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A NOTE ON ESSENTIAL FINITE INDECOMPOSABILITY

AND THICKNESS IN PRIMARY ABELIAN GROUPS

PATRICK W. KEEF AND PETER V. DANCHEV

Abstract. We present a new characterization of essentially finitely indecomposable abelian

p-groups. Parallel ideas are also applied to the socles of groups, especially in the case of

groups that are pure-complete. These results are then used to discuss the class of thick

abelian p-groups.

1. Introduction

By the term “group” we will mean an abelian p-group, where p is a fixed prime. Our

terminology and notation will follow [9]. A group will be said to be Σ-cyclic if it is isomorphic

to a direct sum of cyclic groups.

A group G is said to be essentially finitely indecomposable, or efi for short, if for any de-

composition G =⊕i∈IGi , there exists a positive number m such that almost all summands Gi

are bounded by pm . Equivalently, a reduced group G is efi if and only if it does not admit an

unboundedΣ-cyclic direct summand; that is, if G = A⊕C and C isΣ-cyclic, then C is bounded.

The main purpose of this note is to give a new criterion for a group to be essentially

finitely indecomposable (Theorem 2.1). We then use the terminology of valuated vector spaces

to obtain parallel results for the socles of groups (e.g., Proposition 3.2; see [10] for more de-

tails about this terminology). If G is a group that is pure-complete (i.e., for every subgroup S of

G[p], there is a pure subgroup P ⊆G such that P [p] = S), then these two approaches produce

comparable results (e.g., Proposition 3.7).

A group A is said to be thick if whenever H isΣ-cyclic and f : A → H is a homomorphism,

then f is small (i.e., the kernel of f contains a large subgroup of A). In view of [11] this is

tantamount to the condition that for each homomorphism f : A → H with H aΣ-cyclic group,

there exists a positive integer i such that f ((p i G)[p]) = {0}. In our exposition we will use an

equivalent formulation from [1]: A is thick if and only if whenever K is a subgroup of A and
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A/K is Σ-cyclic, then there is a natural number j such that (p j A)[p] ⊆ K . A useful fact is that

A is thick if and only if A/pωA is thick (see, e.g., [4]).

Clearly each thick group is efi (otherwise, consider the projection onto an unbounded

Σ-cyclic summand), while the converse is not true (see, e.g., [6] and [5]). Nevertheless, these

two classes share some interesting properties; for instance in [2] it was proved that G is efi if

and only if G/pωG has this property.

We use the our results to give new perspectives on some old results; for example, that a

group with socle that is efi is necessarily thick (Corollary 3.6; cf. [12]), and that the converse

holds for pure-complete groups (Corollary 3.8; cf. [1]).

2. A criterion for reduced efi groups

Recall that a group G is essentially finitely indecomposable, or efi, if G = ⊕i∈I Gi implies

that there exists a positive integer m such that pmGi = {0} for almost all (i.e., for all but a finite

number of) indices i ∈ I . For reduced groups, the following gives another characterization.

Theorem 2.1. If G is a reduced group, then G is efi iff whenever G = ∪n<ωAn , where An ⊆

An+1 ≤G and each An is pure and nice in G, there exists an index k such that G/Ak is bounded.

Proof. If G is not efi, then it has an unbounded summand which is Σ-cyclic. Using this, we

can easily express G as an ascending union of a sequence of summands An of G such that

each G/An is unbounded.

Conversely, suppose the group G can be expressed as the ascending union of a sequence

of pure, nice subgroups An such that each G/An is unbounded. We want to show that G is not

efi.

We construct a strictly increasing sequence of positive integers, {ni }i<ω, elements xi ∈ Ani

and summands Ci of G satisfying the following:

(a) If Xi = 〈xni
〉, then |Xi | ≥ p i ;

(b) Ci+1 ⊆Ci ;

(c) If Yi = X1 ⊕X2 ⊕·· ·⊕Xi , then G = Yi ⊕Ci ;

(d) Ci+1 ∩ Ani
=Ci ∩ Ani

.

Before constructing these things, we note that the result easily follows from the following:

Claim: If Y =⊕i Xi and C =∩i Ci , then G = Y ⊕C , so G is not efi.

