Available online at http://journals.math.tku.edu.tw/

COEFFICIENTS BOUNDS IN SOME SUBCLASS OF ANALYTIC FUNCTIONS

JANUSZ SOKÓŁ AND DEEPAK BANSAL

Abstract. In this paper we consider a class of analytic functions introduced by Mishra and Gochhayat, *Fekete-Szegö problem for a class defined by an integral operator*, Kodai Math. J., 33(2010) 310–328, which is connected with *k*-starlike functions through Noor operator. We find inclusion relations and coefficients bounds in this class.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. Let $\mathcal{A} \subset \mathcal{H}$ denote the class of functions of the form

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m,$$
 (1.1)

which are analytic in the open unit disk Δ .

In [16] Noor defined an operator $I_n : \mathcal{A} \to \mathcal{A}$ for $n \in \mathbb{N} \cup \{0\}$ as follows:

$$I_n f(z) = f_n^{\dagger}(z) * f(z),$$
(1.2)

where f_n^{\dagger} is defined by the relation

$$\frac{z}{(1-z)^{n+1}} * f_n^{\dagger}(z) = \frac{z}{(1-z)^2}.$$
(1.3)

It is obvious that $I_0 f(z) = zf'(z)$ and $I_1 f(z) = f(z)$. The operator $I_n f$ defined by (1.2) is called Noor operator and for $n \ge 2$ it represent an integral operator of f. For details see [16].

It is well known that for $\alpha > 0$

$$\frac{z}{(1-z)^{\alpha}} = \sum_{m=0}^{\infty} \frac{(\alpha)_m}{m!} z^{m+1} \quad (z \in \Delta),$$

Corresponding author: Janusz Sokół.

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic function, subordination, starlike function, convex function, *k*-starlike function, univalent function, uniformly convex function, noor-operator.

where $(x)_n$ is the Pochhammer symbol

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = \begin{cases} 1 & \text{for } n = 0, x \neq 0, \\ x(x+1)\cdots(x+n-1) & \text{for } n \in \mathbb{N} = \{1, 2, 3, \ldots\}. \end{cases}$$

By (1.3) we obtain

$$\sum_{m=0}^{\infty} \frac{(n+1)_m}{m!} z^{m+1} * f_n^{\dagger}(z) = \sum_{m=0}^{\infty} \frac{(2)_m}{m!} z^{m+1}.$$
(1.4)

Then (1.4) implies that

$$f_n^{\dagger}(z) = \sum_{m=0}^{\infty} \frac{(2)_m}{(n+1)_m} z^{m+1} \quad (z \in \Delta).$$

Therefore, if f is of the form (1.1), then

$$I_n f(z) = z + \sum_{m=2}^{\infty} \frac{(2)_{m-1}}{(n+1)_{m-1}} a_m z^m = z + \sum_{m=2}^{\infty} \frac{m!}{(n+1)_{m-1}} a_m z^m \quad (z \in \Delta).$$
(1.5)

A function f(z) in \mathcal{A} is said to be in class \mathcal{S}^* of starlike functions if

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \quad (z \in \Delta).$$

Let \mathscr{CV} denote the class of all functions $f \in \mathscr{A}$ that are convex univalent. It is known that $f \in \mathscr{CV}$ if and only if $zf' \in \mathscr{S}^*$, for details see [3].

Suppose that Γ is a smooth directed curve z = z(t), $t \in [t_1, t_2]$, the direction being that determines as t increases. Let $f(\Gamma)$ be the image of Γ under a function that is analytic on Γ . The arc $f(\Gamma)$ is said to be convex if the argument of the tangent to $f(\Gamma)$ is a nondecreasing function of t. In 1991 Goodman [4] investigated a class of functions mapping circular arcs contained in the unit disk, with center at an arbitrarily chosen point in Δ , onto a convex arcs. Goodman denoted the class of such functions by \mathcal{UCV} . Recall here his definition.

