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A UNIQUENESS THEOREM FOR STURM-LIOUVILLE OPERATORS
WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS

YU PING WANG

Abstract. In this paper, we discuss the inverse problem for Sturm-Liouville operators
with boundary conditions having fractional linear function of spectral parameter on the
finite interval [0, 1]. Using Weyl m-function techniques, we establish a uniqueness the-

orem. i.e., If g(x) is prescribed on [0, % + 5] for some a € [0,1), then the potential g(x)
arA+by
coA+d>

uniquely determined by a subset S < o(L) and fractional linear function f;ﬁgi of the
boundary condition.

on the interval [0, 1] and fractional linear function of the boundary condition are

1. Introduction

Consider the following Sturm-Liouville operator L defined by

Ly=-y"+qx)y=Ay(x€[0,1]) (1.1)
with boundary conditions
y'(0,1) = hy(0,1) =0 (1.2)
or
(@A +b)y0,1) = (ciA+dy)y (0,4) =0 (1.2")
and
y' 1,0+ Hy(1,1) =0, (1.3)
or
(@A +Dbo)y(L,A) = (c2A + da)y'(1,4) =0, (1.3)

respectively, where h, H, ag, by, ¢k, di€ R, c1 c2 # 0 such that

(D6, = apdp - brcr >0 (k=1,2),
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q is real-valued function and g € L2[0,1].

For convenience, we denote the Sturm-Liouville problem (1.1)-(1.3), the Sturm-Liouville
problem (1.1), (1.2"), (1.3') and the Sturm-Liouville problem (1.1), (1.2), (1.3') by B(q, h, H),
B(q,61,62) and B(q, h,6>), respectively.

Binding, Browne and Seddighi [1] discussed the spectral theory for the Sturm-Liouville
problem B(q,61,02), obtained oscillation, comparison results and asymptotic estimates of
the Sturm-Liouville problem B(g,d1,92) and promoted Fulton’s results [2]. Using nodal points
as spectral data, Browne and Sleeman [3] considered the inverse nodal problem for Sturm-
Liouville problem B(q, h,0»). Guliyev [4] found a trace formula for the Sturm-Liouville prob-

lem B(q,01,02). Wang [5] considered the inverse problem for the Sturm-Liouville problem

a1/1+ bl
cA+d,

of the boundary conditions can be uniquely determined by a set of values of eigenfunc-

B(q,61,62) and showed that the potential g(x) and fractional linear functions and

a)A+b,
coA+d,

tions at some interior point and parts of two spectra. By Weyl function techniques, Freiling
and Yurko [6] discussed the inverse problems for Sturm-Liouville equations with boundary
conditions polynomially dependent on the spectral parameter and provided a constructive
solution of the inverse spectral problems. Sturm-Liouville problems with eigenparameter de-
pendent boundary conditions have many applications in physics, engineering, mathematics,
etc (see [1-8]).

Half inverse problem for Sturm-Liouville operators consists of reconstruction of this op-
erator by its spectrum and half of the potential. In 1978, Hochstadt and Lieberman [9] consid-
ered the half inverse problem for the Sturm-Liouville problem B(qg, h, H) and showed if g(x)
is prescribed on [7,7], then the potential g(x) on the interval [0, 7) for the Sturm-Liouville
operator on the finite interval [0, 7] can be determined by one spectrum. Castillo [10] gave
a counterexample which proved that the fixed boundary condition (1.3) is necessary. Suzuki
[11] discussed the Sturm-Liouville problem B(qg, h, H). By an example, Suzuki showed that if
g1(x) = g2(x) on the interval [0, % —¢]forsome 0 < e < % and o(Ly) = a(Lp), but g1 (x) # g2(x)
on the interval [0, 1], where o (L;) = {1;,} is the spectrum of L; of the corresponding Sturm-
Liouville problem for the potential g;(i = 1,2). One of this kind of half inverse problems
for differential operators on the finite interval was considered by a number of authors (see
[9-16]). Using the Weyl function techniques, Gesztesy and Simon [17] discussed the inverse
problem for the Sturm-Liouville problem B(g, k, H) from three spectra. Gesztesy and Simon
[18] discussed the inverse problem for the Sturm-Liouville problem B(g, k, H) from partial
information on the potential and partial spectrum and established the following remarkable
uniqueness theorem for the Sturm-Liouville problem B(qg, h, H), which is a generalization of
Hochstadt-Lieberman theorem [9].

