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OTHER CHARACTERIZATIONS OF β-θ-R0 TOPOLOGICAL SPACES

MIGUEL CALDAS

Abstract. In this paper we give other characterizations of β-θ-R0 and also introduce a

new separation axiom called β-θ-R1. It turns out that β-θ-R1 is stronger that β-θ-R0 .

1. Introduction

The notion of R0 topological spaces was introduced by Shanin [14] in 1943. By defini-

tion, a topological space is R0 if every open set contains the closure of each of its singletons.

Later, Davis [7] rediscovered it and studied some properties of this weak separation axiom.

Many researchers investigated further properties of R0 topological spaces and many interest-

ing results have been obtained in various contexts (see: [8], [9], [10], [13]). In 2003, Noiri [12]

introduce the notion of β-θ-closed sets. In 2011, Caldas [3, 4, 5, 6] introduced and investi-

gated properties of β-θ-closed sets and of the separation axiom β-θ-R0. In this paper, we give

some properties and other characterizations of β-θ-R0. We also introduce a new separation

axiom called β-θ-R1. It turns out that β-θ-R1 is stronger that β-θ-R0.

2. Preliminaries

Since we shall require the following known definitions, notations and some properties,

we recall them in this section.

Let (X ,τ) be a topological space and S a subset of X . We denote the closure and the

interior of S by C l (S) and Int (S), respectively. A subset S is said to be β-open [1, 2] if S ⊂

C l (Int (C l (S)). The complement of a β-open set is said to be β-closed [1]. The intersection

of all β-closed sets containing S is called the β-closure [2] of S and is denoted by βC l (S). A

subset S is said to be β-regular [12] if it is both β-open and β-closed. The family of all β-open

sets (resp. β-regular sets) of (X ,τ) is denoted by βO(X ,τ) (resp. βR(X ,τ)). The β-θ-closure of

S [12], denoted by βC lθ(S), is defined to be the set of all x ∈ X such that βC l (O)∩S 6= ; for
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every O ∈ βO(X ,τ) with x ∈ O. The set {x ∈ X : βC lθ(O) ⊂ S f or some O ∈ β(X , x)} is called

the β-θ- interior of S and is denoted by βIntθ(S). A subset S is said to be β-θ-closed [12] if

S = βC lθ(S). The complement of a β-θ-closed set is said to be β-θ-open. The family of all β-

θ-open (resp. β-θ-closed) subsets of X is denoted by βθO(X ,τ) or βθO(X ) (resp. βθC (X ,τ)).

We set βθO(X , x) = {U : x ∈U ∈βθO(X ,τ)} and βθC (X , x) = {U : x ∈U ∈βθC (X ,τ)}.

We recall the following results which were obtained by Noiri [12].

Lemma 2.1 ([12]). Let A be a subset of a topological space (X ,τ).

(i) If A ∈βO(X ,τ), then βC l (A) ∈βR(X ).

(ii) A ∈βR(X ) if and only if A ∈βθO(X )∩βθC (X ).

Lemma 2.2 ([12]). For the β-θ-closure of a subset A of a topological space (X ,τ), the following

properties are held:

(i) A ⊂βC l (A)⊂βC lθ(A) and βC l (A) =βC lθ(A) if A ∈βO(X ).

(ii) If A ⊂B, then βC lθ(A) ⊂βC lθ(B ).

(iii) If Aα ∈βθC (X ) for each α ∈ A, then
⋂

{Aα |α ∈ A} ∈βθC (X ).

(iv) If Aα ∈βθO(X ) for each α ∈ A, then
⋃

{Aα |α ∈ A} ∈βθO(X ).

(v) βC lθ(βC lθ(A)) =βC lθ(A) and βC lθ(A) ∈βθC (X ).

The union of two β-θ-closed sets is not necessarily β-θ-closed as showed in the following

example.

Example 2.3 ([12]). Let X = {a,b,c}, τ= {;, X , {a}, {b}, {a,b}}. The subsets {a} and {b} are β-θ-

closed in (X ,τ) but {a,b} is not β-θ-closed.