Definition 1.1 ([4]). A function $f \in \mathcal{A}$ is said to be uniformly convex in Δ , if f is convex in Δ , and has the property that for every circular arc γ , contained in Δ , with center $\zeta \in \Delta$, the arc $f(\gamma)$ is convex.

In [18] Rønning and independently in [14] Ma and Minda gave a more applicable characterization of the class \mathscr{UCV} , stated below.

Definition 1.2 ([14, 18]). Let $f \in \mathcal{A}$. Then $f \in \mathcal{UCV}$ if and only if

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \left|\frac{zf''(z)}{f'(z)}\right| \quad (z \in \Delta).$$

$$(1.6)$$

In [10] and in the next papers of these authors generalized the notions of starlikeness and convexity. Let $0 \le k < \infty$. A function $f \in \mathcal{A}$ is said to be *k*-uniformly convex in Δ , if the image of every circular arc γ contained in Δ , with center ζ , is convex, where $|\zeta| \le k$. For fixed *k*, the class of all *k*-uniformly convex functions will be denoted by $k - \mathcal{UCV}$. Clearly, $0 - \mathcal{UCV} = \mathcal{CV}$, and $1 - \mathcal{UCV} = \mathcal{UCV}$. As with the class \mathcal{UCV} it is possible to get a onevariable characterization of the class $k - \mathcal{UCV}$.

Definition 1.3 ([11]). Let $f \in \mathcal{A}$. Then $f \in k - \mathcal{UCV}$ iff

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > k \left|\frac{zf''(z)}{f'(z)}\right| \ (z \in \Delta).$$

The class $k - \mathcal{ST}$ consisting of *k*-starlike functions, is defined from $k - \mathcal{UCV}$ via the Alexander's transform (see [1]) i.e.

$$f \in k - \mathscr{UCV} \iff zf' \in k - \mathscr{ST}.$$

Definition 1.4 ([11]). Let $f \in \mathcal{A}$. Then $f \in k - \mathcal{ST}$ if and only if

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > k \left|\frac{zf'(z)}{f(z)} - 1\right| \quad (z \in \Delta).$$

$$(1.7)$$

The class $k - \mathscr{GT}$ for k = 1 becomes the class \mathscr{PGT} , introduced earlier by Rønning [18]. The class $k - \mathscr{UCV}$ started earlier in papers [2, 23] with some additional conditions and without the geometric interpretation given in [11]. Recently Mishra and Gochhayat [15] defined a new class of functions using Noor operator as follows:

Definition 1.5 ([15]). A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}(n, k)$, $(0 \le k < \infty; n \in \mathbb{N} \cup \{0\})$ if and only if $I_n f \in k - \mathcal{ST}$. Or equivalently

$$\Re\left\{\frac{z(I_nf)'(z)}{(I_nf)(z)}\right\} > k \left|\frac{z(I_nf)'(z)}{(I_nf)(z)} - 1\right| \quad (z \in \Delta).$$

$$(1.8)$$

Note that the class $\mathcal{M}(n, k)$ unifies many subclasses of \mathcal{A} . In particular, $\mathcal{M}(0, 0) = \mathcal{CV}$, the class of convex functions; $\mathcal{M}(0, 1) = \mathcal{UCV}$, the class of uniformly convex functions; $\mathcal{M}(1, 0) = \mathcal{S}^*$, the class of starlike functions; $\mathcal{M}(1, 1) = \mathcal{PST}$, the class of parabolic starlike functions; $\mathcal{M}(0, k) = k - \mathcal{UCV}$ and $\mathcal{M}(1, k) = k - \mathcal{ST}$.

Let $\varphi(z) = z + a_m z^m$. It is easy to verify that $\varphi \in k - \mathscr{UCV}$ if and only if $|a_m| \le 1/[m(m + k(m-1))]$, and $\varphi \in k - \mathscr{ST}$ if and only if $|a_m| \le 1/(m + k(m-1))$. It is easy to check that for $n \in \{3, 4, 5, \ldots\}$ we have

$$\frac{1}{m+k(m-1)}\frac{m!}{(n+1)_{m-1}} \le \frac{1}{m(m+k(m-1))},$$

hence, if $\varphi \in k - \mathscr{ST}$, then

$$I_n \varphi(z) = z + \frac{m!}{(n+1)_{m-1}} a_m z^m$$

is in $k - \mathcal{UCV}$ for $n \in \{3, 4, 5, ...\}$. Moreover, $I_n \varphi \notin k - \mathcal{UCV}$ for $n \in \{1, 2\}$. It would be interesting to check this property of the Noor operator for other functions in $k - \mathcal{ST}$.

