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NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS WHOSE

POLES ARE LOCALLY UNIFORMLY DISCRETE

XIAO-YI LIU

Abstract. Let h be a positive number, and let a(z) be a function holomorphic and zero-
free on a domain D. Let F be a family of meromorphic functions on D such that for every
f ∈ F , f (z) = 0 ⇒ f ′(z) = a(z) and f ′(z) = a(z) ⇒ | f ′′(z)| ≤ h. Suppose that each pair of
functions f and g in F have the same poles. Then F is normal on D.

1. Introduction

A family F of meromorphic functions on a plane domain D ⊂ C is said to be normal on

D in the sense of Montel if each sequence { fn } ∈F contains a subsequence which converges

spherically uniformly on each compact subset of D. See [4], [7], [9].

For two functions f and g meromorphic on D in C, and two complex numbers or mero-

morphic functions a and b, we write f (z) = a(z) ⇒ g (z) = b(z) if g (z) = b(z) whenever f (z) =

a(z), and write f (z) = a(z) ⇔ g (z) = b(z) if f (z) = a(z) if and only if g (z) = b(z). When a is

a complex value and f (z) = a ⇔ g (z) = a, we also say that f and g share the value a or a is

a shared value of f and g . For families of meromorphic functions, the connection between

normality and shared values has been studied frequently following Schwick’s initial paper [8].

The starting point of this paper is the following result.

Theorem 1.1 ([1] Theorem 4). Let h be a positive number, k ≥ 2 be an integer, and let a(z) be

a function which is holomorphic and zero-free on D. Then the family F = { f } of holomorphic

functions on D such that f (z) = 0 ⇒ f ′(z) = a(z) and f ′(z) = a(z) ⇒ | f (k)(z)| ≤ h is normal on

D.

We remark that with the same notations, the family F = { f } of meromorphic functions

on D such that f (z) = 0 ⇒ f ′(z) = a(z) and f ′(z) = a(z)⇒ | f (k)(z)| ≤ h is not normal in general

(at least for k = 2) even if a(z) is a nonzero constant. This is shown by Example 1 in [2] where

Received November 7, 2011, accepted August 8, 2013.
2010 Mathematics Subject Classification. 30D45.
Key words and phrases. Meromorphic functions, normal families, shared values.
The work is supported by National Natural Science Foundation of China (Grant NO. 11171045).

13

http://dx.doi.org/10.5556/j.tkjm.45.2014.1042


14 XIAO-YI LIU

it is proved that such a family F is normal if the poles of each function in F have sufficiently

large multiplicities. We give here another condition on poles that enables the family F to be

normal. In the sequel, we say that the poles of functions in F are locally uniformly discrete

on D, if for each point z0 ∈ D, there exists δ= δ(z0) > 0 such that each function f ∈ F has at

most one pole (ignoring multiplicity) in the disk ∆(z0,δ) = {z : |z − z0| < δ} ⊂ D.

Theorem 1.2. Let h be a positive number and a(z) be a function which is holomorphic and

zero-free on D. Then the family F = { f } of meromorphic functions on D such that f (z) = 0 ⇒

f ′(z) = a(z) and f ′(z) = a(z)⇒| f ′′(z)| ≤ h is normal on D, provided that the poles of functions

in F are locally uniformly discrete on D.

Notice that if each pair of functions f and g in F have the same poles (or share the value

∞) on D, then the poles of functions in F are locally uniformly discrete in D. So we have the

following corollary to Theorem 1.2.

Theorem 1.3. Let h be a positive number and a(z) be a function which is holomorphic and

zero-free on D. Then the family F = { f } of meromorphic functions on D such that f (z) = 0 ⇒

f ′(z) = a(z) and f ′(z)= a(z) ⇒| f ′′(z)| ≤h is normal on D, provided that each pair of functions

f and g in F have the same poles on D.

