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A UNIQUENESS THEOREM FOR STURM-LIOUVILLE OPERATORS

WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS

YU PING WANG

Abstract. In this paper, we discuss the inverse problem for Sturm-Liouville operators

with boundary conditions having fractional linear function of spectral parameter on the

finite interval [0,1]. Using Weyl m-function techniques, we establish a uniqueness the-

orem. i.e., If q(x) is prescribed on [0, 1
2 + α

2 ] for some α ∈ [0,1), then the potential q(x)

on the interval [0,1] and fractional linear function
a2λ+b2

c2λ+d2
of the boundary condition are

uniquely determined by a subset S ⊆ σ(L) and fractional linear function
a1λ+b1

c1λ+d1
of the

boundary condition.

1. Introduction

Consider the following Sturm-Liouville operator L defined by

Ly =−y ′′+q(x)y =λy(x ∈ [0,1]) (1.1)

with boundary conditions

y ′(0,λ)−h y(0,λ) = 0 (1.2)

or

(a1λ+b1)y(0,λ)− (c1λ+d1)y ′(0,λ) = 0 (1.2′)

and

y ′(1,λ)+H y(1,λ) = 0, (1.3)

or

(a2λ+b2)y(1,λ)− (c2λ+d2)y ′(1,λ) = 0, (1.3′)

respectively, where h, H , ak,bk ,ck ,dk∈ R,c1c2 6= 0 such that

(−1)kδk = ak dk −bk ck > 0 (k = 1,2),
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q is real-valued function and q ∈ L2[0,1].

For convenience, we denote the Sturm-Liouville problem (1.1)-(1.3), the Sturm-Liouville

problem (1.1), (1.2′), (1.3′) and the Sturm-Liouville problem (1.1), (1.2), (1.3′) by B (q,h, H ),

B (q,δ1,δ2) and B (q,h,δ2), respectively.

Binding, Browne and Seddighi [1] discussed the spectral theory for the Sturm-Liouville

problem B (q,δ1,δ2), obtained oscillation, comparison results and asymptotic estimates of

the Sturm-Liouville problem B (q,δ1,δ2) and promoted Fulton’s results [2]. Using nodal points

as spectral data, Browne and Sleeman [3] considered the inverse nodal problem for Sturm-

Liouville problem B (q,h,δ2). Guliyev [4] found a trace formula for the Sturm-Liouville prob-

lem B (q,δ1,δ2). Wang [5] considered the inverse problem for the Sturm-Liouville problem

B (q,δ1,δ2) and showed that the potential q(x) and fractional linear functions a1λ+b1

c1λ+d1
and

a2λ+b2

c2λ+d2
of the boundary conditions can be uniquely determined by a set of values of eigenfunc-

tions at some interior point and parts of two spectra. By Weyl function techniques, Freiling

and Yurko [6] discussed the inverse problems for Sturm-Liouville equations with boundary

conditions polynomially dependent on the spectral parameter and provided a constructive

solution of the inverse spectral problems. Sturm-Liouville problems with eigenparameter de-

pendent boundary conditions have many applications in physics, engineering, mathematics,

etc (see [1-8]).

Half inverse problem for Sturm-Liouville operators consists of reconstruction of this op-

erator by its spectrum and half of the potential. In 1978, Hochstadt and Lieberman [9] consid-

ered the half inverse problem for the Sturm-Liouville problem B (q,h, H ) and showed if q(x)

is prescribed on [π2 ,π], then the potential q(x) on the interval [0, π2 ) for the Sturm-Liouville

operator on the finite interval [0,π] can be determined by one spectrum. Castillo [10] gave

a counterexample which proved that the fixed boundary condition (1.3) is necessary. Suzuki

[11] discussed the Sturm-Liouville problem B (q,h, H ). By an example, Suzuki showed that if

q1(x) = q2(x) on the interval [0, 1
2 −ε] for some 0 < ε< 1

2 and σ(L1) = σ(L2), but q1(x) 6= q2(x)

on the interval [0,1], where σ(Li ) = {λi n} is the spectrum of Li of the corresponding Sturm-