Conjecture. If $f \in k - \mathscr{ST}$ and $n \in \{3, 4, 5, ...\}$, then

$$I_n f \in k - \mathcal{UCV}.$$

Our aim in this paper is to find coefficient bounds and coefficient inequalities for the class $\mathcal{M}(n,k)$.

In the present investigation we also need the following definitions and notations, for the presentation of our results.

For arbitrary chosen $k \in [0, \infty)$ let Ω_k denote the domain

$$\Omega_k = \{ u + iv : u^2 > k^2 (u - 1)^2 + k^2 v^2, u > 0 \}.$$
(1.9)

Note that $1 \in \Omega_k$ for all k and each Ω_k is convex and symmetric in the real axis. Ω_0 is nothing but the right half-plane and when 0 < k < 1, Ω_k is an unbounded domain contained in the right branch of a hyperbola. When k = 1, the domain Ω_1 is still unbounded domain enclosed by the parabola $v^2 = 2u - 1$. When k > 1, the domain Ω_k becomes bounded domain being the interior of a ellipse. Note also that for no choice of parameter k, Ω_k reduces to a disk.

Under the above notations we may rewrite the Definition 3, as follows

$$f \in k - \mathscr{UCV} \Leftrightarrow f \in \mathscr{A} \text{ and } 1 + \frac{zf''(z)}{f'(z)} \in \Omega_k \ (z \in \Delta).$$
 (1.10)

Let \mathcal{P} denote the class of Caratheodory functions, e.g.

$$\mathscr{P} = \{p : p \text{ analytic in } \Delta, p(0) = 1, \Re \{p(z)\} > 0\},$$

$$(1.11)$$

and let p_k denote a conformal mapping of Δ onto Ω_k determined by conditions $p_k(0) = 1$, $\Re \{p'_k(0)\} > 0$. Then we have

$$p_1(z) = 1 + \frac{2}{\pi^2} \left(\log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2, \ z \in \Delta,$$
(1.12)

and if $0 \le k < 1$, then

$$p_k(z) = \frac{1}{1 - k^2} \cosh\left\{ \left(\frac{2}{\pi} \arccos k\right) \log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right\} - \frac{k^2}{1 - k^2}, \ z \in \Delta,$$
(1.13)

624

moreover, if k > 1, then

$$p_k(z) = \frac{1}{k^2 - 1} \sin\left(\frac{\pi}{2K(\kappa)} \int_0^{\frac{u(z)}{\sqrt{\kappa}}} \frac{\mathrm{d}t}{\sqrt{1 - t^2}\sqrt{1 - \kappa^2 t^2}}\right) + \frac{k^2}{k^2 - 1}, \ z \in \Delta,$$
(1.14)

where

$$u(z) = \frac{z - \sqrt{\kappa}}{1 - \sqrt{\kappa}z}, \quad z \in \Delta,$$

and $\kappa \in (0, 1)$ is chosen such that $k = \cosh(\pi K'(\kappa)/(4K(\kappa)))$. Here $K(\kappa)$ is Legendre's complete elliptic integral of first kind and $K'(\kappa) = K(\sqrt{1-\kappa^2})$. For more details about p_k see [4-8].