Theorem 1.1 ([18], Theorem 1.3). Leto (L) = {1,}(n € No) be the spectrum of the Sturm-Liouville
problem B(q, h, H). If q(x) is prescribed on [0, % + %] for some a € [0, 1), then the potential q(x)
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a.e. on the whole interval [0, 1] and coefficient H of the boundary condition are uniquely deter-
mined by coefficient h of the boundary condition and a subset S < o (L) satisfying

HAeSIM< Nl =(1-a)tileoD)|A < t)}+%, (1.4)
for all sufficiently large t € R*, whereNy := {n|n=0,1,2,---}.

In this paper, we consider the inverse problem for the Sturm-Liouville problem B(q,81,62)
from partial information on the potential and partial spectrum. We establish a Gesztesy-

Simon theorem for the Sturm-Liouville problem B(g,81,9>). Using Freiling and Yurko’s result,

we show that if g(x) is prescribed on [0,% + %] for some « € [0, 1), then the potential g(x) a.e.
a2/l+b2
coA+d,

are uniquely determined by fractional linear function £ ﬁsl of the boundary condition and a
1 1

on the whole interval [0, 1] and fractional linear function of the boundary condition

subset S € o (L) satisfying (2.4) (see below). Although the techniques used here is based on the
Gesztesy-Simon method, the Sturm-Liouville problem B(g,d1,0>) in this paper is different
from the Sturm-Liouville problem B(g, k, H) in [18].

From [1] and [6], we have

Lemma 1.2 ([1], [6]). Let{A,}52, be spectrum of the Sturm-Liouville problem B(q,01,62), then

An(n € Ny) is real and simple and A, is root of (1.2') and satisfies
Ap<A <Ay <+ — +00

and
Vi, =n-2m+ -2 X (15)
nim n

wherew = 3 [¢ q(x)dx— & + & and {k ) € I°.
Suppose ¢(x,1),0(x, ) are the two fundamental solutions of the equation (1.1) and sat-

isfy
P(1,0)=1,¢'(1,1)=0,0(1,1) =0 and 6'(1,1) =1,

then the solution of the equation (1.1) satisfying y(1,1) = c2A + dp and y'(1,A) = a A + by is
Y, A) = (oA + do)p(x, 1) + (a2 A + b2)0(x, L).

By virtue of [26-28], for sufficiently large ||, this yields

Ji e|1m\/1|(1—x)
(x,) =cosvVAl—-x)+O(—————), (1.6)
¢ Vi

@' (x, 1) = VAsinVA(1 - x) + O(e!mYAa-0y 1.7)
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Sin\/X(l—x) e|1m\/x|(1—x)
+O(

0(x,A) = /i 1 ) (1.8)
and
el TmVAl(1-x)
0'(x,A) = —cos VA(1 — x) + O(————). (1.9)
VA
Hence, we obtain the following asymptotic formulae
y(x,A) = caAcos \/Z(l—x)+0(\/%e”m‘/xl(l_x)) (1.10)
and
¥ (x,A) = A2 sin VA(L - x) + O(Ae!mVAla-2y (1.11)

Define the Weyl m-function m(x, A) by

Y (x,A)
WA) = . 1.12
m(x, ) Y@ ( )

Let 0.0
MQ) = Yo (1.13)

(1A +d1)y'(0,1) = (a1 A+Db)y(0,1)
which is called the Weyl function of the Sturm-Liouville problem B(q,01,62).
In virtue of [6], we present the following lemma, which is important for us to show the

main theorem in this paper.

Lemma 1.3 ([6]). Let M(A) be the Weyl function of the Sturm-Liouville problem B(q,01,02).

Then M(A) uniquely determines fractional linear function % of the boundary condition as

well as g(x) (a.e.) on [0,1].

2. Main results and Proofs

Consider the following Sturm-Liouville operator L;(j = 1,2) satisfying

Liu=-u"+qj(x)u=Au(xe€[0,1]) 2.1)
with boundary conditions
(@i A+ b)u(0,1) — (i A+dy)u'(0,1) =0 (2.2)
and
(@j2A+bj2)u,A) - (cjpA+djp)u'(1,A) =0, (2.3)

respectively, where ay, by, ¢1,d1, aj2,bj2,¢j2,dj2€ R, c1¢12¢22 # 0 such that
51=dld1—b161<0, 5j2=dj2dj2—bj26j2>0,
q1, q» are real-valued functions and q1, g2 € I2[0,1].

