Available online at http://journals.math.tku.edu.tw/

OTHER CHARACTERIZATIONS OF β - θ - R_0 **TOPOLOGICAL SPACES**

MIGUEL CALDAS

Abstract. In this paper we give other characterizations of $\beta \cdot \theta \cdot R_0$ and also introduce a new separation axiom called $\beta \cdot \theta \cdot R_1$. It turns out that $\beta \cdot \theta \cdot R_1$ is stronger that $\beta \cdot \theta \cdot R_0$.

1. Introduction

The notion of R_0 topological spaces was introduced by Shanin [14] in 1943. By definition, a topological space is R_0 if every open set contains the closure of each of its singletons. Later, Davis [7] rediscovered it and studied some properties of this weak separation axiom. Many researchers investigated further properties of R_0 topological spaces and many interesting results have been obtained in various contexts (see: [8], [9], [10], [13]). In 2003, Noiri [12] introduce the notion of β - θ -closed sets. In 2011, Caldas [3, 4, 5, 6] introduced and investigated properties of β - θ -closed sets and of the separation axiom β - θ - R_0 . In this paper, we give some properties and other characterizations of β - θ - R_0 . We also introduce a new separation axiom called β - θ - R_1 . It turns out that β - θ - R_1 is stronger that β - θ - R_0 .

2. Preliminaries

Since we shall require the following known definitions, notations and some properties, we recall them in this section.

Let (X, τ) be a topological space and *S* a subset of *X*. We denote the closure and the interior of *S* by Cl(S) and Int(S), respectively. A subset *S* is said to be β -open [1, 2] if $S \subset Cl(Int(Cl(S)))$. The complement of a β -open set is said to be β -closed [1]. The intersection of all β -closed sets containing *S* is called the β -closure [2] of *S* and is denoted by $\beta Cl(S)$. A subset *S* is said to be β -regular [12] if it is both β -open and β -closed. The family of all β -open sets (resp. β -regular sets) of (X, τ) is denoted by $\beta O(X, \tau)$ (resp. $\beta R(X, \tau)$). The β - θ -closure of *S* [12], denoted by $\beta Cl_{\theta}(S)$, is defined to be the set of all $x \in X$ such that $\beta Cl(O) \cap S \neq \emptyset$ for

2010 Mathematics Subject Classification. 54D10.

Key words and phrases. Topological spaces, $\beta - \theta - R_0$ spaces, $\beta - \theta - R_1$ spaces, $\beta - \theta$ -open sets and $\beta - \theta$ -closure.

every $O \in \beta O(X, \tau)$ with $x \in O$. The set $\{x \in X : \beta Cl_{\theta}(O) \subset S \text{ for some } O \in \beta(X, x)\}$ is called the β - θ - interior of S and is denoted by $\beta Int_{\theta}(S)$. A subset S is said to be β - θ -closed [12] if $S = \beta Cl_{\theta}(S)$. The complement of a β - θ -closed set is said to be β - θ -open. The family of all β - θ -open (resp. β - θ -closed) subsets of X is denoted by $\beta \theta O(X, \tau)$ or $\beta \theta O(X)$ (resp. $\beta \theta C(X, \tau)$). We set $\beta \theta O(X, x) = \{U : x \in U \in \beta \theta O(X, \tau)\}$ and $\beta \theta C(X, x) = \{U : x \in U \in \beta \theta C(X, \tau)\}$.

We recall the following results which were obtained by Noiri [12].

Lemma 2.1 ([12]). Let A be a subset of a topological space (X, τ) . (i) If $A \in \beta O(X, \tau)$, then $\beta Cl(A) \in \beta R(X)$. (ii) $A \in \beta R(X)$ if and only if $A \in \beta \theta O(X) \cap \beta \theta C(X)$.