If $f, g \in \mathcal{H}$, then the function f is said to be subordinate to g, written as f(z) < g(z) ($z \in \Delta$), if there exists a Schwarz function $w \in \mathcal{H}$ with w(0) = 0 and |w(z)| < 1, $z \in \Delta$ such that f(z) = g(w(z)). In particular, if g is univalent in Δ , then we have the following equivalence:

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\Delta) \subset g(\Delta).$$
 (1.15)

In terms of subordination we can write

$$f \in \mathcal{M}(n,k) \Leftrightarrow \left[f \in \mathcal{A} \text{ and } \frac{z[I_n f(z)]'}{I_n f(z)} \prec p_k(z) \ (z \in \Delta) \right].$$
 (1.16)

2. Preliminary lemmas

We need the following results in our investigation:

Lemma A.[7] Let $k \in [0,\infty)$, be fixed and p_k be the Riemann map of Δ on to Ω_k , satisfying $p_k(0) = 1, \Re \{ p'_k(0) \} > 0$. If $p_k(z) = 1 + Q_1(k)z + Q_2(k)z^2 + \dots, (z \in \Delta)$, then

$$Q_{1}(k) = \begin{cases} 2 & for \ k = 0, \\ \frac{2A^{2}}{1-k^{2}} & for \ k \in (0,1), \\ \frac{8}{\pi^{2}} & for \ k = 1, \\ \frac{\pi^{2}}{4(k^{2}-1)K^{2}(\kappa)(1+\kappa)\sqrt{\kappa}} & for \ k > 1, \end{cases}$$
(2.1)

where $A = (2/\pi) \arccos k$ while κ and $K(\kappa)$ are the same as in (1.14).

Lemma B.[17] Let

$$h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n < 1 + \sum_{n=1}^{\infty} C_n z^n = H(z) \ (z \in \Delta).$$
(2.2)

If the function H is univalent in Δ and $H(\Delta)$ is a convex set, then

$$|c_n| \le |C_1|. \tag{2.3}$$

Lemma C.[21] If $f \in \mathcal{CV}$, $g \in \mathcal{S}^*$, then for each analytic function h in Δ ,

$$\frac{(f * hg)(\Delta)}{(f * g)(\Delta)} \subset \overline{coh}(\Delta), \tag{2.4}$$

where $\overline{coh}(\Delta)$ denotes the closed convex hull of $h(\Delta)$.

Lemma D. Let $0 < \alpha \le \beta$. If $\beta \ge 2$ or if $\alpha + \beta \ge 3$, then the function

$$h(z) = \sum_{m=0}^{\infty} \frac{(\alpha)_m}{(\beta)_m} z^{m+1} \ (z \in \Delta)$$

$$(2.5)$$

belongs to the class *CV* of convex functions.

Lemma D is a special case of Theorem 2.12 or Theorem 2.13 contained in [19].

3. Main results

Theorem 1. Let f be in the class $\mathcal{M}(n, k)$. If f is of the form (1.1), then

$$|a_2| \le \frac{Q_1(k)(n+1)}{2} \tag{3.1}$$

and

$$|a_m| \le \frac{(n+1)_{m-1} Q_1(k)}{(m-1)(2)_{m-1}} \prod_{s=3}^m \left(1 + \frac{Q_1(k)}{s-2} \right) (m \ge 3), \tag{3.2}$$

where $Q_1(k)$ is described in (2.1).

Proof. Let *f* given by (1.1), belong to $\mathcal{M}(n, k)$, also let $I_n f(z) = z + \sum_{m=2}^{\infty} b_m z^m = F(z)$, where

$$b_m = \frac{(2)_{m-1}}{(n+1)_{m-1}} a_m \tag{3.3}$$

and define

$$\phi(z) = \frac{zF'(z)}{F(z)} = 1 + \sum_{m=1}^{\infty} c_m z^m.$$

Then $\phi < p_k$, where p_k is the function given by (1.12), (1.13) and (1.14) depending on k. The function p_k is univalent in Δ and $p_k(\Delta) = \Omega_k$ which is convex region (see (1.9)). Using Rogosinski's Lemma B and (2.1) of Lemma A, we have $|c_m| \le Q_1$. Now, writing $zF'(z) = \phi(z)F(z)$ and comparing the coefficients of z^n on both sides, we get