To verify that (a)-(d) imply the Claim, note first that (b) and (d) imply that C ∩ Ani
=

Ci ∩ Ani
. In addition, since Yi ⊆ Ani

, it follows from (c) that

Ani
= Yi ⊕ (Ci ∩ Ani

)= Yi ⊕ (C ∩ Ani
).
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Taking unions, we can conclude that G ⊆ Y +C . Also, if y = c ∈ Y ∩C , then there is an index i

such that y ∈ Yi . And since c ∈C ⊆Ci , (c) implies that c = y = 0.

So, to finish off the proof, we need to show that once we have constructed n1, . . . ,ni ;

X1, . . . , Xi , and C1, . . . ,Ci satisfying (a)-(d), we can construct ni+1, xi+1 and Ci+1.

Let B = Ci ∩ Ani
, so Ani

= Yi ⊕B . It follows that B is pure in Ani
, so that B is also pure

in G . In addition, Ci /B = Ci /(Ci ∩ Ani
) ∼= [Ani

+Ci ]/Ani
= G/Ani

, and since Ani
is nice in the

reduced group G , the factor-group G/Ani
is reduced as well - see, for example, [9, Exercise

2(a) from Section 79]. Hence, by assumption, G/Ani
is both reduced and unbounded.

Let E be a subgroup of Ci containing B such that E/B is a cyclic summand of Ci /B of

order at least p i . It follows that there is a subgroup Ci+1 of Ci containing B such that Ci /B =

(E/B )⊕ (Ci+1/B ). Now, since B is pure in G , it is certainly pure in E , and since the quotient

E/B is cyclic, E = 〈xi+1〉⊕B for some xi+1 ∈ E . Choose ni+1 > ni such that xi+1 ∈ Ani+1
.

Note that (a) and (b) are evident. To verify (d), notice that Ci+1 ∩ Ani
=Ci+1 ∩Ci ∩ Ani

=

Ci+1 ∩B = B =Ci ∩ Ani
.

As for (c), note that if Xi+1 = 〈xi+1〉, then Ci = E +Ci+1 = (Xi+1 +B )+Ci+1 = Xi+1 +Ci+1.

And if z ∈ Xi+1∩Ci+1, then z +B ∈ (E/B )∩ (Ci+1/B ) = {0}, so that z ∈ Xi+1∩B = {0}. Therefore,

Ci = Xi+1 ⊕Ci+1, and

G = Yi ⊕Ci =Yi ⊕ (Xi+1 ⊕Ci+1) =Yi+1 ⊕Ci+1,

showing that (c) holds, and concluding the proof. ���

Remark. The condition for niceness on subgroups of the whole group is not necessary in

Theorem 2.1. In fact, we do not even need that each An is nice in G ; it will suffice to assume

that every quotient group G/An is not the direct sum of a bounded group and a divisible

group. However, a little more work must be done.

Theorem 2.1 and its proof are reminiscent of the characterization of groups that are C-

decomposable contained in ([14], Theorem 2.1). Similarly, for purposes of comparison, we

state a result that was established as part of the proof of ([8], Theorem 1.3). To begin, if A is

pure in G , it is easy to check that G/A is bounded iff there is an integer 0 < m < ω such that

(pmG)[p] ⊆ A.

Theorem 2.2. If G is a separable group, then G is thick iff whenever G =∪n<ωAn , where An ⊆

An+1 ≤ G and each An is nice in G, there exists an index k such that (pmG)[p] ⊆ Ak for some

natural m <ω.

In other words, to characterize thick groups, as opposed to efi groups, we restrict “re-

duced” in Theorem 2.1 to “separable” and we only demand that the subgroups An be nice in

G (i.e., we drop the assumption of purity).



166 PATRICK W. KEEF AND PETER V. DANCHEV

We will now raise some questions.

Problem 2.3. If P be a pure subgroup of a group A and both P and A/P are efi, does it follow

that A is also efi?

This question can be resolved positively if the following holds: If A is a group with Σ-

cyclic summand of final rank α, P is a pure subgroup of A and A/P does not have such a

summand, then A has a summand contained in P which is a Σ-cyclic group of final rank α.

For thick groups this question was settled in [15].

In [11], a group A of final rankαwas called far from thick if it admits anα-homomorphism,

i.e., a homomorphism φ : A →C , where C is a Σ-cyclic group, such that for all n <ω the image

φ((pn A)[p]) has rank at least α.