Lemma 2.2 ([12]). For the β - θ -closure of a subset A of a topological space (X, τ) , the following properties are held:

- (i) $A \subset \beta Cl(A) \subset \beta Cl_{\theta}(A)$ and $\beta Cl(A) = \beta Cl_{\theta}(A)$ if $A \in \beta O(X)$.
- (ii) If $A \subset B$, then $\beta C l_{\theta}(A) \subset \beta C l_{\theta}(B)$.
- (iii) If $A_{\alpha} \in \beta \theta C(X)$ for each $\alpha \in A$, then $\bigcap \{A_{\alpha} \mid \alpha \in A\} \in \beta \theta C(X)$.
- (iv) If $A_{\alpha} \in \beta \theta O(X)$ for each $\alpha \in A$, then $\bigcup \{A_{\alpha} \mid \alpha \in A\} \in \beta \theta O(X)$.
- (v) $\beta C l_{\theta}(\beta C l_{\theta}(A)) = \beta C l_{\theta}(A)$ and $\beta C l_{\theta}(A) \in \beta \theta C(X)$.

The union of two β - θ -closed sets is not necessarily β - θ -closed as showed in the following example.

Example 2.3 ([12]). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The subsets $\{a\}$ and $\{b\}$ are β - θ -closed in (X, τ) but $\{a, b\}$ is not β - θ -closed.

3. Other characterizations of β - θ - R_0 spaces

Definition 1. Let (X, τ) be a topological space and $A \subset X$. Then the β - θ -kernel of A [3], denoted by $\beta \text{Ker}_{\theta}(A)$ is defined to be the set $\beta \text{Ker}_{\theta}(A) = \cap \{G \in \beta \theta O(X, \tau) \mid A \subset G\}$.

Lemma 3.1 ([3]). (1) Let (X, τ) be a topological space and $x \in X$. Then: $y \in \beta Ker_{\theta}(\{x\})$ if and only if $x \in \beta Cl_{\theta}(\{y\})$.

- (2) Let (X, τ) be a topological space and A a subset of X. Then: $\beta Ker_{\theta}(A) = \{x \in X \mid \beta Cl_{\theta}(\{x\}) \cap A \neq \emptyset\}.$
- (3) The following statements are equivalent for any points x and y in a topological space (X, τ) :
 - (i) $\beta Ker_{\theta}(\{x\}) \neq \beta Ker_{\theta}(\{y\});$
 - (ii) $\beta C l_{\theta}(\{x\}) \neq \beta C l_{\theta}(\{y\})$.

Definition 2. A topological space (X, τ) is a $\beta \cdot \theta \cdot R_0$ space [3] if every $\beta \cdot \theta$ -open set contains the $\beta \cdot \theta$ -closure of each of its singletons.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$. We have $\beta O(X, \tau) = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. The β - θ -closed sets of (X, τ) are $\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. Then (X, τ) is a β - θ - R_0 space which is not R_0 .

The following Theorem 3.3 coincides with the Theorem 3.5 in [3] and Theorem 3.4 is a special case of Theorem 3.6 in [3].

Theorem 3.3. A topological space (X, τ) is a $\beta \cdot \theta \cdot R_0$ space if and only if for any x and y in X, $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$ implies $\beta Cl_{\theta}(\{x\}) \cap \beta Cl_{\theta}(\{y\}) = \emptyset$.

Theorem 3.4. A topological space (X, τ) is a $\beta \cdot \theta \cdot R_0$ space if and only if for any points x and y in X, $\beta Ker_{\theta}(\{x\}) \neq \beta Ker_{\theta}(\{y\})$ implies $\beta Ker_{\theta}(\{x\}) \cap \beta Ker_{\theta}(\{y\}) = \emptyset$.

Now, we give other characterizations of β - θ - R_0 spaces.

Theorem 3.5. For a topological space (X, τ) , the following properties are equivalent :

- (1) (X, τ) is a β - θ - R_0 space;
- (2) $x \in \beta Cl_{\theta}(\{y\})$ if and only if $y \in \beta Cl_{\theta}(\{x\})$.

