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SOME INEQUALITIES IN PSEUDO-HILBERT SPACES

LOREDANA CIURDARIU

Abstract. The aim of this paper is to obtain new versions of the reverse of the generalized

triangle inequalities given in [4], and [5] if the pair (ai , xi ), i ∈ {1, . . . ,n} from Theorem

1 of [4] belongs to C×H , where H is a Loynes Z -space instead of K× X , X being a

normed linear space andK is the field of scalars. By comparison, in [4] the pair (ai , xi ), i ∈
{1, . . . ,n} belongs to A2, where A is a normed algebra over the real or complex number

field K. The results will be given in Theorem 1, Theorem 3, Remark 2 and Corollary 3

which represent other interesting variants of Theorem 2.1, Remark 2.2, Theorem 3.2 and

Theorem 3.4., see [4].

1. Introduction

We start by presenting in Propositions 2 and 3 two inequalities concerning the mono-

tone sequences of elements that belong to an arbitrary admissible space in the Loynes sense.

We continue by giving in Proposition 5 and Corollary 2 other inequalities for the inner prod-

uct of a monotone sequence of linear operators on H , taking into account the form of the

seminorms p and qp . Also it is good to emphasize, in Proposition 4, that the classical Dunkl-

Williams inequality, see [6], [11] and [10] remains true when the norm || || is replaced with

seminorm qp or even with an arbitrary seminorm. Then several inequalities in pseudo-Hilbert

spaces like the reverse of the generalized triangle inequality, using the seminorms qp (h) =
(p([h,h]))1/2 on H , are obtained in Theorem 1, Remark 2, Theorem 3 and Corollary 3 as gen-

eralizations of the Pecaric and Rajic inequality ([12]), see [5] and [4], Theorem 2.1, Remark

2.2, Theorem 3.2 and Theorem 3.4. In our case the pair (ai , xi ), i ∈ {1, . . . ,n} belongs to C×H ,

where H is a Loynes Z -space instead of K×X , where X is a normed linear space and K is the

field of scalars as in [5] or instead of A2, where A is a normed algebra over the real or complex

number field K as in [4]. Two interesting papers related to this subject are [1], where several

new reverses of the triangle inequality in inner product spaces are presented and [7] where

new versions of reverse triangle inequality in Hilbert C∗-modules are given.
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We recall that a locally convex space Z is called admissible in the Loynes sense if the

following conditions are satisfied:

Z is complete;

there is a closed convex cone in Z , denoted Z+, that defines an order relation on Z (that is

z1 ≤ z2 if z2 − z1 ∈ Z+);

there is an involution in Z , Z ∋ z → z∗ ∈ Z (that is z∗∗ = z, (αz)∗ = αz∗, (z1 + z2)∗ = z∗
1 + z∗

2 ),

so that z ∈ Z+ implies z∗ = z;

the topology of Z is compatible with the order (this means that a basis of convex solid neigh-

bourhoods of the origin exists);

and any monotonously decreasing sequence in Z+ is convergent.

We will say that a set C ∈ Z is called solid if 0 ≤ z ′ ≤ z ′′ and z ′′ ∈C implies z ′ ∈C .

As an easy example we shall consider Z = C , a C∗–algebra with topology and natural

involution.

Let Z be an admissible space in the Loynes sense. A linear topological space H is called

pre-Loynes Z –space if it satisfies the following properties:

H is endowed with a Z –valued inner product (gramian), i.e. there exists an application

H ×H ∋ (h,k) → [h,k] ∈ Z having the properties: [h,h] ≥ 0; [h,h] = 0 implies h = 0; [h1 +
h2,h] = [h1,h]+ [h2,h]; [λh,k]=λ[h,k]; [h,k]∗= [k ,h];

for all h,k ,h1,h2 ∈H and λ ∈C.

The topology of H is the weakest locally convex topology on H for which the application

H ∋ h → [h,h]∈ Z is continuous. Moreover, if H is a complete space with this topology, then

H is called Loynes Z –space.

Now, considering Z =C as above, Z with [z1, z2] = z∗
2 z1 is a Loynes-Z space.

An important result which can be used below is given in the next statement, and it was

proved in [9].