$$(m-1)b_m = \sum_{k=1}^{m-1} c_{m-k}b_k.$$

From this we get $|b_2| = |c_1| \le Q_1$, which in view of (3.3) gives (3.1). If we choose f to be that function for which $\frac{zF'(z)}{F(z)} = p_k(z)$, then f is a function in $\mathcal{M}(n, k)$ with $a_2 = Q_1(n+1)/2$, which shows that this result is sharp. Further

$$|b_3| \le \frac{1}{2}|c_2 + c_1b_2| \le \frac{1}{2}(|c_2| + |c_1||b_2|) \le \frac{1}{2}Q_1(1 + Q_1).$$

We now proceed by induction. Assume that

$$|b_k| \le \frac{Q_1}{k-1}(1+Q_1)(1+Q_1/2)\dots(1+Q_1/(m-2)), \text{ for } k=3, 4, \dots, m-1.$$

Then

$$\begin{split} (m-1)|b_m| &\leq \sum_{k=1}^{m-1} |c_{m-k}||b_k| \leq Q_1 \sum_{k=1}^{m-1} |b_k| \\ &\leq Q_1 \left(1 + Q_1 + \frac{Q_1}{2} (1 + Q_1) + \frac{Q_1}{3} (1 + Q_1) (1 + \frac{Q_1}{2}) + \dots \right. \\ &+ \frac{Q_1}{m-2} (1 + Q_1) (1 + Q_1/2) \dots \left(1 + \frac{Q_1}{m-3} \right) \right) \\ &= Q_1 (1 + Q_1) (1 + Q_1/2) \dots \left(1 + \frac{Q_1}{m-2} \right), \end{split}$$

and hence

$$|b_m| \le \frac{Q_1}{(m-1)} \prod_{s=3}^m \left(1 + \frac{Q_1}{s-2}\right) \quad (m \ge 3).$$

Putting the value of b_m from (3.3) we get the desired result.

Theorem 2. The function $k(z) = z/(1 - Az)^2$ is in $\mathcal{M}(1, k) = k - \mathcal{ST}$ if and only if

$$|A| \le \frac{1}{2k+1}.\tag{3.4}$$

Proof. Using Definition 4, $k(z) \in k - \mathscr{ST}$ if and only if

$$k \left| \frac{2Az}{1 - Az} \right| < \Re \left(\frac{1 + Az}{1 - Az} \right) (z \in \Delta).$$

It is suffices to study above for |z| = 1. Setting |A| = r and $Az = re^{i\phi}$ in above, we have

$$k \left| \frac{2re^{i\phi}}{1 - re^{i\phi}} \right| \le \Re \left(\frac{1 + re^{i\phi}}{1 - re^{i\phi}} \right). \tag{3.5}$$

On simplification, we see that

$$\Re\left(\frac{1+re^{i\phi}}{1-re^{i\phi}}\right) = \frac{1-r^2}{|1-re^{i\phi}|^2}$$

So (3.5) is equivalent to

$$2kr \le \frac{1 - r^2}{[1 - 2r\,\cos\phi + r^2]^{1/2}}.\tag{3.6}$$

The right-hand side of (3.6) is seen to have a minimum for $\phi = \pi$, and this minimal value is 1-r. Hence, a necessary and sufficient condition for (3.6) is $2rk \le 1-r$ or $|A| = r \le 1/2k+1$.

Remark 1. If A = 1, then k(z) is a Koebe function and (3.4) forces k = 0, i.e. Koebe function belongs to class $k - \mathscr{PT}$ if and only if k = 0.

Theorem 3. The function $f(z) = z + a_m z^m$ is in $\mathcal{M}(n, k)$ if and only if

$$|a_m| \le \frac{(n+1)_{m-1}}{(2)_{m-1} (mk+m-k)} \ (m \ge 2).$$

Proof. Let $I_n f(z) = z + b_m z^m = F(z)$, where b_m is given by (3.3). It is sufficient to study (1.8) for |z| = 1. Setting $|b_m| = r$ and $b_m z^{m-1} = re^{i\phi}$. Then (1.8) for this f will be

$$k\left|\frac{(m-1)re^{i\phi}}{1-re^{i\phi}}\right| \leq \Re\left(\frac{1+mre^{i\phi}}{1-re^{i\phi}}\right).$$

Following the same steps as in Theorem 2, we get desired result.