Liouville problem for the potential qi (i = 1,2). One of this kind of half inverse problems

for differential operators on the finite interval was considered by a number of authors (see

[9-16]). Using the Weyl function techniques, Gesztesy and Simon [17] discussed the inverse

problem for the Sturm-Liouville problem B (q,h, H ) from three spectra. Gesztesy and Simon

[18] discussed the inverse problem for the Sturm-Liouville problem B (q,h, H ) from partial

information on the potential and partial spectrum and established the following remarkable

uniqueness theorem for the Sturm-Liouville problem B (q,h, H ), which is a generalization of

Hochstadt-Lieberman theorem [9].

Theorem 1.1 ([18], Theorem 1.3). Letσ(L) = {λn}(n ∈ N0) be the spectrum of the Sturm-Liouville

problem B (q,h, H ). If q(x) is prescribed on [0, 1
2 +

α
2 ] for some α ∈ [0,1), then the potential q(x)
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a.e. on the whole interval [0,1] and coefficient H of the boundary condition are uniquely deter-

mined by coefficient h of the boundary condition and a subset S ⊆σ(L) satisfying

♯{λ ∈ S|λ≤ t )} ≥ (1−α)♯{λ ∈σ(L)|λ≤ t )}+
α

2
, (1.4)

for all sufficiently large t ∈ R+, where N0 := {n|n = 0,1,2, · · · }.

In this paper, we consider the inverse problem for the Sturm-Liouville problem B (q,δ1 ,δ2)

from partial information on the potential and partial spectrum. We establish a Gesztesy-

Simon theorem for the Sturm-Liouville problem B (q,δ1,δ2). Using Freiling and Yurko’s result,

we show that if q(x) is prescribed on [0, 1
2 +

α
2 ] for some α ∈ [0,1), then the potential q(x) a.e.

on the whole interval [0,1] and fractional linear function a2λ+b2

c2λ+d2
of the boundary condition

are uniquely determined by fractional linear function a1λ+b1

c1λ+d1
of the boundary condition and a

subset S ⊆σ(L) satisfying (2.4)(see below). Although the techniques used here is based on the

Gesztesy-Simon method, the Sturm-Liouville problem B (q,δ1,δ2) in this paper is different

from the Sturm-Liouville problem B (q,h, H ) in [18].

From [1] and [6], we have

Lemma 1.2 ([1], [6]). Let {λn}∞n=0 be spectrum of the Sturm-Liouville problem B (q,δ1,δ2), then

λn(n ∈ N0) is real and simple and λn is root of (1.2′) and satisfies

λ0 <λ1 <λ2 < ·· ·→+∞

and p
λn = (n −2)π+

ω

nπ
+
κn

n
, (1.5)

where ω= 1
2

∫π
0 q(x)d x − a1

c1
+ a2

c2
and {κn} ∈ l 2.

Suppose ϕ(x,λ),θ(x,λ) are the two fundamental solutions of the equation (1.1) and sat-

isfy

ϕ(1,λ) = 1,ϕ′(1,λ) = 0,θ(1,λ) = 0 and θ′(1,λ) = 1,

then the solution of the equation (1.1) satisfying y(1,λ) = c2λ+d2 and y ′(1,λ) = a2λ+b2 is

y(x,λ) = (c2λ+d2)ϕ(x,λ)+ (a2λ+b2)θ(x,λ).