Let H and K be two Loynes Z -spaces. We recall that in [3, 8, 9] an operator T ∈L (H ,K )

is called gramian bounded, if there exists a constant µ > 0 so that in the sense of order of Z

holds

[T h,T h]K ≤µ[h,h]H , h ∈H . (1.1)

We denote the class of such operators by B(H ,K ), and B
∗(H ,K ) =B(H ,K )∩L

∗(H ,K ).
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We also denote the introduced norm by

‖T ‖= inf
{p

µ, µ> 0 and satisfies (1.1)
}

. (1.2)

Corollary 1. The space B
∗(H ,K ) is a Banach space, and its involution B

∗(H ,K ) in B
∗(K ,H )

satisfies

‖T ∗T ‖= ‖T ‖2, T ∈B
∗(H ,K ).

In particular B
∗(H ) is a C∗–algebra.

The following two results were presented in [3].

Lemma 1. If p is a continuous and monotonous seminorm on Z , then qp (h) = (p([h,h]))1/2 is

a continuous seminorm on H .

Proposition 1. If H is a pre-Loynes Z -space and P is a set of monotonous (increasing) semi-

norms defining the topology of Z , then the topology of H is defined by the sufficient and di-

rected set of seminorms QP = {qp | p ∈P }.

Let Z be an admissible space in the Loynes sense.

Proposition 2. If a1 ≤ a2 ≤ ·· · ≤ an , ai ∈ R, i = 1,n and b1 ≤ b2 ≤ ·· · ≤ bn , bi ∈ Z , i = 1,n then

we have a1b1 +a2b2 +·· ·+anbn ≥ 1
n (a1 +a2 +·· ·+an)(b1 +b2 +·· ·+bn);

Proof. We shall use induction. ���

Proposition 3. Let a1 > a2 > ·· · > an , ai ∈ R and b1 > b2 > ·· · > bn , bi ∈ Z , Z being an admis-

sible space in the Loynes sense. Then

(i) a1b1 +a2b2 +·· ·+anbn > a1bn +a2bn−1 +·· ·+anb1;

(ii) If σ : {1,2, . . . ,n} −→ {1,2, . . . ,n} is a bijective function then

a1b1 +a2b2 +·· ·+anbn ≥ a1bσ1
+a2bσ2

+·· ·+anbσn
≥ a1bn +a2bn−1 +·· ·+anb1.

From the second assertion will easily result (i).

2. The main results

Proposition 4. Let H be a Loynes Z -space and x, y ∈H \ {θ}. We shall prove that

qp (x − y)≥
1

4
(qp (x)+qp (y)) ·qp (

x

qp (x)
−

y

qp (y)
),

where (qp )p is a family of seminorms which generates the topology of H .
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Proof. Denoting the right side of the inequality by E , and assuming, for example, that qp (x) ≥
qp (y), we obtain the following increase

E ≤
qp (x)

2
qp (

x

qp (x)
−

y

qp (y)
).

Knowing that qp is a seminorm, we first have qp (x) ≥ 0 and then the right side of the last

inequality becomes

qp (x)

2
qp (

x

qp (x)
−

y

qp (y)
) =

1

2
qp (qp (x)

x

qp (x)
−qp (x)

y

qp (y)
) =

1

2
qp (x −

qp (x)

qp (y)
y)

So now we only need to check the inequality,

1

2
qp (x −

qp (x)

qp (y)
y)≤ qp (x − y).

But,

1

2
qp (x −

qp (x)

qp (y)
y)=

1

2
qp (x − y + y −

qp (x)

qp (y)
y)≤

1

2
qp (x − y)+

1

2
qp (y −

qp (x)

qp (y)
y),

so that it is sufficient to prove that

1

2
qp (x − y)+

1

2
qp (y −

qp (x)

qp (y)
y)≤ qp (x − y),

or

qp (y −
qp (x)

qp (y)
y)≤ qp (x − y)

since

qp (y −
qp (x)

qp (y)
y) = qp ((1−

qp (x)

qp (y)
)y)=| 1−

qp (x)

qp (y)
| qp (y)

= | qp (y)−qp (x) |=| qp (x)−qp (y) |≤ qp (x − y)

which is obvious because

qp (x)= qp (x − y + y) ≤ qp (x − y)+qp (y)

if we consider the modulus of the difference qp (x)−qp (y). ���

Remark 1. (a) We notice that no particular condition of seminorm qp appears in the proof of

the above Proposition 4, so that this property is true for every family of seminorms which

defines the topology of the considered space.
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(b) It is obvious that for every monotone seminorm p ∈PZ , where Z is an admissible space,

we have

p([x, x])+p([y, y])+p([z, z])

≥ p([x, x])
1
2 p([y, y])

1
2 +p([y, y])

1
2 p([z, z])

1
2 +p([z, z])

1
2 p([x, x])

1
2 ,

(∀) x, y, z ∈H .