Remark 2. For particular values of *m*, *n*, *k*, Theorem 3, provides functions belonging to the class $\mathcal{M}(n, k)$. For example, if m = 2, n = 1, k = 1 then $|a_2| \le 1/3$. So, if we take $f(z) = z + z^2/3$, then $f \in \mathcal{PST}$.

Remark 3. Putting n = 1 and k = 1 in Theorem 1, 2 and 3 we get the Theorem 5, 3 and 2 of Rønning [18] respectively.

Theorem 4. Assume that $n_1 \le n_2$, $n_1, n_2 \in \mathbb{N} \cup \{0\}$. Then

$$\mathcal{M}(n_1, k) \subset \mathcal{M}(n_2, k) \tag{3.7}$$

for all $k \in [0, \infty)$.

Proof. Let $f \in \mathcal{M}(n_1, k)$. By the definition of the class $\mathcal{M}(n_1, k)$ we have

$$\frac{z[I_{n_1}f(z)]'}{I_{n_1}f(z)} = p_k\{\omega(z)\} \quad (z \in \Delta),$$
(3.8)

where p_k is convex univalent with $p_k(\Delta) = \Omega_k$ and $|\omega(z)| < 1$ in Δ with $\omega(0) = 0 = p_k(0) - 1$. Let us denote

$$f_{n_1,n_2}(z) = \sum_{m=0}^{\infty} \frac{(n_1+1)_m}{(n_2+1)_m} z^{m+1} \quad (z \in \Delta).$$
(3.9)

Then we have

$$f_{n_2}^{\dagger}(z) = f_{n_1}^{\dagger}(z) * f_{n_1, n_2}(z).$$
(3.10)

Applying (1.2), (3.8), (3.10) and the properties of convolution we get

$$\frac{z\left[I_{n_2}f(z)\right]'}{I_{n_2}f(z)} = \frac{z(f_{n_2}^{\dagger} * f)'(z)}{(f_{n_2}^{\dagger} * f)(z)} = \frac{z\left(f_{n_1}^{\dagger} * f_{n_1,n_2} * f\right)'(z)}{(f_{n_1}^{\dagger} * f_{n_1,n_2} * f)(z)}$$

 \Box

$$= \frac{f_{n_1,n_2}(z) * z [I_{n_1}f(z)]'}{f_{n_1,n_2}(z) * I_{n_1}f(z)}$$

= $\frac{f_{n_1,n_2}(z) * p_k[\omega(z)]I_{n_1}f(z)}{f_{n_1,n_2}(z) * I_{n_1}f(z)}.$ (3.11)

Moreover, it follows from (3.8) that $I_{n_1}f \in k - \mathscr{ST} \subset \mathscr{S}^*$ and it follows from Lemma D that $f_{n_1,n_2} \in \mathscr{CV}$. Then using Lemma C to (3.11), we obtain

$$\frac{f_{n_1,n_2} * p_k(\omega) I_{n_1} f}{f_{n_1,n_2} * I_{n_1} f}(\Delta) \subset \overline{co} p_k[\omega(\Delta)] \subset p_k(\Delta),$$
(3.12)

because p_k is convex univalent. By (1.15) the function (3.11) is subordinated to p_k , and so $f \in \mathcal{M}(n_2, k)$.

Corollary 1. The following relations are satisfied

$$k - \mathscr{ST} = \mathscr{M}(1, k) \subset \mathscr{M}(n, k),$$

for all $k \in [0, \infty)$ *and for all* $n \in \mathbb{N}$ *.*

Theorem 5. Assume that $0 \le k_1 \le k_2 < \infty$. Then

$$\mathcal{M}(n,k_2) \subset \mathcal{M}(n,k_1) \tag{3.13}$$

for all $n \in \mathbb{N} \cup \{0\}$.