Proof. (1) \Rightarrow (2) : Assume that *X* is β - θ - R_0 . Let $x \in \beta Cl_{\theta}(\{y\})$. Then $\beta Cl_{\theta}(\{x\}) \cap \beta Cl_{\theta}(\{y\}) \neq \emptyset$. By Theorem 3.3 $\beta Cl_{\theta}(\{x\}) = \beta Cl_{\theta}(\{y\})$. Hence $y \in \beta Cl_{\theta}(\{y\}) = \beta Cl_{\theta}(\{x\})$. Therefore $y \in \beta Cl_{\theta}(\{x\})$. Similarly $y \in \beta Cl_{\theta}(\{x\})$ then $x \in \beta Cl_{\theta}(\{y\})$.

(2) \Rightarrow (1) : Let *U* be a β - θ -open set and $x \in U$. If $y \notin U$, then $x \notin \beta Cl_{\theta}(\{y\})$ and hence $y \notin \beta Cl_{\theta}(\{x\})$. This implies that $\beta Cl_{\theta}(\{x\}) \subset U$. Hence (X, τ) is β - θ - R_0 .

Theorem 3.6. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is a β - θ - R_0 space;
- (2) For any $F \in \beta \theta C(X, \tau)$, $x \notin F$ implies $F \subset U$ and $x \notin U$ for some $U \in \beta \theta O(X, \tau)$;
- (3) For any $F \in \beta \theta C(X, \tau), x \notin F$ implies $F \cap \beta Cl_{\theta}(\{x\}) = \emptyset$;
- (4) For any distinct point x and y of X, either $\beta Cl_{\theta}(\{x\}) = \beta Cl_{\theta}(\{y\})$ or $\beta Cl_{\theta}(\{x\}) \cap \beta Cl_{\theta}(\{y\}) = \emptyset$.

Proof. (1) \Rightarrow (2) : Let $F \in \beta \theta C(X, \tau)$ and $x \notin F$. Then by (1) $\beta Cl_{\theta}(\{x\}) \subset X - F$. Set $U = X - \beta Cl_{\theta}(\{x\})$, then $U \in \beta \theta O(X, \tau), F \subset U$ and $x \notin U$.

 $(2) \Rightarrow (3): \text{Let } F \in \beta \theta C(X, \tau) \text{ and } x \notin F. \text{ There exists } U \in \beta \theta O(X, \tau) \text{ such that } F \subset U \text{ and } x \notin U.$ Since $U \in \beta \theta O(X, \tau), U \cap \beta Cl_{\theta}(\{x\}) = \emptyset$ and $F \cap \beta C l_{\theta}(\{x\}) = \emptyset.$

(3) \Rightarrow (4) :Suppose that $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$ for distinct points $x, y \in X$. There exists $z \in \beta Cl_{\theta}(\{x\})$ such that $z \notin \beta Cl_{\theta}(\{y\})$ (or $z \in \beta Cl_{\theta}(\{y\})$ such that $z \notin \beta Cl_{\theta}(\{x\})$). There exists $V \in \beta \theta O(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin \beta Cl_{\theta}(\{y\})$. By (3), we obtain $\beta Cl_{\theta}(\{x\}) \cap \beta Cl_{\theta}(\{y\}) = \emptyset$. The proof for the other case is similar.

(4) \Rightarrow (1) : Let $V \in \beta \theta O(X, \tau)$ and $x \in V$. For each $y \notin V, x \neq y$ and $x \notin \beta Cl_{\theta}(\{y\})$. This shows that $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$. By (4), $\beta Cl_{\theta}(\{x\}) \cap \beta Cl_{\theta}(\{y\}) = \emptyset$ for each $y \in X - V$ and hence $\beta Cl_{\theta}(\{x\}) \cap (\bigcup_{y \in X - V} \beta Cl_{\theta}(\{y\})) = \emptyset$. On the other hand, since $V \in \beta \theta O(X, \tau)$ and $y \in X - V$, we have $\beta Cl_{\theta}(\{y\}) \subset X - V$ and hence $X - V = \bigcup_{y \in X - V} \beta Cl_{\theta}(\{y\})$. Therefore, we obtain $(X - V) \cap \beta Cl_{\theta}(\{x\}) = \emptyset$ and $\beta Cl_{\theta}(\{x\}) \subset V$. This shows that (X, τ) is a $\beta - \theta - R_0$ space.