By virtue of [26-28], for sufficiently large |λ|, this yields

ϕ(x,λ) = cos
p
λ(1−x)+O(

e |Im
p
λ|(1−x)

p
λ

), (1.6)

ϕ′(x,λ) =
p
λsin

p
λ(1−x)+O(e |Im

p
λ|(1−x)), (1.7)
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θ(x,λ) =
sin

p
λ(1−x)
p
λ

+O(
e |Im

p
λ|(1−x)

λ
) (1.8)

and

θ′(x,λ) = −cos
p
λ(1−x)+O(

e |Im
p
λ|(1−x)

p
λ

). (1.9)

Hence, we obtain the following asymptotic formulae

y(x,λ) = c2λcos
p
λ(1−x)+O(

p
λe |Im

p
λ|(1−x)) (1.10)

and

y ′(x,λ) = c2λ
3
2 sin

p
λ(1−x)+O(λe |Im

p
λ|(1−x)). (1.11)

Define the Weyl m-function m(x,λ) by

m(x,λ) =
y ′(x,λ)

y(x,λ)
. (1.12)

Let

M (λ) :=
y ′(0,λ)

(c1λ+d1)y ′(0,λ)− (a1λ+b1)y(0,λ)
, (1.13)

which is called the Weyl function of the Sturm-Liouville problem B (q,δ1,δ2).

In virtue of [6], we present the following lemma, which is important for us to show the

main theorem in this paper.

Lemma 1.3 ([6]). Let M (λ) be the Weyl function of the Sturm-Liouville problem B (q,δ1,δ2).

Then M (λ) uniquely determines fractional linear function a2λ+b2

c2λ+d2
of the boundary condition as

well as q(x) (a.e.) on [0,1].

2. Main results and Proofs

Consider the following Sturm-Liouville operator L j ( j = 1,2) satisfying

L j u =−u′′+q j (x)u =λu(x ∈ [0,1]) (2.1)

with boundary conditions

(a1λ+b1)u(0,λ)− (c1λ+d1)u′(0,λ) = 0 (2.2)

and

(a j 2λ+b j 2)u(1,λ)− (c j 2λ+d j 2)u′(1,λ) = 0, (2.3)

respectively, where a1,b1,c1,d1, a j 2,b j 2,c j 2,d j 2∈ R,c1c12c22 6= 0 such that

δ1 = a1d1 −b1c1 < 0, δ j 2 = a j 2d j 2 −b j 2c j 2 > 0,

q1, q2 are real-valued functions and q1, q2 ∈ L2[0,1].

We have the following uniqueness theorem for the boundary-value problem B (q,δ1,δ j 2).
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Theorem 2.4. Let σ(L j ) = {λ j n}( j = 1,2,n ∈ N0) be the spectrum of the boundary-value prob-

lem B (q,δ1,δ j 2). For some α ∈ [0,1) and sufficiently small ε(ε> 0), If

q1(x) = q2(x), x ∈ [0,
1

2
+
α

2
]

and S ⊆σ(L1)
⋂

σ(L2) satisfying

♯{λ ∈ S|λ≤ t )}≥ (1−α)♯{λ ∈σ(L1)|λ≤ t )}+
5α

2
−

1

2
+ε, (2.4)

for all sufficiently large t ∈ R+, then

q1(x) = q2(x) a.e. on [0,1]

and
a12λ+b12

c12λ+d12
=

a22λ+b22

c22λ+d22
.

Remark. When α = 0, we prove the half inverse problem for the Sturm-Liouville operator

with boundary conditions having fractional linear function of spectral parameter on the finite

interval [0,1].

Proof. Let u j (x, t )( j = 1,2) be the solution of the equation (2.1) satisfying u j (1, t ) = c j 2λ+d j 2

and u′
j
(1, t ) = a j 2λ+b j 2.