Proof. Let $f \in \mathcal{M}(n, k_2)$. By the definition of the class $\mathcal{M}(n, k_2)$ we have

$$\frac{z[I_n f(z)]'}{I_n f(z)} = p_{k_2} \{ \omega(z) \} \subset p_{k_1} \{ \omega(z) \} \quad (z \in \Delta),$$
(3.14)

because p_{k_i} , i = 1, 2, are convex univalent with $p_{k_2} \prec p_{k_1}$. Therefore, $f \in \mathcal{M}(n, k_1)$.

Corollary 2. The following inclusion relations are satisfied

$$\mathcal{M}(n,k) \subset \mathcal{M}(n,0) \supset \mathcal{M}(1,0) = \mathscr{S}^*,$$

for all $k \in [0, \infty)$ and for all $n \in \mathbb{N} \cup \{0\}$.

Proof. The first relation is a simple consequence of Theorem 5 while the second one of Theorem 4. □

Acknowledgement

The present investigation of second author is supported by Department of Science and Technology, New Delhi, Government of India. Sanction Letter No. SR/FTP/MS-015/2010.

629

References

- G. D. Anderson, M. K. Vamanamurth and M. K. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal Maps, Wiley-Interscience, 1997.
- [2] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), 17–32.
- [3] P. L. Duren, Univalent Functions, Springer-Verlag, Berlin, 1983.
- [4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991) 87–92.
- [5] S. Kanas, Stability of convolution and dual sets for the class of k-uniformly convex and k-starlike functions, Folia Sci. Univ. Tech. Resov., 170(1998), 51–64.
- [6] S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, IJMMS, 38(2003), 2389–2400.
- [7] S. Kanas, Coefficient estimates in subclasses of the Caratheodory class related to conical domains, Acta Math. Univ. Comenian, 74(2005), 149–161.
- [8] S. Kanas and H. M. Srivastava, *Linear operators associated with k-uniformly convex functions*, Integral Transform. Spec. Funct., 9(2000), 121–132.
- [9] S. Kanas and T. Sugawa, On conformal representations of the interior of an ellipse, Ann. Acad. Sci. Fenn. Math., **31**(2006), 329–348.
- [10] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., 170(1998), 65–78.
- [11] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327–336.
- [12] S. Kanas and A. Wiśniowska, *Conic regions and k-starlike functions*, Rev. Roumaine Math. Pures Appl., **45**(2000), 647–657.
- [13] A. Lecko and A. Wiśniowska, Geometric properties of subclasse of starlike functions, J. Comp. Appl. Math., 155(2003), 383–387.
- [14] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 165–175.
- [15] A. K. Mishra and P. Gochhayat, Fekete-Szegö problem for a class defined by an integral operator, Kodai Math. J., 33(2010) 310–328.
- [16] K. I. Noor, On new class of integral operator, J. Natur. Geom., 16(1999), 71-80.
- [17] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48(1943), 48–82.
- [18] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1993), 189–196.
- [19] St. Ruscheweyh, *Convolutions in Geometric Function Theory*, Sem. Math. Sup. 83, Presses Univ. Montreal, 1982.
- [20] St. Ruscheweyh, New criteria for univalent function, Proc. Amer. Math. Soc., 49(1975), 109–115.
- [21] St. Ruscheweyh and T. Sheil-Small, *Hadamard product of schlicht functions and the Poyla-Schoenberg conjecture*, Comm. Math. Helv., **48**(1973), 119–135.
- [22] H. M. Srivastava, *Generalized hypergeometric functions and associated families of k-starlike functions*, Gen. Math., **15**(2007), 201–226.
- [23] K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, *Subclasses of uni*formly convex and uniformly starlike functions, Math. Japon., **42**(1995), 517–522.

Department of Mathematics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

E-mail: jsokol@prz.edu.pl

Department of Mathematics, College of Engg. and Technology, Bikaner 334004, Rajasthan, India.

E-mail: deepakbansal_79@yahoo.com