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EXISTENCE OF SOLUTIONS OF NONLINEAR

INTEGRODIFFERENTIAL EQUATIONS WITH

NONLOCAL CONDITIONS

A. ANGURAJ, A. R. NAVANEETHAN AND T. S. SUKANYA

Abstract. In this paper we prove the existence of mild and strong solutions of semilinear

integrodifferential equations in Banach spaces with nonlocal initial conditions. We prove the

existence theorems by using Schaefer’s fixed point theorem.

1. Introduction

In this paper we consider semilinear integrodifferential equations with nonlocal con-
ditions

y′(t) = A(t, y)y + f

(

t, y,

∫ t

0

K(t, s)F (s, y(s))ds

)

, t ∈ J = [0, b],

y(0) + g(y) = y0, (1)

where A(t, y) : E → E, f : J ×E×E → E and K : J × J → R are continuous functions,
g : C(J,E) → E, y0 ∈ E and E is a real Banach space with the norm ‖ · ‖. We prove the
existence of mild and strong solutions for the above problem by using Schaefer’s fixed
point theorem.

Nonlinear differential equations with classical initial conditions have been studied by
many authors [1, 5]. The nonlocal conditions which is a generalization of the classical
initial condition was considered by Byszewski [4]. Several papers have been devoted
to studying the existence of solutions for differential equations with nonlocal conditions
[2, 3, 4]. In this paper we investigate the mild and strong solutions of the semilinear
integrodifferential equations with nonlocal conditions in Banach spaces.

2. Preliminaries and Basic Hypotheses

Let C(J,E) be the Banach space of continuous functions from J into E normed by

‖y‖∞ = sup{‖y(t)‖/t ∈ J}.
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and let B(E) denote the Banach space of bounded linear operators from E into E with
norm

‖N‖B(E) = sup{‖Ny‖/‖y‖ = 1}.

The following lemma and fixed point theorem are useful for proving the existence theo-
rems.

Lemma 1. ([6], p.36) Suppose that Φ1, Φ2 ∈ C(J,R), Φ3 ∈ L1(J,R), Φ3(t) ≥ 0
a.e. on J and Φ1(t) ≤ Φ2(t) +

∫ t

0
Φ3(s)Φ1(s)ds. Then

Φ1(t) ≤ Φ2(t) +

∫ t

0

Φ3(s)Φ2(s) exp

(
∫ t

s

Φ3(τ)dτ

)

ds.

Fixed point theorem: [7]
Let E be a Banach space and let N : E → E be a continuous compact map. If the

set Ω = {y ∈ E : λy = N(y) for some λ > 1} is bounded, then N has a fixed point.
Now, let us assume the following hypotheses:
(H1) A : J × E → B(E) is a continuous function such that ∀r > 0, ∃r1 = r1(r) > 0

such that ‖v‖ ≤ r ⇒ ‖A(t, v)‖B(E) ≤ r1, ∀ t ∈ J , ∀ v ∈ E.
(H2) f : J × E × E → E, (t, u, v) → f(t, u, v) is a continuous function.
(H3) There exists a constant L > 0 such that ‖g(y)‖ ≤ L for some y ∈ E.
(H4) K : J × J → R is a continuous function such that ‖K(t, s)‖ ≤ L1 for some

constant L1 and for some t, s ∈ J .
(H5) F : J × E → E is a continuous function.
(H6) ‖F (t, x)1‖ ≤ q(t)H(‖x(t)‖) for almost all t ∈ J and all x ∈ E, where q ∈

L1(J,R+) and H : R+ → (0,∞) is continuous and non-decreasing.
(H7) ‖f(t, y, z)‖ ≤ p(t)ψ(‖y‖ + ‖z‖) for almost all t ∈ J and all y, z ∈ E, where

p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous and non-decreasing with

M

∫ b

0

p(s)ds <

∫

∞

c

du

ψ(u)
,

where c = M‖y0‖ +ML and M = sup{‖Uy(t, s)‖B(E)/(t, s) ∈ J × J}.
(H8) For each bounded B ⊂ C(J,E), y ∈ B and t ∈ J the set {Uy(t, 0)y0 − Uy(t, 0)

g(y)+
∫ t

0
Uy(t, s)f(s, y(s), z(s))ds}, where z(s) =

∫ t

0
K(t, s)F (s, y(s))ds, is rel-

atively compact.
(H9)

∫ t

0 M1(s)ds <
∫

∞

c
ds

Mψ(s)+H(s) , where M1(t) = max{p(t), L1q(t)}.

Remark. From (H1) for any fixed u ∈ C(J,E) there exists a unique function Un :
J × J → B(E) defined and continuous on J × J such that

Un(t, s) = I +

∫ t

S

Au(w)Uu(w, s)dw,

where I stands for the identity operator on E and Au(t) = A(t, u(t)). Un(t, s) is the
evolution operator of A.
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Definition 1. A continuous solution y(t) of the integral equation

y(t) = Uy(t, 0)y0 − Uy(t, 0)g(y) +

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds

is called a mild solution of (1).