Denote

F (λ) = u1(
1

2
+
α

2
,λ)u′

2(
1

2
+
α

2
,λ)−u′

1(
1

2
+
α

2
,λ)u2(

1

2
+
α

2
,λ)

= u′
1(

1

2
+
α

2
,λ)u′

2(
1

2
+
α

2
,λ)(m−1

1 (
1

2
+
α

2
,λ)−m−1

2 (
1

2
+
α

2
,λ)) (2.5)

and

ω(λ) = (a1λ+b1)u(0,λ)− (c1λ+d1)u′(0,λ). (2.6)

Then

F (λn) = 0,∀λn ∈ S ⊆σ(L1)
⋂

σ(L2)

From (1.10) and (1.11), we obtain

|F (λ)| = O(λ2e |Im
p
λ|(1−α)) (2.7)

and

|ω(λ)| = O(λ
5
2 e |Im

p
λ|). (2.8)

Define the function G(λ) by

G(λ) =
∏

λn∈S

(1−
λ

λn
). (2.9)
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and

ψ(λ) =
F (λ)

G(λ)
. (2.10)

Then, ψ(λ) is an entire function. For convenience, we denote

NG(t ) = ♯{λn ∈ S|λn ≤ t }, Nω(t )= ♯{λn ∈σ(L)|λn ≤ t }.

By virtue of (2.4), this yields

NG(t ) ≥ (1−α)Nω(t )+
5α−1

2
+ε. (2.11)

Since ω(λ) is an entire function in λ of order 1
2 , there exists a positive constant c such that

NG (t )≤ Nω(t )≤ ct
1
2 , (2.12)

Without loss of generality, let us to assume λn > 1(n ∈ N0), then NG (1) = Nω(1) = 0. For a fixed

x (x ∈ R) and |x| sufficiently large, we have

ln |G(ix)| =
1

2
lnG(ix)G(ix) =

1

2

∑

λn∈S

ln(1−
i x

λn
)(1+

ix

λn
)

=
1

2

∑

λn∈S

ln(1+
x2

λ2
n

)=
1

2

∫∞

1
ln(1+

x2

t 2
)dNG (t )

=
1

2
ln(1+

x2

t 2
)NG (t )|∞1 −

1

2

∫∞

1
NG (t )d[ln(1+

x2

t 2
)].

For sufficiently large t , since

ln(1+
x2

t 2
)=O(

1

t 2
),

then

lim
n→∞

ln(1+
x2

t 2
)NG (t ) = 0

and

lim
n→∞

ln(1+
x2

t 2
)Nω(t ) = 0.

Therefore

ln |G(ix)| =
∫∞

1

x2

t 3+t x2
NG(t )dt

≥ (1−α)

∫∞

1

x2

t 3+t x2
Nω(t )dt + (

5α−1

2
+ε)

∫∞

1

x2

t 3+t x2
dt

= (1−α) ln |ω(ix)|+
1

2
(

5α−1

2
+ε) ln(1+x2). (2.13)

By virtue of (2.13), this yields

|G(ix)| ≥ |ω(i x)|1−α(1+x2)
5α−1

4
+ ε

2 . (2.14)
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From (2.10) and (2.14), we have

|ψ(i x)| = |
F (i x)

G(i x)
| =O(

1

|x|ε
)(ε> 0) (2.15)

for |x| sufficiently large.

By the Phragmén-Lindelöf theorem, we get

ψ(λ) = 0, ∀λ ∈ C. (2.16)

i.e,

F (λ) = 0, ∀λ ∈ C. (2.17)

Therefore,

u1(
1

2
+
α

2
,λ)u′

2(
1

2
+
α

2
,λ)−u′

1(
1

2
+
α

2
,λ)u2(

1

2
+
α

2
,λ) = 0, ∀λ ∈ C. (2.18)

In virtue of q1(x) = q2(x) on [0, 1
2
+ α

2
] together with (2.18), we obtain

u1(0,λ)u′
2(0,λ)−u′

1(0,λ)u2(0,λ) = 0, ∀λ ∈ C. (2.19)

From (2.19), we have

M1(λ) = M2(λ), ∀λ ∈ C. (2.20)

By virtue of Lemma 1.3 together with (2.20), we obtain

q1(x) = q2(x) a.e. on [0,1] and
a12λ+b12

c12λ+d12
=

a22λ+b22

c22λ+d22
.

This completes the proof of Theorem 2.1.
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