(c) We get
qp (x)+qp (y)

qp (z)
+

qp (y)+qp (z)

qp (x)
+

qp (z)+qp (x)

qp (y)
≥ 6,

(∀) x, y, z ∈H with qp (x) 6= 0; qp (y) 6= 0; qp (z 6= 0).

(d) For every qp ∈PH as before, the Jensen inequality holds:

qp : H −→ R ; qp (λ1x1 +λ2x2 +·· ·+λn xn) ≤λ1qp (x1)+λ2qp (x2)+·· ·+λn qp (xn),

(∀) x1, x2, . . . , xn ∈H with λi ≥ 0, i = 1,n and

n
∑

i=1

λi = 1.

(e) If p is increasing, then p( [x,x]

q2
p (x)

+ [y,y ]

q2
p (y)

) ≥ p([x,y ]+[y,x])

qp (x)qp (y)
.

(f) Moreover, if p is increasing, it holds

q2
p (

x

qp (x)
−

y

qp (y)
) ≥ p(

[x, x]

q2
p (x)

+
[y, y]

q2
p (y)

)−2.

Proposition 5. Let f : R −→ R , n ∈ N∗, i = 1,n. Then the following inequalities are true:

(a) If f is increasing, then

n ·
n
∑

i=1

[Ai x, x] f (p([Ai x, x]))≥
n
∑

i=1

[Ai x, x]
n
∑

j=1

f (p([A j x, x])),

where Ai ∈ L (H ) is an increasing sequence and p ∈ PZ is a family of monotone semi-

norms on Z , H being a Loynes Z -space.

(b) If f is decreasing, then

n ·
n
∑

i=1

[Ai x, x] f (p([Ai x, x]))≤
n
∑

i=1

[Ai x, x]
n
∑

j=1

f (p([A j x, x])),

(c) If Ai ≥ 0, Ai ∈L (H ), then

n
n
∑

i=1

[Ai x, x] f (q2
p (A

1
2

i
x)) ≤

n
∑

i=1

[Ai x, x]
n
∑

i=1

f (q2
p (A

1
2

i
x)),
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(d) Using the conditions from (c) for the particular case of f (x) = x we obtain

n
n
∑

i=1

[A
1
2

i
x, A

1
2

i
x]q2

p(A
1
2

i
x)≥

n
∑

i=1

[A
1
2

i
x, A

1
2

i
x]

n
∑

i=1

q2
p (A

1
2

i
x),

(e) If f (x) = x, then

n
n
∑

i=1

[Ai x, x]p([Ai x, x])≥
n
∑

i=1

[Ai x, x]
n
∑

i=1

p([Ai x, x]).

Proof. (a) From Ai , ( i , j ∈ 1,n) increasing, it follows that

[Ai x, x] ≤ [A j x, x], (∀) x ∈H , i ≤ j

so considering p and f are increasing we have, f (p([Ai x, x]))≤ f (p([A j x, x])).

This fact implies

([Ai x, x]− [A j x, x])( f (p([Ai x, x]))− f (p([A j x, x]))) ≥ 0, (∀) x ∈H , i , j ∈ 1,n.

Summing up, we find

n
∑

i=1

n
∑

j=1

([Ai x, x]− [A j x, x])[ f (p([Ai x, x]))− f (p([A j x, x]))] ≥ 0, (∀) x ∈H , i , j ∈ 1,n

or
n
∑

i=1

n
∑

j=1

([Ai x, x] f (p([Ai x, x]))− [A j x, x] f (p([Ai x, x]))− [Ai x, x] f (p([A j x, x]))

+[A j x, x] f (p([Ai x, x]))) ≥ 0

and this is equivalent to

2n
n
∑

i=1

[Ai x, x] f (p([Ai x, x])) ≥ 2
n
∑

i=1

n
∑

j=1

[A j x, x] f (p([Ai x, x]))

= 2
n
∑

j=1

[A j x, x]
n
∑

i=1

f (p([Ai x, x])).