3. Other characterizations of β-θ-R0 spaces

Definition 1. Let (X ,τ) be a topological space and A ⊂ X . Then the β-θ-kernel of A [3], de-

noted by βKerθ(A) is defined to be the set βKerθ(A) =∩{G ∈βθO(X ,τ) | A ⊂G}.

Lemma 3.1 ([3]). (1) Let (X ,τ) be a topological space and x ∈ X . Then:

y ∈βK erθ({x}) if and only if x ∈βC lθ({y}).

(2) Let (X ,τ) be a topological space and A a subset of X . Then:

βK erθ(A) = {x ∈ X |βC lθ({x})∩ A 6= ;}.

(3) The following statements are equivalent for any points x and y in a topological space (X ,τ):

(i) βK erθ({x}) 6=βK erθ({y});

(ii) βC lθ({x}) 6=βC lθ({y}).
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Definition 2. A topological space (X ,τ) is a β-θ-R0 space [3] if every β-θ-open set contains

the β-θ-closure of each of its singletons.

Example 3.2. Let X = {a,b,c} and τ= {X ,;, {b}, {c}, {b,c}}. We have

βO(X ,τ)= {X ,;, {b}, {c}, {a,b}, {a,c}, {b,c}}. Theβ-θ-closed sets of (X ,τ) are {X ,;, {a}, {b}, {c}, {a,b}, {a,c}}.

Then (X ,τ) is a β-θ-R0 space which is not R0.

The following Theorem 3.3 coincides with the Theorem 3.5 in [3] and Theorem 3.4 is a

special case of Theorem 3.6 in [3].

Theorem 3.3. A topological space (X ,τ) is a β-θ-R0 space if and only if for any x and y in X ,

βClθ({x}) 6=βClθ({y}) implies βClθ({x})∩βClθ({y}) =;.

Theorem 3.4. A topological space (X ,τ) is a β-θ-R0 space if and only if for any points x and y

in X , βKerθ({x}) 6=βKerθ({y}) implies βKerθ({x})∩βKerθ({y}) =;.

Now, we give other characterizations of β-θ-R0 spaces.

Theorem 3.5. For a topological space (X ,τ), the following properties are equivalent :

(1) (X ,τ) is a β-θ-R0 space;

(2) x ∈βC lθ({y}) if and only if y ∈βC lθ({x}).

Proof. (1) ⇒ (2) : Assume that X isβ-θ-R0. Let x ∈βC lθ({y}). ThenβClθ({x})∩βClθ ({y}) 6= ;. By

Theorem 3.3 βClθ({x}) = βClθ({y}). Hence y ∈ βClθ({y}) = βClθ({x}). Therefore y ∈ βC lθ({x}).

Similarly y ∈βC lθ({x}) then x ∈βC lθ({y}).

(2) ⇒ (1) : Let U be a β-θ-open set and x ∈ U . If y ∉ U , then x ∉ βC lθ({y}) and hence y ∉

βC lθ({x}). This implies that βC lθ({x}) ⊂U . Hence (X ,τ) is β-θ-R0.

Theorem 3.6. For a topological space (X ,τ), the following properties are equivalent:

(1) (X ,τ) is a β-θ-R0 space;

(2) For any F ∈βθC (X ,τ), x ∉ F implies F ⊂U and x ∉U for some U ∈βθO(X ,τ);

(3) For any F ∈βθC (X ,τ), x ∉ F implies F ∩βC lθ({x}) =;;

(4) For any distinct point x and y of X , either βC lθ({x}) =βC lθ({y}) or βC lθ({x})∩βC lθ({y}) =

;.

Proof. (1) ⇒ (2) : Let F ∈ βθC (X ,τ) and x ∉ F. Then by (1) βC lθ({x}) ⊂ X −F . Set U = X −

βC lθ({x}), then U ∈βθO(X ,τ),F ⊂U and x ∉U .

(2) ⇒ (3) : Let F ∈βθC (X ,τ) and x ∉ F . There exists U ∈ βθO(X ,τ) such that F ⊂U and x ∉U .

