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AN EXPLICIT FORMULA FOR THE EULER NUMBERS OF

HIGHER ORDER

QIU-MING LUO

Abstract. The object of the present note is to prove a new explicit formulae for the Euler

numbers of higher order.

In the usual notations, let E
(α)
n denote the Euler numbers of highter order, defined

by (see [1, p.66, Eq.(65)])
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for an arbitrary (real or complex) parameter α.
Recently, Q.-M. Luo, Y.-M. Zheng, and F. Qi [2, p.2, Eqs.(9) and (10)] gave two new

classes of recursion formulae for the Euler numbers of higher order. In the present note
we first prove the following explicit formula for the Euler numbers of higher order:
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Proof. By the generating relation (1) yields
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Since
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∑
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setting 1 + w = (ez + e−z)/2, and applying the binomial theorem, we find form (3) that
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again applying the binomial theorem readily yields
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and upon substituting this value in (4), yields
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if we rearrange the resulting triple series (5), we have
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The innermost sum in (6) can be evaluated by appealing to the elementary combinatorial
identity:
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and leads us immediately to the explicit formula (2).

Finally, in view of the special case of our formula (2) when α = 1 provide an interesting

result for the classial Euler numbers En ≡ E
(1)
n :
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