Theorem 3.7. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X,τ) is a β - θ - R_0 space;
- (2) For any nonempty set A and $G \in \beta \theta O(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists $F \in \beta \theta C(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subset G$;
- (3) Any $G \in \beta \theta O(X, \tau)$, $G = \cup \{F \in \beta \theta C(X, \tau) \mid F \subset G\}$;
- (4) Any $F \in \beta \theta C(X, \tau)$, $F = \cap \{G \in \beta \theta O(X, \tau) \mid F \subset G\}$;
- (5) For any $x \in X$, $\beta C l_{\theta}(\{x\}) \subset \beta K e r_{\theta}(\{x\})$.

Proof. (1) \Rightarrow (2) : Let *A* be a nonempty set of *X* and $G \in \beta \theta O(X, \tau)$ such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G \in \beta \theta O(X, \tau)$, $\beta Cl_{\theta}(\{x\}) \subset G$. Set $F = \beta Cl_{\theta}(\{x\})$, then $F \in \beta \theta C(X, \tau)$, $F \subset G$ and $A \cap F \neq \emptyset$.

(2) \Rightarrow (3) : Let $G \in \beta \theta O(X, \tau)$, then $G \supset \bigcup \{F \in \beta \theta C(X, \tau) \mid F \subset G\}$. Let *x* be any point of *G*. There exists $F \in \beta \theta C(X, \tau)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \bigcup \{F \in \beta \theta C(X, \tau) \mid F \subset G\}$ and hence $G = \bigcup \{F \in \beta \theta C(X, \tau) \mid F \subset G\}$.

 $(3) \Rightarrow (4)$: This is obvious.

(4) \Rightarrow (5) : Let *x* be any point of *X* and $y \notin \beta Ker_{\theta}(\{x\})$. There exists $V \in \beta \theta O(X, \tau)$ such that $x \in V$ and $y \notin V$; hence $\beta Cl_{\theta}(\{y\}) \cap V = \emptyset$. By (4) ($\cap \{G \in \beta \theta O(X, \tau) \mid \beta Cl_{\theta}(\{y\}) \subset G\}$) $\cap V = \emptyset$ and there exists $G \in \beta \theta O(X, \tau)$ such that $x \notin G$ and $\beta Cl_{\theta}(\{y\}) \subset G$. Therefore, $\beta Cl_{\theta}(\{x\}) \cap G = \emptyset$ and $y \notin \beta Cl_{\theta}(\{x\})$. Consequently, we obtain $\beta Cl_{\theta}(\{x\}) \subset \beta Ker_{\theta}(\{x\})$.

 $(5) \Rightarrow (1)$: Let $G \in \beta \theta O(X, \tau)$ and $x \in G$. Let $y \in \beta Ker_{\theta}(\{x\})$, then $x \in \beta Cl_{\theta}(\{y\})$ and $y \in G$. This implies that $\beta Ker_{\theta}(\{x\}) \subset G$. Therefore, we obtain $x \in \beta Cl_{\theta}(\{x\}) \subset \beta Ker_{\theta}(\{x\}) \subset G$. This shows that (X, τ) is a $\beta - \theta - R_0$ space.

Theorem 3.8. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is a $\beta \theta R_0$ space;
- (2) If F is β - θ -closed, then $F = \beta Ker_{\theta}(F)$;
- (3) If *F* is β - θ -closed and $x \in F$, then $\beta Ker_{\theta}(\{x\}) \subset F$;
- (4) If $x \in X$, then $\beta Ker_{\theta}(\{x\}) \subset \beta Cl_{\theta}(\{x\})$.

Proof. (1) \Rightarrow (2) : Let *F* be β - θ -closed and $x \notin F$. Thus X - F is β - θ -open and contains *x*. Since (X, τ) is β - θ - R_0 , $\beta Cl_{\theta}(\{x\}) \subset X - F$. Thus $\beta Cl_{\theta}(\{x\}) \cap F = \emptyset$ and by Lemma 3.1 $x \notin \beta Ker_{\theta}(F)$. Therefore $\beta Ker_{\theta}(F) = F$.