Since U ∈βθO(X ,τ),U ∩βC lθ({x}) =; and
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F ∩βC lθ({x}) =;.

(3) ⇒ (4) :Suppose that βC lθ({x}) 6= βC lθ({y}) for distinct points x, y ∈ X . There exists z ∈

βC lθ({x}) such that z ∉ βC lθ({y}) (or z ∈ βC lθ({y}) such that z ∉ βC lθ({x})). There exists V ∈

βθO(X ,τ) such that y ∉V and z ∈V ; hence x ∈V . Therefore, we have x ∉βC lθ({y}). By (3), we

obtain βC lθ({x})∩βC lθ({y}) =;. The proof for the other case is similar.

(4) ⇒ (1) : Let V ∈ βθO(X ,τ) and x ∈ V . For each y ∉ V , x 6= y and x ∉ βC lθ({y}). This shows

that βC lθ({x}) 6= βC lθ({y}). By (4), βC lθ({x})∩βC lθ({y}) = ; for each y ∈ X −V and hence

βC lθ({x})∩ (
⋃

y∈X−V
βC lθ({y})) =;. On the other hand, since V ∈ βθO(X ,τ) and y ∈ X −V , we

have βC lθ({y}) ⊂ X −V and hence X −V =
⋃

y∈X−V
βC lθ({y}). Therefore, we obtain (X −V )∩

βC lθ({x}) =; and βC lθ({x}) ⊂V . This shows that (X ,τ) is a β-θ-R0 space.

Theorem 3.7. For a topological space (X ,τ), the following properties are equivalent :

(1) (X ,τ) is a β-θ-R0 space;

(2) For any nonempty set A and G ∈ βθO(X ,τ) such that A ∩G 6= ;, there exists F ∈ βθC (X ,τ)

such that A∩F 6= ; and F ⊂G ;

(3) Any G ∈βθO(X ,τ) ,G =∪{F ∈βθC (X ,τ) | F ⊂G};

(4) Any F ∈βθC (X ,τ), F =∩{G ∈βθO(X ,τ) | F ⊂G};

(5) For any x ∈ X ,βC lθ({x}) ⊂βK erθ({x}).

Proof. (1) ⇒ (2) : Let A be a nonempty set of X and G ∈ βθO(X ,τ) such that A ∩G 6= ;.

There exists x ∈ A ∩G . Since x ∈ G ∈ βθO(X ,τ),βC lθ({x}) ⊂ G . Set F = βC lθ({x}), then F ∈

βθC (X ,τ),F ⊂G and A∩F 6= ;.

(2) ⇒ (3) : Let G ∈βθO(X ,τ), then G ⊃∪{F ∈βθC (X ,τ) | F ⊂G}. Let x be any point of G . There

exists F ∈ βθC (X ,τ) such that x ∈ F and F ⊂ G . Therefore, we have x ∈ F ⊂ ∪{F ∈ βθC (X ,τ) |

F ⊂G} and hence G =∪{F ∈βθC (X ,τ) | F ⊂G}.

(3) ⇒ (4) : This is obvious.

(4) ⇒ (5) : Let x be any point of X and y ∉ βK erθ({x}). There exists V ∈ βθO(X ,τ) such that

x ∈ V and y ∉ V ; hence βC lθ({y})∩V = ;. By (4) (∩{G ∈ βθO(X ,τ) | βC lθ({y}) ⊂ G})∩V = ;

and there exists G ∈βθO(X ,τ) such that x ∉G and βC lθ({y}) ⊂G . Therefore, βC lθ({x})∩G =;

and y ∉βC lθ({x}). Consequently, we obtain βC lθ({x}) ⊂βK erθ({x}).

(5) ⇒ (1) : Let G ∈ βθO(X ,τ) and x ∈G . Let y ∈ βK erθ({x}), then x ∈βC lθ({y}) and y ∈G . This

implies that βK erθ({x}) ⊂G . Therefore, we obtain x ∈βC lθ({x}) ⊂ βK erθ({x}) ⊂G . This shows

that (X ,τ) is a β-θ-R0 space.