2. Some lammas

In order to prove our theorems, we require the following results. We assume the standard

notation of value distribution theory, as presented and used in [4]. The first lemma is a special

case of [6, Lemma 2].

Lemma 2.1. Let F be a family of functions meromorphic on D. Suppose that there exists A ≥ 1

such that f (z) = 0 ⇒ | f ′(z)| ≤ A for each f ∈F . If F is not normal at some point z0 ∈ D, there

exist points zn ∈ D with zn → z0, positive numbers ρn → 0 and functions fn ∈F such that the

sequence gn(ζ) = ρ−1
n fn(zn+ρnζ) converges spherically locally uniformly on C to a nonconstant

meromorphic function g which is of finite order and satisfies g ♯(ζ) ≤ g ♯(0) = A+1.

Here, as usual, g ♯(ζ) = |g ′(ζ)|/(1+|g (ζ)|2 ) is the spherical derivative.

Lemma 2.2 ([5]). Let f be a meromorphic function on C of finite order. Then for each positive

integer k,

m

(

r,
f (k)

f

)

=O(log r ), r →∞.

Lemma 2.3 ([4] Corollary to Theorem 3.5). Let f be a transcendental meromorphic function,

and let a be a non-zero value. Then, for each positive integer k, either f or f (k)−a has infinitely

many zeros.
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Lemma 2.4 ([2] Remark, [1] Lemma 6). Let g be a nonconstant entire function, k ≥ 2 be an

integer, and let a be a nonzero finite value. If g (z) = 0 ⇒ g ′(z) = a and g ′(z) = a ⇒ g (k)(z) = 0,

then g (z) = a(z − z0), where z0 is a constant.

Lemma 2.5. Let g be a function meromorphic on C of finite order and with finitely many poles,

and let a be a nonzero finite value. If g (z) = 0 ⇒ g ′(z) = a and g ′(z) = a ⇒ g ′′(z) = 0, then g is

a rational function.

Proof. Suppose that g is transcendental, then by Lemma 2.4, g is not entire and by the as-

sumption, N (r, g )=O(log r ). Since g (z) = 0 ⇒ g ′(z) = a and g ′(z) = a ⇒ g ′′(z) = 0, the zeros of

g are simple and g (z) = 0⇒ g ′′(z) = 0. It follows that

N

(

r,
g ′′

g

)

≤ 2N (r, g ) =O(log r ).

On the other hand, as g is of finite order, by Lemma 2.2, we have

m

(

r,
g ′′

g

)

=O(log r ).

Hence

T

(

r,
g ′′

g

)

=m

(

r,
g ′′

g

)

+N

(

r,
g ′′

g

)

=O(log r ).

This shows that the function

R =
g ′′

g
(2.1)

is a rational function. Since g is not entire, R is nonconstant and has at least one (double)

pole. Thus by the condition g (z) = 0 ⇒ g ′(z) = a and g ′(z) = a ⇒ g ′′(z) = 0, we see that the

zeros of g and the zeros of g ′−a coincide with finitely many exceptions, and that all zeros of

g ′−a are double with finitely many exceptions. Hence by Lemma 2.3, g has infinitely many

zeros, and as g is of finite order,
g ′−a

g 2
=QeU (2.2)

for some polynomials Q(6≡ 0) and U . By (2.2), we have

g ′
= a +QeU g 2, (2.3)

so that

g ′′
= (Q ′

+QU ′)eU g 2
+2QeU g g ′

= (Q ′
+QU ′)eU g 2

+2QeU g (g 2QeU
+a)

= 2Q2e2U g 3
+ (Q ′

+QU ′)eU g 2
+2aQeU g . (2.4)

Thus by (2.1), we have

2Q2e2U g 2
+ (Q ′

+QU ′)eU g +2aQeU
= R . (2.5)
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Hence

g (z) = 0 ⇒ 2aQeU
= R(z). (2.6)