(2) \Rightarrow (3) : In general, $A \subset B$ implies $\beta Ker_{\theta}(A) \subset \beta Ker_{\theta}(B)$. Therefore, it follows from (2) that $\beta Ker_{\theta}(\{x\}) \subset \beta Ker_{\theta}(F) = F$.

(3) \Rightarrow (4): Since $x \in \beta Cl_{\theta}(\{x\})$ and $\beta Cl_{\theta}(\{x\})$ is β - θ -closed, by (3) $\beta Ker_{\theta}(\{x\}) \subset \beta Cl_{\theta}(\{x\})$.

(4) \Rightarrow (1) : We show the implication by using Theorem 3.5. Let $x \in \beta Cl_{\theta}(\{y\})$. Then by Lemma 3.1 $y \in \beta Ker_{\theta}(\{x\})$. By (4) we obtain $y \in \beta Ker_{\theta}(\{x\}) \subset \beta Cl_{\theta}(\{x\})$. Therefore $x \in \beta Cl_{\theta}(\{y\})$ implies $y \in \beta Cl_{\theta}(\{x\})$. The converse is obvious and (X, τ) is β - θ - R_0 .

Corollary 3.9. For a topological space (X, τ) , the following properties are equivalent :

- (1) (X, τ) is a $\beta \theta R_0$ space;
- (2) $\beta Cl_{\theta}(\{x\}) = \beta Ker_{\theta}(\{x\})$ for all $x \in X$.

Proof. This is obvious by Theorem 3.7 and Theorem 3.8.

Definition 3. Let (X, τ) be a topological space, $x \in X$ and $\{x_{\alpha}\}_{\alpha \in \Lambda}$ be a net of X. We say that the net $\{x_{\alpha}\}_{\alpha \in \Lambda} \beta \theta$ -converges to x if for each β - θ -open set U containing x there exists an element $\alpha_0 \in \Lambda$ such that $\alpha \ge \alpha_0$ implies $x_{\alpha} \in U$.

Lemma 3.10. Let (X, τ) be a topological space and let x and y be any two points in X such that every net in $X \beta \theta$ -converging to $y \beta \theta$ -converges to x. Then $x \in \beta Cl_{\theta}(\{y\})$.

Proof. Suppose that $x_n = y$ for each $n \in \mathbb{N}$. Then $\{x_n\}_{n \in \mathbb{N}}$ is a net in $\beta Cl_{\theta}(\{y\})$. By the fact that $\{x_n\}_{n \in \mathbb{N}} \beta \theta$ -converges to y, then $\{x_n\}_{n \in \mathbb{N}} \beta \theta$ -converges to x and this means that $x \in \beta Cl_{\theta}(\{y\})$.

Theorem 3.11. For a topological space (X, τ) , the following statements are equivalent :

- (1) (X, τ) is a $\beta \theta R_0$ space;
- (2) If $x, y \in X$, then $y \in \beta Cl_{\theta}(\{x\})$ if and only if every net in $X \beta \theta$ -converging to $y \beta \theta$ -converges to x.

Proof. (1) \Rightarrow (2) : Let $x, y \in X$ such that $y \in \beta Cl_{\theta}(\{x\})$. Let $\{x_{\alpha}\}_{\alpha \in \Lambda}$ be a net in X such that $\{x_{\alpha}\}_{\alpha \in \Lambda} \beta \theta$ -converges to y. Since $y \in \beta Cl_{\theta}(\{x\})$, by Theorem 3.3 we have $\beta Cl_{\theta}(\{x\}) = \beta Cl_{\theta}(\{y\})$. Therefore $x \in \beta Cl_{\theta}(\{y\})$. This means that $\{x_{\alpha}\}_{\alpha \in \Lambda} \beta \theta$ -converges to x. Conversely, let $x, y \in X$ such that every net in $X \beta \theta$ -converging to $y \beta \theta$ -converges to x. Then $x \in \beta Cl_{\theta}(\{y\})$ by Lemma 3.1. From Theorem 3.3, we have $\beta Cl_{\theta}(\{x\}) = \beta Cl_{\theta}(\{y\})$. Therefore $y \in \beta Cl_{\theta}(\{x\})$.