Definition 2. A function y is said to be a strong solution of (1) on J if, y is
differentiable almost everywhere on J ,

dy

dt
∈ (L1[0, b], E),

y′ = A(t, y)y + f(t, y, z) a.e. on J and y(0) + g(y) = y0.

3. Existence Theorems

3.1. Mild solutions

Theorem 1. Let g : C(J,E) → E be a continuous function. Assume that hypotheses

(H1)-(H8) are satisfied. Then problem (1) has at least one mild solution on J .

Proof. Consider the map N : C(J,E) → C(J,E) defined by

(Ny)(t) = Uy(t, 0)y0 − Uy(t, 0)g(y) +

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds,

where t ∈ J .

Step 1: Uu(t, s) is continuous with respect to u; that is,

‖un − u∗‖∞ → 0 ⇒

‖Uun
− Uu∗‖∞ = sup

(t,s)∈J×J

‖Uun
(t, s) − Uu∗(t, s)‖B(E) → 0, as n→ ∞.

Let ‖un− u∗‖∞ → 0. Then there exists r > 0 such that ‖un‖∞, ‖u∗‖∞ ≤ r. If s ≤ t,
then

‖Uun
− Uu∗‖∞ = sup

(t,s)∈J×J

‖Uun
(t, s) − Uu∗(t, s)‖B(E)

≤ sup
(t,s)∈J×J

∫ t

s

‖Uun
(w, s)‖B(E)‖[Aun

(w) −Au∗(w)]‖B(E)dw

+ sup
(t,s)∈J×J

∫ t

s

‖Au∗(w)‖B(E)‖[Uun
(w, s) − Uu∗(w, s)]‖B(E)dw

≤

∫ t

s

M‖[Aun
(w) −Au∗(w)]‖B(E)dw

+

∫ t

s

‖Au∗‖B(E)‖[Uun
(w, s) − Uu∗(w, s)]‖B(E)dw.
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By Lemma 1,

‖Uun
− Uu∗‖∞ ≤M

∫ t

s

‖[Aun
(w) −Au∗(w)]‖B(E)dw

+M

∫ t

s

‖Au∗(w)‖B(E)

(
∫ t

s

‖Aun
(τ) −Au∗(τ)‖B(E)dτ

)

×

(

exp

∫ t

w

‖Au∗(z)‖B(E)dz

)

dw

≤M

∫ t

s

‖Aun
−Au∗‖∞dw

+M

∫ t

s

‖Au∗‖∞

(
∫ t

s

‖Aun
−Au∗‖∞dτ

)

× exp

(
∫ t

w

‖Au∗‖∞dz

)

dw

≤ bM‖Aun
−Au∗‖∞ +M

∫ t

s

{‖Au∗‖∞b‖Aun
−Au∗‖∞

× exp(b‖Au∗‖∞)}dw

≤ bM‖Aun
−Au∗‖∞ +Mb2‖Au∗‖∞‖Aun

−Au∗‖∞ exp(b‖Au∗‖∞)

≤ ‖Aun
−Au∗‖∞bM [1 + br1 exp(br1)] (by (H1)).

Now, u ∈ C(J,E) implies Au ∈ C(J,B(E)). Also, ‖un − u∗‖∞ → 0 implies ‖Aun
−

Au∗‖∞ = max{‖Aun
(t) − Au∗(t)‖B(E)/t ∈ J} → 0 as n → ∞. Therefore, ‖Uun

−
Uu∗‖∞ → 0 as n → ∞. Thus ‖un − u∗‖∞ → 0 ⇒ ‖Uun

− Uu∗‖∞ → 0 as n → ∞.
Therefore, Un(t, s) is continuous with respect to u.

Step 2. N maps bounded sets into relatively compact sets i.e., N is a compact map.
Let Br = {y ∈ C(J,E)/‖y‖∞ ≤ r}. Clearly Br is a bounded set in C(J,E). For each
t ∈ J we have

(Ny)(t) = Uy(t, 0)y0 − Uy(t, 0)g(y) +

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds.

Therefore, for each t ∈ J we have

‖Ny‖ ≤ ‖Uy(t, 0)y0‖ + ‖Uy(t, 0)g(y)‖ +

∫ t

0

‖Uy(t, s)f(s, y(s), z(s))‖ds

≤ ‖Uy(t, 0)‖B(E)‖y0‖ + ‖Uy(t, 0)‖B(E)‖g(y)‖

+

∫ t

0

‖Uy(t, s)‖B(E)‖f(s, y(s), z(s))‖ds

≤M‖y0‖ +M‖g(y)‖ +

∫ t

0

M‖f(s, y(s), z(s))‖ds

≤M‖y0‖ +ML+M

∫ t

0

p(s)ψ(‖y‖ + ‖z‖)ds.
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Consider, ‖y‖∞ = sup{‖y(t)‖/t ∈ J} ≤ r.