Now differentiating the both sides of (2.5) yields that

2
(

Q2e2U g 2)′
+

[

(Q ′
+QU ′)eU

]′
g + (Q ′

+QU ′)eU g ′
+2a(Q ′

+QU ′)eU
= R ′, (2.7)

so that by g (z) = 0⇒ g ′(z) = a, we get

g (z) = 0 ⇒ 3a(Q ′
+QU ′)eU

=R ′. (2.8)

Hence, by (2.6) and (2.8), we see that

g (z) = 0 ⇒
3

2

(

Q ′

Q
+U ′

)

=
R ′

R
. (2.9)

Since g has infinitely many zeros, it follows that

3

2

(

Q ′

Q
+U ′

)

≡
R ′

R
. (2.10)

We claim that (2.10) is impossible. In fact, the residues of the right at the double poles of R are

−2, while the residues of the left are not negative everywhere.

This contradiction shows that g must be a rational function. This completes the proof of

the lemma. ���

Lemma 2.6. Let g be a nonconstant rational function with at most one pole, and let a be a

nonzero finite value. If g (z) = 0 ⇒ g ′(z) = a and g ′(z) = a ⇒ g ′′(z) = 0, then g (z) = a(z − z0),

where z0 is a constant.

Proof. By Lemma 2.4, we only have to prove that g is a polynomial. Suppose not, then by the

condition, we may assume g has only one pole 0 and it has multiplicity m ≥ 1. Hence 0 is a

double pole of g ′′/g . On the other hand, since g (z) = 0 ⇒ g ′(z) = a and g ′(z) = a ⇒ g ′′(z) = 0,

the zeros of g are simple and g (z) = 0⇒ g ′′(z) = 0, so that g ′′/g has no other poles, and hence

z2g ′′/g is a polynomial. Since

g ′′

g
=

g ′′

g ′
·

g ′

g
=O

(

1

z

)

·O

(

1

z

)

=O

(

1

z2

)

as z →∞, we then see that z2g ′′/g is a constant c . Obviously, c 6= 0.

Now write

g (z) = z−m
n
∑

s=0
as zs

=

n
∑

s=0
as zs−m ,
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where as are constants and a0 6= 0. Then

g ′′
=

n
∑

s=0
(s −m)(s −m −1)as zs−m−2.

Thus by z2g ′′ = cg , we get

n
∑

s=0
(s −m)(s −m −1)as zs

= c
n
∑

s=0
as zs . (2.11)

So we can see (s−m)(s−m−1)as = cas , s = 0,1,2, . . . ,n. It follows from a0 6= 0 that c =m(m+1),

and hence as = 0, s = 1,2, . . . ,2m,2m +2, . . . ,n.

If a2m+1 = 0, we have g (z) = a0z−m . Obviously, the zeros of g ′(z)−a are all simple, which

contradicts g ′(z) = a ⇒ g ′′(z) = 0.

If a2m+1 6= 0, we have g (z) = a0z−m +a2m+1zm+1. Then

g ′(z)−a =
H (z)

zm+1
,

where

H (z)= (m +1)a2m+1z2m+1
−azm+1

−ma0. (2.12)

Since g ′(z) = a ⇒ g ′′(z) = 0, we see that all zeros of H (z) are multiple. Suppose ζ is a zero of

H (z), then

H (ζ) = (m +1)a2m+1ζ
2m+1

−aζm+1
−ma0 = 0 (2.13)

and

H ′(ζ) = (m +1)(2m +1)a2m+1ζ
2m

− (m +1)aζm
= 0. (2.14)

We see that ζ 6= 0, and by (2.14),

ζm
=

a

(2m +1)a2m+1
.

Then by (2.13),

(m +1)a2m+1

(

a

(2m +1)a2m+1

)2

ζ−
a2

(2m +1)a2m+1
ζ−ma0 = 0,

hence we have

ζ=−
(2m +1)2 a0a2m+1

a2
.

This shows that ζ is a unique zero of H (z), then we get

H (z)= (m +1)a2m+1

(

z +
(2m +1)2 a0a2m+1

a2

)2m+1

. (2.15)

Comparing the coefficient of z of (2.12) and (2.15), there is a contradiction.