Theorem 3.8. For a topological space (X ,τ), the following properties are equivalent :
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(1) (X ,τ) is a β-θ-R0 space;

(2) If F is β-θ-closed, then F =βK erθ(F );

(3) If F is β-θ-closed and x ∈ F , then βK erθ({x}) ⊂ F ;

(4) If x ∈ X , then βK erθ({x}) ⊂ βC lθ({x}).

Proof. (1) ⇒ (2) : Let F be β-θ-closed and x ∉ F . Thus X −F is β-θ-open and contains x. Since

(X ,τ) is β-θ-R0, βC lθ({x}) ⊂ X −F. Thus βC lθ({x})∩F = ; and by Lemma 3.1 x ∉ βK erθ(F ).

Therefore βK erθ(F ) = F.

(2) ⇒ (3) : In general, A ⊂ B implies βK erθ(A) ⊂ βK erθ(B ). Therefore, it follows from (2) that

βK erθ({x}) ⊂βK erθ(F ) = F.

(3) ⇒ (4) : Since x ∈βC lθ({x}) and βC lθ({x}) is β-θ-closed, by (3) βK erθ({x}) ⊂ βC lθ({x}).

(4) ⇒ (1) : We show the implication by using Theorem 3.5. Let x ∈βC lθ({y}). Then by Lemma

3.1 y ∈ βK erθ({x}). By (4) we obtain y ∈ βK erθ({x}) ⊂ βC lθ({x}). Therefore x ∈ βC lθ({y}) im-

plies y ∈βC lθ({x}). The converse is obvious and (X ,τ) is β-θ-R0.

Corollary 3.9. For a topological space (X ,τ), the following properties are equivalent :

(1) (X ,τ) is a β-θ-R0 space;

(2) βC lθ({x}) =βK erθ({x}) for all x ∈ X .

Proof. This is obvious by Theorem 3.7 and Theorem 3.8.

Definition 3. Let (X ,τ) be a topological space, x ∈ X and {xα}α∈Λ be a net of X . We say that the

net {xα}α∈Λ βθ-converges to x if for each β-θ-open set U containing x there exists an element

α0 ∈Λ such that α≥α0 implies xα ∈U .

Lemma 3.10. Let (X ,τ) be a topological space and let x and y be any two points in X such that

every net in X βθ-converging to y βθ-converges to x. Then x ∈βC lθ({y}).

Proof. Suppose that xn = y for each n ∈ N. Then {xn}n∈N is a net in βC lθ({y}). By the fact that

{xn}n∈N βθ-converges to y , then {xn}n∈N βθ-converges to x and this means that x ∈βC lθ({y}).

Theorem 3.11. For a topological space (X ,τ), the following statements are equivalent :

(1) (X ,τ) is a β-θ-R0 space;

(2) If x, y ∈ X , then y ∈βC lθ({x}) if and only if every net in X βθ -converging to y βθ-converges

to x.



308 MIGUEL CALDAS

Proof. (1) ⇒ (2) : Let x, y ∈ X such that y ∈ βC lθ({x}). Let {xα}α∈Λ be a net in X such that

{xα}α∈Λ βθ-converges to y . Since y ∈βC lθ({x}), by Theorem 3.3 we haveβC lθ({x}) =βC lθ({y}).

Therefore x ∈ βC lθ({y}). This means that {xα}α∈Λ βθ-converges to x. Conversely, let x, y ∈ X

such that every net in X βθ-converging to y βθ-converges to x. Then x ∈βC lθ({y}) by Lemma

3.1. From Theorem 3.3, we have βC lθ({x}) =βC lθ({y}). Therefore y ∈βC lθ({x}).

(2) ⇒ (1) : Assume that x and y are any two points of X such that βC lθ({x})∩βC lθ({y}) 6=

;. Let z ∈ βC lθ({x})∩βC lθ({y}). So there exists a net {xα}α∈Λ in βC lθ({x}) such that {xα}α∈Λ

βθ-converges to z. Since z ∈ βC lθ({y}), then {xα}α∈Λ βθ-converges to y. It follows that y ∈

βC lθ({x}). By the same token we obtain x ∈βC lθ({y}). Therefore βC lθ({x}) =βC lθ({y}) and by

Theorem 3.3 (X ,τ) is β-θ-R0.