(2) \Rightarrow (1) : Assume that *x* and *y* are any two points of *X* such that $\beta Cl_{\theta}(\{x\}) \cap \beta Cl_{\theta}(\{y\}) \neq \emptyset$. Let $z \in \beta Cl_{\theta}(\{x\}) \cap \beta Cl_{\theta}(\{y\})$. So there exists a net $\{x_{\alpha}\}_{\alpha \in \Lambda}$ in $\beta Cl_{\theta}(\{x\})$ such that $\{x_{\alpha}\}_{\alpha \in \Lambda}$ $\beta \theta$ -converges to *z*. Since $z \in \beta Cl_{\theta}(\{y\})$, then $\{x_{\alpha}\}_{\alpha \in \Lambda}$ $\beta \theta$ -converges to *y*. It follows that $y \in \beta Cl_{\theta}(\{x\})$. By the same token we obtain $x \in \beta Cl_{\theta}(\{y\})$. Therefore $\beta Cl_{\theta}(\{x\}) = \beta Cl_{\theta}(\{y\})$ and by Theorem 3.3 (X, τ) is β - θ - R_0 .

Recall that a topological space (X, τ) is said to be:

- (1) $\beta \theta T_0$ (resp. $\beta \theta T_1$) if for any distinct pair of points *x* and *y* in *X*, there is a $\beta \theta$ -open *U* in *X* containing *x* but not *y* or (resp. and) a $\beta \theta$ -open set *V* in *X* containing *y* but not *x*.
- (2) $\beta \cdot \theta \cdot T_2$ [5] (resp. $\beta \cdot T_2$ [11]) if for every pair of distinct points *x* and *y*, there exist two $\beta \cdot \theta \cdot$ open (resp. $\beta \cdot$ open) sets *U* and *V* such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

From the definitions above, we obtain the following diagram:

 $\beta - \theta - T_2 \Rightarrow \beta - \theta - T_1 \Rightarrow \beta - \theta - T_0.$

Theorem 3.12. If (X, τ) is $\beta - \theta - T_0$, then (X, τ) is $\beta - \theta - T_2$.

Proof. For any points $x \neq y$ let V be a β - θ -open set that $x \in V$ and $y \notin V$. Then, there exists $U \in \beta \theta O(X, \tau)$ such that $x \in U \subset \beta Cl_{\theta}(U) \subset V$. By Lemma 2.1 $\beta Cl_{\theta}(U) \in \beta R(X, \tau)$. Then $\beta Cl_{\theta}(U)$ is β - θ -open and also $X - \beta Cl_{\theta}(U)$ is a β - θ -open set containing y. Therefore, X is β - θ - T_2 .

Remark 3.13. For a topological space (X, τ) the three properties in the diagram are equivalent.

Theorem 3.14. A topological space (X, τ) is $\beta \cdot \theta \cdot T_2$ if and only if the singletons are $\beta \cdot \theta \cdot closed$ sets.

Proof. Suppose that (X, τ) is $\beta \cdot \theta \cdot T_2$ and $x \in X$. Let $y \in \{x\}^c$. Then $x \neq y$ and so there exists a $\beta \cdot \theta$ -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset \{x\}^c$ i.e., $\{x\}^c = \bigcup \{U_y / y \in \{x\}^c\}$ which is $\beta \cdot \theta$ -open.

Conversely. Suppose that $\{p\}$ is β - θ -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies that $y \in \{x\}^c$. Hence $\{x\}^c$ is a β - θ -open set containing y but not x. Similarly $\{y\}^c$ is a β - θ -open set containing x but not y. From Remark 3.13, X is a β - θ - T_2 space.

