class k —% €V started earlier in papers [2, 23] with some additional conditions

(z€ ). (1.7)

and without the geometric interpretation given in [11]. Recently Mishra and Gochhayat [15]
defined a new class of functions using Noor operator as follows:

Definition 1.5 ([15]). Afunction f € «f issaid to be in the class .# (n, k), (0 < k < oo; n € NU{0})
ifand onlyif I, f € k—.%9 . Or equivalently

%{d&fHM}>k
Inf)(2)

szﬂm_l
(Inf)(2)

‘ (z€A). (1.8)

Note that the class .# (n, k) unifies many subclasses of /. In particular, .#(0,0) = €7,
the class of convex functions; .4 (0,1) = %€V, the class of uniformly convex functions; .4/ (1,0) =
&, the class of starlike functions; .4 (1,1) = 29, the class of parabolic starlike functions;
MO, k)=k—-UCV and 4 (1,k) =k—-FT .

Let ¢(2) = z+ a,z™. It is easy to verify that ¢ € k — % €7 if and only if |a,,| < 1/[m(m +
k(m-1))], and ¢ € k— %9 if and only if |a,,| < 1/(m + k(m —1)). It is easy to check that for
ne{3,4,5,...} we have

1 m! - 1
m+km-1) (n+1),-1 - m(m+k(m-1))’
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hence, if p € k—. T, then
m! m

Iyp(z)=z+ amZz

(n+1Dma
isin k—%<€7V forne{3,4,5,...}. Moreover, I,,¢ ¢ k—% €7V for n € {1,2}. [twould be interesting
to check this property of the Noor operator for other functions in k —. 9.

Conjecture. If f € k-9 and n€ {3,4,5,...}, then

Lfek-UEV.

Our aim in this paper is to find coefficient bounds and coefficient inequalities for the
class 4 (n, k).

In the present investigation we also need the following definitions and notations, for the

presentation of our results.

For arbitrary chosen k € [0,00) let QO denote the domain
Qk:{u+iv:u2>kz(u—1)2+k2v2,u>0}. 1.9)

Note that 1 € Q. for all k and each Q is convex and symmetric in the real axis. Qg is nothing
but the right half-plane and when 0 < k < 1, Q is an unbounded domain contained in the
right branch of a hyperbola. When k = 1, the domain Q; is still unbounded domain enclosed
by the parabola v? = 2u—1. When k > 1, the domain Q; becomes bounded domain being the
interior of a ellipse. Note also that for no choice of parameter k, Q4 reduces to a disk.

Under the above notations we may rewrite the Definition 3, as follows

Zf//(z)
fek-U€V o fesd and 1+ e €Qr (ze ). (1.10)
z
Let 22 denote the class of Caratheodory functions, e.g.
P ={p: panalyticin A, p(0) = 1,R{p(2)} > 0}, (1.11)

and let py denote a conformal mapping of A onto Q determined by conditions pg(0) = 1,
R {p}.(0)} > 0. Then we have

1+vz
-z

2
) , ZEA, (1.12)

2
p1(z) = 1+? log

andif 0 < k< 1, then

ZEN, (1.13)

2 1 2
pi(z) = cosh { (; arccos k) log tVz } k

1
1- k2 1-vz) 1-k%
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moreover, if k£ > 1, then

(2) = 1 sin 7 /% de + K Z€EN (1.14)
PRI =12 2Kx) Jo  Vi-2vi—x2r2) k2-1 ' '
where
u(z) = Z_\/E, zZ€EN,
1-vxz

and x € (0,1) is chosen such that k = cosh(m K’ (x)/(4K (x))). Here K (x) is Legendre’s complete
elliptic integral of first kind and K’ (x) = K(V'1 —x?). For more details about py. see [4-8].