Thus, we have

n
n
∑

i=1

[Ai x, x] f (p([Ai x, x])) ≥
n
∑

i=1

[Ai x, x]
n
∑

i=1

f (p([Ai x, x])).

Similarly, we deduce (b), (c), (d), (e). ���

Corollary 2. If An ∈L (H ) is increasing with An ≥ 0 then

n
∑

i=1

[Ai x, x]
n
∑

i=1

1

p[Ai x, x]
≥ n

n
∑

i=1

[Ai x, x]

p([An−i+1x, x])

or

n
∑

i=1

[A
1
2

i
x, A

1
2

i
x]

n
∑

i=1

1

q2
p (A

1
2

i
x)

≥n
n
∑

i=1

[A
1
2

i
x, A

1
2

i
x]

q2
p (A

1
2

n−i+1
x)

.
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Proof. Let us consider the function f : {x1, x2, . . . , xn} −→ { 1
x1

, . . . , 1
xn

},

f (xi ) =
1

xn−i+1
, i = 1,n.

It is obvious that f is decreasing. If we take xi = p([Ai x, x])∈ R+ we see that

n
∑

i=1

[Ai x, x]
n
∑

i=1

1

p([An−i+1x, x])
≥ n

n
∑

i=1

[Ai x, x]

p([An−i+1x, x])

or
n
∑

i=1

[Ai x, x]
n
∑

i=1

1

p([Ai x, x])
≥n

n
∑

i=1

[Ai x, x]

p([An−i+1x, x])
���

The following results are some generalizations of the Pecaric-Rajic inequality in normed

spaces, see [4].

Theorem 1. If (ai , xi ) ∈C×H , i ∈ {1, . . . ,n}, where H is a Loynes Z -space, then

max
k∈{1,...,n}

{|ak |qp (
n
∑

j=1

x j )−
n
∑

j=1

|a j −ak |qp (x j )}

≤ qp (
n
∑

j=1

a j x j )

≤ min
k∈{1,...,n}

{|ak |qp (
n
∑

j=1

x j )+
n
∑

j=1

|a j −ak |qp (x j )}, �

for every qp ∈QP .

Proof. We notice that for any k ∈ {1, . . . ,n} we have the equality

n
∑

j=1

a j x j = ak (
n
∑

j=1

x j )+
n
∑

j=1

(a j −ak )x j .

Taking into consideration the seminorm and using the triangle inequality and a semi-

norm property, we deduce that

qp (
n
∑

j=1

a j x j ) ≤ qp (ak (
n
∑

j=1

x j ))+qp (
n
∑

j=1

(a j −ak )x j )

≤ |ak |qp (
n
∑

j=1

x j )+
n
∑

j=1

qp ((a j −ak )x j )

= |ak |qp (
n
∑

j=1

x j )+
n
∑

j=1

|a j −ak |qp (x j ),

for any k ∈ {1, . . . ,n}, so that the second part of (*) holds.
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Considering
n
∑

j=1

a j x j = ak (
n
∑

j=1

x j )−
n
∑

j=1

(ak −a j )x j

we shall obtain

qp (
n
∑

j=1

a j x j ) = qp (ak (
n
∑

j=1

x j )−
n
∑

j=1

(ak −a j )x j )

≥ |qp (ak (
n
∑

j=1

x j ))−qp (
n
∑

j=1

(ak −a j )x j )|

≥ qp (ak (
n
∑

j=1

x j ))−qp (
n
∑

j=1

(ak −a j )x j )

≥ |ak |qp (
n
∑

j=1

x j )−
n
∑

j=1

qp ((ak −a j )x j )

= |ak |qp (
n
∑

j=1

x j )−
n
∑

j=1

|ak −a j |qp (x j )

for any k ∈ {1, . . . ,n}, which proves the first part of the inequality. ���

Theorem 2. In fact this inequality is true for every seminorm p from a family of seminorms

which defines the topology of the linear space considered.

Remark 2. If there exists a r > 0 so that qp (a j −ak ) ≤ r qp (ak ) for any j ,k ∈ {1, . . . ,n}, then we

obtain

qp (
n
∑

j=1

a j x j ) ≤ min
k∈{1,...,n}

|ak |[qp (
n
∑

j=1

x j )+ r
n
∑

j=1

qp (x j )].