We have the following uniqueness theorem for the boundary-value problem B(q,61,9 2).
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Theorem 2.4. Leto(L;) = {1j,}(j =1,2,n € No) be the spectrum of the boundary-value prob-
lem B(q,61,0 j2). For some a € [0,1) and sufficiently small e(e > 0), If

+ =]

N =
(CHES

q1(x) = g2(x), x € [0,
and S c o (L) o (Lp) satisfying
S 1
fleSI =iz -afilea DA<=} + >3 +&, (2.9
for all sufficiently large t e R", then
q1(x) = g2(x) a.e. on [0,1]

and
app A+ by _ ax A+ by

012ﬂ+d12 B 022ﬂ+d22.

Remark. When a = 0, we prove the half inverse problem for the Sturm-Liouville operator
with boundary conditions having fractional linear function of spectral parameter on the finite

interval [0, 1].

Proof. Let u;(x, £)(j = 1,2) be the solution of the equation (2.1) satisfying u;(1, f) = cj2A + d>
and u;.(l, t)=ajA+Dbjs.

Denote
1 a 1 «a 1 a 1 «a
F = ~ o L (= o —uy(= o - o
(A) u1(2+2 /1)142(2+2 A) u1(2+2 A)u2(2+2 A)
1l « 1 « 11 «a 4.1 «a
=uu5+gﬂm55+?ammH5+5Jrﬂw%5+5Jn (2.5)
and
wl) = (@A +b)u,1) = (1A +dy)u'(0,1). (2.6)
Then

F(An) =0,VA, € Sca(L) (o (L)

From (1.10) and (1.11), we obtain

IF()] = O(AZelTmYAI0-a)y @7
and
lw(A)| = O(A3 elImVAly 2.8)
Define the function G(1) by
A
G =[] a-—). 2.9

An€S An
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Then, w(A) is an entire function. For convenience, we denote
Ng(1) = ﬁ{An eSIA, =t} Ny(r) = ﬁ{An eocDIA, st
By virtue of (2.4), this yields

5a¢—-1
Ng(t) = (1—a)N,(t) + +e. (2.11)

Since w(A) is an entire function in A of order , there exists a positive constant ¢ such that
1
Ng (1) < Ny(t) < ct?, (2.12)

Without loss of generality, let us to assume A, > 1(n € Ny), then Ng(1) = N, (1) = 0. For a fixed

X (x € R) and | x| sufficiently large, we have

In|G(ix)| = llnG(ix)G(ix) Z In (1——)(1 —)
2 /l €S
2
= - Z ln(1+ ln(1+ —)dNg(t)
)L €S
x? - x?
= Eln(1+?)NG(t)|l —5 1 Ng(t)d[ln(1+?)].

For sufficiently large ¢, since

2
X 1
In(1+ ?) = O(?)»
then
2
. X
lim In(1+ —)ING(1) =0
n—oo r
and
52
lim In(1 + — )Ny (1) =0
n—oo r
Therefore

oo x2
In|G(@ix)| :f —— Ng(t)dt

3+1x2

+€)f t3+tx2

! +e)In(1 + x%). (2.13)

> (1- a)f —— zNw(t)dt+(

=(1-a)ln|wix)|+ 5(
By virtue of (2.13), this yields

£

1Gx)| = lw(x)| %1+ x2) T 5 (2.14)
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From (2.10) and (2.14), we have

(lx)

lw(ix )|—| |_O(W)(€>O)
for | x| sufficiently large.
By the Phragmén-Lindel6f theorem, we get
w(A) =0, VAeC.
i.e,
F(A) =0, VAeC.
Therefore,

ul( i )L)uz( + /1) ( + A)uz( + ,A)=0, YA eC.

In virtue of g; (x) = g»(x) on [0, 3 3+ %] together with (2.18), we obtain
u1(0, Vuy (0, A) — uy (0, )uz(0,A) =0, YVA€C.

From (2.19), we have
M;(A) = My(A), VAeC.

By virtue of Lemma 1.3 together with (2.20), we obtain

ajpA+ by _ ax A+ by
cioA+ dy Cood + da '

q1(x) = g2(x) a.e.on [0,1] and
This completes the proof of Theorem 2.1.
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