If f, g € A, then the function f is said to be subordinate to g, written as f(z) < g(z) (z €
A), if there exists a Schwarz function w € A4 with w(0) = 0 and |w(2)| < 1, z € A such that
f(2) = g(w(z)). In particular, if g is univalent in A, then we have the following equivalence:

f(z2)<g(z) < f(0)=g(0) and f(A)c g(A). (1.15)

In terms of subordination we can write

z[I,f (2

M (n, k o/ and
fed(nk)s |fead an L2

<prlz) (zeA)|. (1.16)

2. Preliminary lemmas
We need the following results in our investigation:

Lemma A.[7] Let k € [0,00), be fixed and py be the Riemann map of A on to Q, satisfying
pr©0) =1, R{p, 0)} >0. If p(2) =1+ Q1(k)z+ Q2(k)z* +..., (z € A), then

2 for k=0,
2A%
= for ke(0,1),
k=4 -k 2.1
Ql( ) % fOI’]C:l, ( )
i fork>1,

4(k*-1)K?(x) 1+Kx) VK

where A = (2/m) arccos k whilex and K (x) are the same as in (1.14).

Lemma B.[17] Let
h(z)=1+) cpz" <1+ ) Cuz"=H(2) (z€A). (2.2)

n=1 n=1

If the function H is univalent in A and H(A) is a convex set, then

lcpl < 1Cql. (2.3)
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Lemma C.[21] If f € €V, g€ ", then for each analytic function h in A,

(f *hg)(A)
(f = 8))

where coh(A) denotes the closed convex hull of h(A).

ccoh(h), (2.4)

LemmaD. LetO<a<p.Iff=2orifa+ B =3, then the function

h(z)=) Dm me1 (5 ¢ n) (2.5)
m=0 (ﬁ)m

belongs to the class €7 of convex functions.

Lemma D is a special case of Theorem 2.12 or Theorem 2.13 contained in [19].

3. Main results

Theorem 1. Let f bein the class 4 (n, k). If f is of the form (1.1), then
< Qi) (n+1)

|z 5 (3.1)
and 4 Doy QUK 2 (- Qu(k)
n m-1 {1 1 >
laml <= =55 s]:[g(u 5_2)(m:3), (3.2)

where Q1 (k) is described in (2.1).

[e 0]
Proof. Let f given by (1.1), belong to .# (n, k), also let I, f(z) = z+ Y. b;,2"™ = F(z), where
m=2

(2) m—1
= 3.3
m n+ 1)1 am (3.3)
and define
zF'(2) X

$(2) =

=1+ cmz™.
F(z) mzzl "

Then ¢ < pi, where py is the function given by (1.12), (1.13) and (1.14) depending on k. The
function py is univalent in A and py(A) = Qi which is convex region (see (1.9)). Using Ro-
gosinski’s Lemma B and (2.1) of Lemma A, we have |c,,| < Q1. Now, writing zF'(z) = ¢(z) F(z)
and comparing the coefficients of z”” on both sides, we get

m-—1
(m-1by, = Z Cm—k by
k=1

From this we get |b2| = |c1| < Q1, which in view of (3.3) gives (3.1). If we choose f to be that

function for which Zlfég) = p(z), then f is a function in . (n, k) with a, = Q;(n +1)/2, which

shows that this result is sharp. Further

1 1 1
|b3| < Elcz +c1byl = E(|Czl +lerllbal) = EQIH +Qy).
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We now proceed by induction. Assume that
Q1 _
|by| < ﬁ(1+Q1)(1+Q1/2)...(1+Q1/(m—2)), fork=3,4,...,m-1.

Then

m—1 m—1

(m=DIbml < Y lcm-rllbrl < Q1 ) 1bxl
k=1 k=1
Q Q1

< 1+Q1+%(1+Q1)+?(1+Q1)(1+7)+...

@ 1+0Q)0+0Q1/2)... |1+ @& ))
m-—3

m-—2
1+ Q )

+

=Q1(1+Q1)1+Q1/2)...
m-—2

and hence

byl < — ﬁ(1+Q—12) (m=>3).