For ak = 1
qp (xk )

, with qp (xk ) 6= 0, k ∈ {1, . . . ,n} the inequality from (*) produces the follow-

ing results established by Pecaric and Rajic in [12] for norms:

max
k∈{1,...,n}

{
1

qp (xk )
[qp(

n
∑

j=1

x j )−
n
∑

j=1

|qp (x j )−qp (xk )|]}

≤ qp (
n
∑

j=1

x j

qp (x j )
)

≤ min
k∈{1,...,n}

{
1

qp (xk )
[qp (

n
∑

j=1

x j )+
n
∑

j=1

|qp (x j )−qp (xk )|]},

and then we get the following reverse of the generalized triangle inequality of M. Kato:

min
k∈{1,...,n}

{qp (xk )}[n −qp (
n
∑

j=1

x j

qp (x j )
)] ≤

n
∑

j=1

qp (x j )−qp (
n
∑

j=1

x j )
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≤ max
k∈{1,...,n}

{qp (xk )}[n −qp (
n
∑

j=1

x j

qp (x j )
)].

If we now take ak = qp (xk ), k ∈ {1, . . . ,n} then from (∗) we shall have,

max
k∈{1,...,n}

{qp (xk )qp (
n
∑

j=1

x j )−
n
∑

j=1

|qp (x j )−qp (xk )|qp (x j )}]

≤ qp (
n
∑

j=1

qp (x j )x j ) ≤ min
k∈{1,...,n}

{qp (xk )qp (
n
∑

j=1

x j )+
n
∑

j=1

|qp (x j )−qp (xk )|qp (x j )}.

Remark 3. We notice that in these inequalities no special properties of the seminorm qp were

used, so the inequalities are true for every arbitrary seminorm.

Lemma 2. If we take a,b ∈C and x, y ∈H , then

max{|a|qp (x ± y)−|(b −a)|qp (y), |b|qp (x ± y)−|b −a|qp (x)}

≤ qp (ax ±by)≤ min{|a|qp (x ± y)+|(b −a)|qp (y), |b|qp (x ± y)+|b −a|qp (x)}.

Proof. We use inequality (∗) with n = 2, a1 = a, a2 = b, x1 = x and x2 =±y. ���

Like in [4], we can obtain the following properties in Loynes spaces:

Theorem 3. If a,b ∈C and x, y ∈H then,

qp (ax ±by) ≤ qp (x ± y)min{|a|, |b|}+|b −a|max{qp (x), qp (y)}

and

qp (ax ±by) ≤ qp (x ± y)max{|a|, |b|}+|b −a|min{qp (x), qp (y)}.

Proof. The check will be like in [4]. For the first inequality for example, we use the last part of

Lemma 2 and

min{|a|qp (x ± y)+|(b −a)|qp (y), |b|qp (x ± y)+|b −a|qp (x)}

≤ qp (x ± y)min{|a|, |b|}+|b −a|max{qp (x), qp (y)} �

Remark 4. Lemma 2 and Theorem 3 are true if instead of the particular seminorm qp we

take every arbitrary seminorm of a family of seminorms which defines the topology of the

considered space.

Corollary 3. (i) If a, b ∈C and x, y ∈H then

qp (ax ±by)≤
|a|+ |b|

2
qp (x ± y)+|b −a|

qp (x)+qp (y)

2
.
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(ii) If the above conditions are satisfied for a, b, x, y then

qp (x ± y)max{|a|, |b|}−|b −a|max{qp (x), qp (y)} ≤ qp (ax ±by)

and

min{|a|, |b|}|qp (x)−qp (y)|− |b −a|min{qp (x), qp (y)}≤ qp (ax ±by).

(iii) Adding the above inequalities (ii), we find

1

2
· (|a|+ |b|)|qp (x)−qp (y)|− |b −a| ·

qp (x)+qp (y)

2
≤ qp (ax ±by),

by using the property that min{α,β}+max{α,β} =α+β, α, β ∈ R .

The proof of this corollary will use the same techniques as in [4].

Remark 5. The above inequalities are true for any arbitrary seminorm in a family of semi-

norms which defines the topology of the considered space.
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