The proof is completed. ���
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3. Proofs of the main results

Proof of Theorem 1.2. It suffices to show that F is normal at every point in D. Suppose that

F is not normal at some point z0 ∈ D. By the condition, there exists δ > 0 such that every f

in F has at most one pole (simple or multiple) in ∆(z0,δ) and ∆(z0,δ) ⊂ D. Then by Lemma

2.1, we can find functions fn ∈ F , points zn ∈ ∆(z0,δ) with zn → z0, and positive numbers

ρn → 0 such that the sequence of functions gn(ζ) = ρ−1
n fn(zn +ρnζ) converges spherically

locally uniformly on C to a nonconstant meromorphic function g of finite order such that

g ♯(0) = (M +1)+1 = M +2, where M = max{|a(z)| : z ∈∆(z0,δ)}.

We claim that

(i) g has at most one pole;

(ii) g (ζ) = 0 ⇒ g ′(ζ) = a(z0); and

(iii) g ′(ζ) = a(z0) ⇒ g ′′(ζ) = 0.

To prove (i), suppose that g (ζ) has two distinct poles ζ1 and ζ2. Then by Hurwitz’s theo-

rem, gn (for n sufficiently large) has two distinct poles ζn,1 and ζn,2 such that ζn, j → ζ j , ( j =

1,2). It follows from gn(ζ) = ρ−1
n fn(zn +ρnζ) that fn has has two distinct poles wn,1 = zn +

ρnζn,1 and wn,2 = zn +ρnζn,2. However, as both wn, j → z0, this contradicts that every f in F

has at most one pole in ∆(z0,δ). The claim (i) is proved.

To prove (ii), let ζ0 be a zero of g . Then by Hurwitz’s theorem, there exist points ζn → ζ0,

such that gn(ζn) = 0 (for n sufficiently large), and hence fn(zn+ρnζn) = 0. Thus by fn(ζ) = 0 ⇒

f ′
n(ζ) = a(ζ), we have g ′

n(ζn) = f ′
n(zn +ρnζn) = a(zn +ρnζn). It follows that g ′(ζ0) = limn→∞

g ′
n(ζn) = a(z0). This proves (ii).

Next we prove (iii). Suppose that g ′(ζ0) = a(z0). Then g (ζ0) 6= ∞ and hence on some

neighborhood ∆(ζ0) of ζ0, g and gn (with n sufficiently large) are holomorphic. Thus g ′
n(ζ)−

a(zn +ρnζ) → g ′(ζ)− a(z0) and g ′′
n(ζ) → g ′′(ζ) on ∆(ζ0). Hence by g ′(ζ) 6≡ a(z0) (for other-

wise, g (ζ) = a(z0)ζ+c for some constant c which contradicts that g ♯(0) = M +2 > |a(z0)|) and

Hurwitz’s theorem, there exist points ζn → ζ0 such that g ′
n(ζn)− a(zn +ρnζn) = 0 (for n suf-

ficiently large). Since g ′
n(ζ) = f ′

n(zn +ρnζ), we get f ′
n(zn +ρnζn) = a(zn +ρnζn), and hence

| f ′′
n (zn +ρnζn)| ≤ h by the condition f ′(z) = a(z) ⇒ | f ′′(z)| ≤ h. Since g ′′

n(ζ) = ρn f ′′
n (zn +ρnζ),

it follows that |g ′′
n(ζn)| ≤ ρnh, and hence g ′′(ζ0) = 0 by g ′′

n(ζ) → g ′′(ζ). The claim (iii) is also

proved.

Now by Lemma 2.5 and Lemma 2.6, g must be of the form g (ζ) = a(z0)ζ+ c for some

constant c . This contradicts that g ♯(0) = M +2 > |a(z0)|.

Thus F is normal at every point in D and hence on D. ���
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