We pause for the following observation:

Proposition 2.4. Let G be a group such that |pβG| < fin r(G) for some ordinalβ. Then the group

G is far from thick iff the factor-group G/pβG is far from thick.

Proof. Using the language of [13], if α=fin r(G), then the canonical epimorphism G →G/pβG

is α-bijective, i.e., its kernel and cokernel have rank less than α. The result therefore follows

from ([13], Corollary 2.5). ���

Now we can ask a question similar to Problem 2.3 for groups that are far from thick.

Problem 2.5. If P be a pure subgroup of a group A and A is far from thick, does it follow that

(at least one of) P or A/P is also far from thick?

To establish this we need to prove that if there is an α-homomorphism defined on A, then

the same will hold for either P and A/P .

We close this section with the following.

Problem 2.6. Describe the efi groups that are far from thick.

For example, in [3] a pω+2-projective group was constructed that is efi. Utilizing ([11],

Corollary 25), this group will be far from thick.

3. Groups with efi socles

Translating the above notions to the category of valuated vector spaces, the socle G[p] of

a group G will be said to be essentially finitely indecomposable, or again efi for shortness, if it

is not isometric (i.e., isomorphic as a valuated vector space) to a valuated direct sum V ⊕F ,



EFI AND THICK PRIMARY ABELIAN GROUPS 167

where F is a free valuated vector space with F (n) 6= 0 for each n < ω. In other words, G[p] is

efi if it fails to possess a valuated summand that is isometric to the socle of an unbounded

Σ-cyclic group.

On the other hand, if A is a group, A[p] is said to be countably-complete if whenever

A[p] =∪n<ωAn , where An ⊆ An+1 ≤ A[p] with each An being closed in A[p], then there exists

an index k such that (pm A)[p] ⊆ Ak for some m <ω.

If A is a separable group, then A[p] is countably-complete iff it is efi (see [7], Proposition

4.4). A different proof of this fact can be based upon Theorem 2.1:

Proposition 3.1. If A is a separable group, then A[p] is countably-complete iff it is efi.

Proof. It is easy to see that if A[p] is not efi, then it is not countably-complete. So assume A[p]

is not countably-complete; let {An }n<ω testify to this assertion. If B is a basic subgroup of A,

then we can view A as a pure subgroup of the torsion-complete group B . Since a torsion-

complete group is quasi-complete (see section 74 of [9] for a definition of this term), then

repeatedly using ([9], Theorem 74.1) we can construct an ascending sequence {Pn}n<ω of pure

subgroups of B such that Pn[p] = An for each n < ω. If G is the union of the Pn , it is readily

checked that each G/Pn will be an unbounded separable group. So by Theorem 2.1, G is

not efi; i.e., G has a summand C that is an unbounded Σ-cyclic group. So C [p] will be an

unbounded free valuated summand of A[p] =G[p], so that A[p] is not efi, as required. ���

This can be extended to arbitrary (not necessarily separable) groups via the following

argument.

Proposition 3.2. If A is any group, then A[p] is countably-complete iff it is efi.

Proof. Again, clearly if A[p] is not efi then it not countably-complete. So assume {An}n<ω

demonstrates that A[p] is not countably-complete. If H is a high subgroup of A (i.e., maximal

with respect to the property H ∩pωA = {0}), then there is an isometry A[p]∼= H [p]⊕(pωA)[p].

Using {An ∩ H [p]}n<ω, it is easy to check that H [p] also fails to be countably-complete. So

with the aid of Proposition 3.1, H [p] has an unbounded free valuated summand. Since this

will also be a valuated summand of A[p], it follows that A[p] is not efi, as desired. ���

We pause now for a quick observation about direct sums.

Proposition 3.3. If A = B ⊕C , then A[p] is efi iff both B [p] and C [p] are efi.

Proof. Suppose first that one of B [p] or C [p] fails to be efi. It follows that one of them has a free

unbounded valuated summand. Since this will also be a free unbounded valuated summand

of A[p], A[p] fails to be efi as well.
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Conversely, assume that both B [p] and C [p] are efi; thus by Proposition 3.2 they are

countably-complete. To show A[p] is efi, i.e., countably-complete again in virtue of Propo-

sition 3.2, suppose A[p] = ∪n<ωAn , where An ⊆ An+1 ≤ A[p] and each An is closed in A[p].