Recall that a topological space (X ,τ) is said to be:

(1) β-θ-T0 (resp. β-θ-T1) if for any distinct pair of points x and y in X , there is a β-θ-open U

in X containing x but not y or (resp. and) a β-θ-open set V in X containing y but not x.

(2) β-θ-T2 [5] (resp. β-T2 [11]) if for every pair of distinct points x and y , there exist two

β-θ-open (resp. β-open) sets U and V such that x ∈U , y ∈V and U ∩V =;.

From the definitions above, we obtain the following diagram:

β-θ-T2 ⇒ β-θ-T1 ⇒ β-θ-T0.

Theorem 3.12. If (X ,τ) is β-θ-T0, then (X ,τ) is β-θ-T2.

Proof. For any points x 6= y let V be a β-θ-open set that x ∈V and y ∉V . Then, there exists U ∈

βθO(X ,τ) such that x ∈U ⊂ βC lθ(U ) ⊂ V . By Lemma 2.1 βC lθ(U ) ∈ βR(X ,τ). Then βC lθ(U )

is β-θ-open and also X −βC lθ(U ) is a β-θ-open set containing y . Therefore, X is β-θ-T2.

Remark 3.13. For a topological space (X ,τ) the three properties in the diagram are equiva-

lent.

Theorem 3.14. A topological space (X ,τ) is β-θ-T2 if and only if the singletons are β-θ-closed

sets.

Proof. Suppose that (X ,τ) is β-θ-T2 and x ∈ X . Let y ∈ {x}c . Then x 6= y and so there exists a

β-θ-open set Uy such that y ∈Uy but x ∉Uy . Consequently y ∈Uy ⊂ {x}c i.e., {x}c =
⋃

{Uy /y ∈

{x}c } which is β-θ-open.

Conversely. Suppose that {p} is β-θ-closed for every p ∈ X . Let x, y ∈ X with x 6= y . Now x 6= y

implies that y ∈ {x}c . Hence{x}c is a β-θ-open set containing y but not x. Similarly {y}c is a

β-θ-open set containing x but not y . From Remark 3.13, X is a β-θ-T2 space.

Theorem 3.15. For a topological space (X ,τ), the following properties are equivalent:
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(1) For every pair of distinct points x, y ∈ X , there exist U ∈βθO(X , x) and V ∈βθO(X , y) such

that βC lθ(U )∩βC lθ(V ) =;;

(2) (X ,τ) is β-θ-T2;

(3) (X ,τ) is β-T2;

(4) For every pair of distinct points x, y ∈ X , there exist U ,V ∈ βO(X ) such that x ∈ U , y ∈ V

and βC l (U )∩βC l (V )=;;

(5) For every pair of distinct points x, y ∈ X , there exist U ,V ∈ βR(X ) such that x ∈ U , y ∈ V

and U ∩V =;.

Proof. (1) ⇒ (2): This is obvious.

(2) ⇒ (3): Since βθO(X ) ⊂βO(X ), the proof is obvious.

(3) ⇒ (4): This follows from Lemma 5.2 of [12].

(4) ⇒ (5): By Lemma 2.1, βC l (U ) ∈ βR(X ) for every U ∈ βO(X ) and the proof immediately

follows.

(5) ⇒ (1): By Lemma 2.1, every β-regular set is β-θ-open and β-θ-closed. Hence the proof is

obvious.

Theorem 3.16. A topological space (X ,τ) is β-θ-R0 if it is β-θ-T2.

Proof. Let U be any β-θ-open set of X and x ∈U . Since {x} is β-θ-closed (by Theorem 3.14),

βC lθ({x}) = {x} ⊂U . Therefore (X ,τ) is β-θ-R0.

Example 3.17. Let X = {a,b,c} and τ= {X ,;, {a}, {a,b}}. Then the topological space (X ,τ) is a

β-θ-R0 space which is not β-θ-T2.