Theorem 3.15. For a topological space (X, τ) , the following properties are equivalent:

- (1) For every pair of distinct points $x, y \in X$, there exist $U \in \beta \theta O(X, x)$ and $V \in \beta \theta O(X, y)$ such that $\beta Cl_{\theta}(U) \cap \beta Cl_{\theta}(V) = \emptyset$;
- (2) (X, τ) is $\beta \theta T_2$;
- (3) (X, τ) is β - T_2 ;
- (4) For every pair of distinct points $x, y \in X$, there exist $U, V \in \beta O(X)$ such that $x \in U, y \in V$ and $\beta Cl(U) \cap \beta Cl(V) = \emptyset$;
- (5) For every pair of distinct points $x, y \in X$, there exist $U, V \in \beta R(X)$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Proof. (1) \Rightarrow (2): This is obvious.

- (2) \Rightarrow (3): Since $\beta \theta O(X) \subset \beta O(X)$, the proof is obvious.
- (3) \Rightarrow (4): This follows from Lemma 5.2 of [12].

(4) \Rightarrow (5): By Lemma 2.1, $\beta Cl(U) \in \beta R(X)$ for every $U \in \beta O(X)$ and the proof immediately follows.

(5) \Rightarrow (1): By Lemma 2.1, every β -regular set is β - θ -open and β - θ -closed. Hence the proof is obvious.

Theorem 3.16. A topological space (X, τ) is $\beta \cdot \theta \cdot R_0$ if it is $\beta \cdot \theta \cdot T_2$.

Proof. Let *U* be any β - θ -open set of *X* and $x \in U$. Since $\{x\}$ is β - θ -closed (by Theorem 3.14), $\beta C l_{\theta}(\{x\}) = \{x\} \subset U$. Therefore (X, τ) is β - θ - R_0 .

Example 3.17. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$. Then the topological space (X, τ) is a $\beta - \theta - R_0$ space which is not $\beta - \theta - T_2$.

Theorem 3.18. Suppose that in every topological space, each singleton is β - θ -open or β - θ -closed. Then (X, τ) is β - θ - R_0 if and only if it is β - θ - T_2 .

Proof. Necessity. Suppose that (X, τ) is $\beta \cdot \theta \cdot R_0$. For each point $x \in X$, we have by hypothesi that $\{x\}$ is $\beta \cdot \theta \cdot \text{open}$ or $\beta \cdot \theta \cdot \text{closed}$ in *X*. If $\{x\}$ is $\beta \cdot \theta \cdot \text{open}$, then $\beta C l_{\theta}(\{x\}) \subset \{x\}$ and hence $\{x\}$ is $\beta \cdot \theta \cdot \text{closed}$. By Theorem 3.14 (X, τ) is $\beta \cdot \theta \cdot T_2$. Sufficiency. Theorem 3.16.

4. β - θ - R_1 spaces

Definition 4. A topological space (X, τ) is said to be $\beta \cdot \theta \cdot R_1$ if for x, y in X with $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$, there exist disjoint $\beta \cdot \theta$ -open sets U and V such that $\beta Cl_{\theta}(\{x\})$ is a subset of U and $\beta Cl_{\theta}(\{y\})$ is a subset of V.

MIGUEL CALDAS

Clearly every $\beta \cdot \theta \cdot R_1$ space is $\beta \cdot \theta \cdot R_0$. Indeed let *U* be a $\beta \cdot \theta \cdot \text{open set such that } x \in U$. If $y \notin U$, then since $x \notin \beta Cl_{\theta}(\{y\})$, $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$. Hence, there exists a $\beta \cdot \theta \cdot \text{open set}$ V_y such that $\beta Cl_{\theta}(\{y\}) \subset V_y$ and $x \notin V_y$, which implies $y \notin \beta Cl_{\theta}(\{x\})$. Thus $\beta Cl_{\theta}(\{x\}) \subset U$. Therefore (X, τ) is $\beta \cdot \theta \cdot R_0$.

Example 4.1. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a, b\}\}$. Then the topological space (X, τ) is a β - θ - R_1 space.

Theorem 4.2. If a topological space (X, τ) is $\beta - \theta - T_2$ then (X, τ) is $\beta - \theta - R_1$.