(m=-1) ;3 s—

Putting the value of b, from (3.3) we get the desired result. Oa

Theorem 2. The function k(z) = z/(1— Az isin (1, k)=k-FT ifand only if

Al = . 3.4
4l 2k+1 G4
Proof. Using Definition 4, k(z) € k—.9 if and only if
2Az 1+ Az
k <R ) (ze ).
1-Az 1-Az
It is suffices to study above for |z| = 1. Setting |A| = r and Az = re'? in above, we have
2re'® 1+re'®
‘l—rel‘f’ (1—re’¢) (3:5)
On simplification, we see that
(1+rei4’)_ R
1-rei®) |1-rei®)?’
So (3.5) is equivalent to
1-r2
2kr < (3.6

[1-2r cos¢p+r2]t/2’
The right-hand side of (3.6) is seen to have a minimum for ¢ =, and this minimal

value is 1—r. Hence, anecessary and sufficient condition for (3.6) is2rk<1-ror|Al=r <
1/2k +1. O
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Remark 1. If A =1, then k(z) is a Koebe function and (3.4) forces k = 0, i.e. Koebe function
belongs to class k — .9 if and only if k = 0.

Theorem 3. The function f(z) = z+ anz™ isin 4 (n, k) if and only if

laml < 2 mk+m—0) (m=2).

Proof. Let I, f(z) = z+ b;,z" = F(z), where b,, is given by (3.3). It is sufficient to study (1.8)
for |z| = 1. Setting | b,,| = r and b,,,z™ ! = re’®. Then (1.8) for this f will be

'(m—l)rei‘l’ _ (1+mrei¢)
1-rel® 1-rei¢ )’
Following the same steps as in Theorem 2, we get desired result. g

Remark 2. For particular values of m, n, k, Theorem 3, provides functions belonging to the
class .4 (n, k). For example, if m =2, n=1, k=1 then |ay| < 1/3. So, if we take f(z) = z+ Z%/3,
then fe ST .

Remark 3. Putting n =1 and k =1 in Theorem 1, 2 and 3 we get the Theorem 5, 3 and 2 of
Ronning [18] respectively.

Theorem 4. Assume that ny < ny, ny, np € NU{0}. Then
J%(n]) k) CJ%(nZ) k) (3~7)

forall k€ [0,00).

Proof. Let f € .4 (ny, k). By the definition of the class .# (n1, k) we have

z[In, f (D)

T f (@) = priw(2)} (z€l), (3.8)

where py is convex univalent with p;(A) = Q and |w(z)| < 1 in A with w(0) =0 = p(0) — 1. Let

us denote
S (M +Dm e

frn(2) = mZ:O TR (z€A). (3.9)
Then we have
I (@) = [} @) * fuy 0, (2). (3.10)

Applying (1.2), (3.8), (3.10) and the properties of convolution we get

/
2t @] _ 2« @ _ZFh * foun f) @

Infd  (fl«P@ S fam * )@
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 fum@ 21y f(2)]

T fum (@ I f(2)
S (@) x prlow(@)] 1y, f(2)
 fan@* 1 f(2)

Moreover, it follows from (3.8) that I, f € k— 9 < .%* and it follows from Lemma D that
fni,n, € €7. Then using Lemma C to (3.11), we obtain

fnlrn2 * pk(w)lmf

(3.11)

(A) ccopilow(A)] € pr(d), (3.12)

Jriny * Iny f P P
because pj is convex univalent. By (1.15) the function (3.11) is subordinated to py, and so
f € ./%(nz, k) O

Corollary 1. The following relations are satisfied
k—ST =u(1,k)cHn k),
forall k € [0,00) and for all n e N.
Theorem 5. Assume that0 < k; < ky <oo. Then
M (n, ko) < M (n, k) (3.13)

foralln e Nu{0}.

Proof. Let f € ./ (n, k). By the definition of the class .# (n, k») we have

z[I,f ()
Inf(Z)

because py,, i = 1,2, are convex univalent with py, < py,. Therefore, f € ./ (n, k;). O

= P, w(2)} € pi, {w(2)} (z€A), (3.14)

Corollary 2. The following inclusion relations are satisfied
M (n, k)< M (n,0) > 4(1,0) =%,

forall k € [0,00) and for all n e NuU {0}.

Proof. The first relation is a simple consequence of Theorem 5 while the second one of The-
orem 4. O
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