Theorem 3.18. Suppose that in every topological space, each singleton is β-θ-open or β-θ-

closed. Then (X ,τ) is β-θ-R0 if and only if it is β-θ-T2.

Proof. Necessity. Suppose that (X ,τ) is β-θ-R0. For each point x ∈ X , we have by hypothesi

that {x} is β-θ-open or β-θ-closed in X . If {x} is β-θ-open, then βC lθ({x}) ⊂ {x} and hence {x}

is β-θ-closed. By Theorem 3.14 (X ,τ) is β-θ-T2.

Sufficiency. Theorem 3.16.

4. β-θ-R1 spaces

Definition 4. A topological space (X ,τ) is said to be β-θ-R1 if for x, y in X with βC lθ({x}) 6=

βC lθ({y}), there exist disjoint β-θ-open sets U and V such that βC lθ({x}) is a subset of U and

βC lθ({y}) is a subset of V.
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Clearly every β-θ-R1 space is β-θ-R0. Indeed let U be a β-θ-open set such that x ∈ U .

If y ∉ U , then since x ∉ βC lθ({y}), βC lθ({x}) 6= βC lθ({y}). Hence, there exists a β-θ-open set

Vy such that βC lθ({y}) ⊂ Vy and x ∉ Vy , which implies y ∉ βC lθ({x}). Thus βC lθ({x}) ⊂ U .

Therefore (X ,τ) is β-θ-R0.

Example 4.1. Let X = {a,b,c} and τ= {X ,;, {a,b}}. Then the topological space (X ,τ) is a β-θ-

R1 space.

Theorem 4.2. If a topological space (X ,τ) is β-θ-T2 then (X ,τ) is β-θ-R1.

Proof. Let X be a β-θ-T2 space. If x, y ∈ X such that βC lθ({x}) 6= βC lθ({y}), then x 6= y.

Therefore there exists disjoint β-θ-open sets U and V such that x ∈ U and y ∈ V ; hence

βC lθ({x}) = {x} ⊂U and βC lθ({y}) = {y} ⊂V. Hence X is β-θ-R1.

Theorem 4.3. Suppose that in every topological space, each singleton is β-θ-open or β-θ-

closed. Then (X ,τ) is β-θ-R1 if and only if it is β-θ-R0.

Proof. It follows from the observation above, plus Theorem 4.2 and Theorem 3.18.

Theorem 4.4. For a topological space (X ,τ), the following statements are equivalent :

(1) (X ,τ) is β-θ-R1 ,

(2) If x, y ∈ X such that βC lθ({x}) 6= βC lθ({y}), then there exist β-θ-closed sets F1 and F2 such

that x ∈ F1 , y ∉ F1 , y ∈ F2 , x ∉ F2 and X = F1 ∪F2.

Proof. (1) ⇒ (2) : Let x, y ∈ X such that βC lθ({x}) 6= βC lθ({y}). Therefore, there exist disjoint

β-θ-open sets U1 and U2 such that x ∈ U1 and y ∈ U2. Then F1 = X −U2 and F2 = X −U1 are

β-θ-closed sets such that x ∈ F1 , y ∉ F1 , y ∈ F2 , x ∉ F2 and X = F1 ∪F2.

(2) ⇒ (1) : Suppose that x and y are distinct points of X such thatβC lθ({x}) 6=βC lθ({y}). There-

fore there exist β-θ-closed sets F1 and F2 such that x ∈ F1, y ∉ F1, y ∈ F2, x ∉ F2 and X = F1∪F2.

Now, we set U1 = X −F2 and U2 = X −F1, so that we obtain that x ∈U1, y ∈U2,U1∩U2 =; and

U1,U2 are β-θ-open. This shows that (X ,τ) is β-θ-T2. It follows from Theorem 4.2 that (X ,τ)

is β-θ-R1.

Theorem 4.5. A topological space (X ,τ) is β-θ-R1 if and only if for x, y ∈ X ,βK erθ({x}) 6=

βK erθ({y}), there exist disjointβ-θ-open sets U and V such that βC lθ({x}) ⊂U and βC lθ({y}) ⊂

V.

Proof. It follows from Lemma 3.1(3).
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