Hence B [p] = ∪n<ω(An ∩B ) and C [p] = ∪n<ω(An ∩C ) with each An ∩B closed in B [p] and

each An ∩C closed in C [p]. Consequently, there are indices k and l and integers i and j such

that (p i B )[p] ⊆ Ak and (p j C )[p] ⊆ Al . If m = max(i , j ) and s = max(k , l ), it follows at once

that (pmB )[p] ⊆ As and (pmC )[p] ⊆ As . Therefore, (pm A)[p] = (pmB )[p]+ (pmC )[p] ⊆ As , as

required. ���

It was proved in [2] that G is efi iff G/pωG is efi. So, the following question arises quite

naturally: Is G[p] efi iff (G/pωG)[p] is efi? Half of this is straightforward.

Proposition 3.4. If G[p] is efi, then (G/pωG)[p] is efi.

Proof. Suppose (G/pωG)[p] is the ascending union of the closed subgroups Yn ⊆ (G/pωG)[p].

If φ : G → G/pωG is the canonical epimorphism and we let Xn = φ−1(Yn)∩G[p], then G[p]

is the ascending union of the subgroups Xn , which will all be closed in G[p]. So there are

integers j ,k such that (p j G)[p] ⊆ Xk ; thus φ((p j G)[p]) ⊆ φ(Xk ) ⊆ Yk . Since φ((p j G)[p]) is

dense in (p j (G/pωG))[p] and Yk is closed, we can conclude that (p j (G/pωG))[p] ⊆ Yk , as

needed. ���

Unfortunately, the converse of Proposition 3.4 fails. For example, if B is an unboundedΣ-

cyclic group with torsion completion B and we let G = B/B [p], then it can simply be checked

that (G/pωG)[p] ∼= (pB)[p] will be efi, but G[p] will not be.

In [12] it was observed that each separable group with efi socle is thick. We present a

different proof of this fact.

Proposition 3.5. If A[p] is countably-complete, then A is thick.

Proof. Let A/K be a Σ-cyclic group. Express A/K as an ascending union ∪n<ω(An /K ), where

all An/K are pn-bounded summands of A/K . Therefore,

[(pn A∩ An)+K ]/K ⊆ pn(A/K )∩ (An /K ) = {0},

so that pn A∩An ⊆K . Now, A/An
∼= (A/K )/(An /K ) is separable, so it plainly follows that A[p] =

∪n<ωAn[p] where each An[p] is closed in A[p]. Since A[p] is countably-complete, there is an

integer m <ω such that (pm A)[p] ⊆ Ak for some index k . So if j =max{k ,m}, then

(p j A)[p] ⊆ (pk A)[p]∩ (pm A)[p] ⊆ pk A∩ Ak ⊆ K .

According to [1], this shows that A is thick. ���
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Corollary 3.6. Groups with efi socles are thick.

Proof. This follows directly from Propositions 3.2 and 3.5. ���

We now observe that all three notions alluded to above do coincide for pure-complete

groups.

Proposition 3.7. If A is a pure-complete group, then A is efi iff A[p] is efi.

Proof. We may certainly assume A is reduced and hence separable. If A[p] is efi, it trivially

follows that A is efi (this direction does not use that A is pure-complete). Conversely, sup-

pose that A[p] = A1 ⊕ A2 is a valuated direct sum where A2 is unbounded and free. It follows

that there exist pure subgroups P1 and P2 of A such that A1 = P1[p], A2 = P2[p] and P2 is an

unbounded Σ-cyclic group. If x = y + z ∈ A[p], where y ∈ A1[p], z ∈ A2[p], then it is plainly

verified that

htA(x) = min{v A1
(y), v A2

(z)} =min{htP1
(y),htP2

(z)} = htP1⊕P2
(x).

Owing to ([9], 26(h)), the internal direct sum P1⊕P2 is pure in A. And since A[p] = (P1⊕P2)[p],

invoking ([9], 26(i)) we have A = P1 ⊕P2, showing that A is not efi, as expected. ���

It was established in [1] that a pure-complete group is efi iff it is thick. As an immediate

consequence, we obtain the following statement.

Corollary 3.8. If A is a pure-complete group, then A is thick iff A[p] is efi.

Again, in ([12], Proposition 20), a thick group A was constructed such that A[p] is not efi.

Hence Corollary 3.8 implies that in such an example A cannot be pure-complete.
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