Proof. Let *X* be a β - θ - T_2 space. If $x, y \in X$ such that $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$, then $x \neq y$. Therefore there exists disjoint β - θ -open sets *U* and *V* such that $x \in U$ and $y \in V$; hence $\beta Cl_{\theta}(\{x\}) = \{x\} \subset U$ and $\beta Cl_{\theta}(\{y\}) = \{y\} \subset V$. Hence *X* is β - θ - R_1 .

Theorem 4.3. Suppose that in every topological space, each singleton is β - θ -open or β - θ closed. Then (X, τ) is β - θ - R_1 if and only if it is β - θ - R_0 .

Proof. It follows from the observation above, plus Theorem 4.2 and Theorem 3.18.

Theorem 4.4. For a topological space (X, τ) , the following statements are equivalent : (1) (X, τ) is $\beta \cdot \theta \cdot R_1$, (2) If $x, y \in X$ such that $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$, then there exist $\beta \cdot \theta \cdot closed$ sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \notin F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. (1) \Rightarrow (2) : Let $x, y \in X$ such that $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$. Therefore, there exist disjoint β - θ -open sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$. Then $F_1 = X - U_2$ and $F_2 = X - U_1$ are β - θ -closed sets such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

(2) \Rightarrow (1) : Suppose that *x* and *y* are distinct points of *X* such that $\beta Cl_{\theta}(\{x\}) \neq \beta Cl_{\theta}(\{y\})$. Therefore there exist β - θ -closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$. Now, we set $U_1 = X - F_2$ and $U_2 = X - F_1$, so that we obtain that $x \in U_1$, $y \in U_2$, $U_1 \cap U_2 = \emptyset$ and U_1, U_2 are β - θ -open. This shows that (X, τ) is β - θ - T_2 . It follows from Theorem 4.2 that (X, τ) is β - θ - R_1 .

Theorem 4.5. A topological space (X,τ) is β - θ - R_1 if and only if for $x, y \in X, \beta Ker_{\theta}(\{x\}) \neq \beta Ker_{\theta}(\{y\})$, there exist disjoint β - θ -open sets U and V such that $\beta Cl_{\theta}(\{x\}) \subset U$ and $\beta Cl_{\theta}(\{y\}) \subset V$.

Proof. It follows from Lemma 3.1(3).

Acknowledgement

The author is very grateful to the referee for his observations which improved the quality of this paper.

References

- M. E. Abd. El-Monsef, S. N. EL-Deeb and R. A. Mahmoud, β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [3] M. Caldas, $On\theta$ - β -generalized closed sets and θ - β -generalized continuity in topolological spaces, J. Adv. Math. Studies, **4** (2011), 13–24.
- [4] M. Caldas, On characterizations of weak θ - β -openness, Antartica J. Math., (to appear).
- [5] M. Caldas, Weakly sp-θ-closed functions and semipre-Hausdorff spaces, Creative Math. Inform., 20(2011), 112–123.
- [6] M. Caldas, *Functions with strongly* β - θ -*closed graphs*, J. Adv. Studies Topology, (to appear).
- [7] A. S. Davis, *Indexed systems of neighborhoods for general topological spaces*, Amer. Math. Monthly, **68** (1961), 886–893.
- [8] K. K. Dube, A note on R₀ topological spaces, Mat. Vesnik, 11 (1974), 203–208.
- [9] D. W. Hall, S. K. Murphy and J. Rozycki, *On spaces which are essentially T*₁, J. Austr. Math. Soc., **12** (1971), 451–455.
- [10] H. Herrlich, A concept of Nearness, Gen. Topol. Appl., 4 (1974), 191–212.
- [11] R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan. Acad. Sci., 27 (1990), 285–296.
- [12] T. Noiri, Weak and strong forms of β -irresolute functions, Acta Math. Hungar., **99** (2003), 315–328.
- [13] S. A. Naimpally, On R₀-topological spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 10 (1967), 53–54.
- [14] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110–113.

Departamento de Matemática Aplicada, Universidade Federal Fluminense, Rua Mário Santos Braga, s/n, 24020-140, Niterói, RJ, Brasil.

E-mail: gmamccs@vm.uff.br