Therefore, ‖y‖ ≤ supy∈[0,r]{‖y(t)‖},

‖z‖ =

∥

∥

∥

∥

∫ t

0

K(t, s)F (s, y(s))ds

∥

∥

∥

∥

≤ L1

∫ t

0

q(s)H(‖y(s)‖)ds

≤ L1

{

sup
y∈[0,r]

H(y)

}

∫ t

0

q(s)ds.

Therefore,

‖y‖ + ‖z‖ ≤ sup
y∈[0,r]

‖y(t)‖ + L1

{

sup
y∈[0,r]

H(y)

}

∫ t

0

q(s)ds.

Let µ(t) = sup
y∈[0,r]

‖y(t)‖ + L1

{

sup
y∈[0,r]

H(y)

}

∫ t

0

q(s)ds.

Then ‖y‖ + ‖z‖ ≤ µ(t).

Since ψ is non-decreasing,

‖y‖ + ‖z‖ ≤ µ(t) ⇒ ψ(‖y‖ + ‖z‖) ≤ ψ(µ(t)).

Therefore, ‖Ny‖ ≤M‖y0‖ +ML+M
∫ t

0
p(s)ψ(µ(s))ds

and

‖Ny‖∞ ≤M‖y0‖ +ML+M sup
t∈J

(
∫ t

0

p(s)ds

)

max
y∈B

(

sup
y∈[0,r]

ψ(y)

)

.

Now, let t1, t2 ∈ J , t1 < t2 and y ∈ Br.

Then

‖(Ny)(t2) − (Ny)(t1)‖

≤ ‖{Uy(t2, 0) − Uy(t1, 0)}y0‖ + ‖{Uy(t2, 0) − Uy(t1, 0)}g(y)‖

+

∥

∥

∥

∥

∫ t2

0

Uy(t2, s)f(s, y(s), z(s))ds−

∫ t1

0

Uy(t1, s)f(s, y(s), z(s))ds

∥

∥

∥

∥

≤ ‖{Uy(t2, 0) − Uy(t1, 0)}y0‖ + ‖{Uy(t2, 0) − Uy(t1, 0)}g(y)‖

+

∥

∥

∥

∥

∥

∫ t2

0

Uy(t2, s)f(s, y(s), z(s))ds−

∫ t2

0

Uy(t1, s)f(s, y(s), z(s))ds

+

∫ t2

0

Uy(t1, s)f(s, y(s), z(s))ds−

∫ t1

0

Uy(t1, s)f(s, y(s), z(s))ds

∥

∥

∥

∥

∥

≤ ‖Uy(t2, 0) − Uy(t1, 0)‖B(E)‖y0‖ + ‖Uy(t2, 0) − Uy(t1, 0)‖B(E)‖g(y)‖
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+

∥

∥

∥

∥

∫ t2

0

Uy(t2, s)f(s, y(s), z(s))ds−

∫ t2

0

Uy(t1, s)f(s, y(s), z(s))ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ t2

t1

Uy(t1, s)f(s, y(s), z(s))ds

∥

∥

∥

∥

≤ ‖Uy(t2, 0) − Uy(t1, 0)‖B(E)‖y0‖ + ‖Uy(t2, 0) − Uy(t1, 0)‖B(E)‖L

+

∥

∥

∥

∥

∫ t2

0

{Uy(t2, s) − Uy(t1, s)}p(s)ψ(‖y‖ + ‖z‖)ds

∥

∥

∥

∥

+M

∫ t2

t1

p(s)ψ(‖y(s)‖ + ‖z(s)‖)ds.

The string of inequalities is bounded by k(t2 − t1) for some k > 0.

Hence, N(Br) is an equicontinuous family of functions. Therefore, by Ascoli-Arzela

theorem, N(Br) is relatively compact. Therefore, N maps bounded sets into relatively

compact sets, i.e., N is a compact map. We have,

(Ny)(t) = Uy(t, 0)y0 − Uy(t, 0)g(y) +

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds.

Since Uy, g, f are all continuous functions, N is also continuous. Therefore, N is a

continuous compact map.

Step 3. The set Ψ = {y ∈ C(J,E)/λy = N(y), λ > 1} is bounded.

Let Ω = {y ∈ X/λy = N(y) for some λ > 1}, where X is a Banach space and

N : X → X is a continuous compact map.

Let y ∈ Ω.

Then λy = N(y) for some λ > 1.

λy(t) = (Ny)(t)

= Uy(t, 0)y0 − Uy(t, 0)g(y) +

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds, t ∈ J,

and therefore

y(t) = λ−1Uy(t, 0)y0 − λ−1Uy(t, 0)g(y) + λ−1

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds, t ∈ J.

Now λ > 1 implies λ−1 ≤ 1.

Therefore, y(t) ≤ Uy(t, 0)y0 − Uy(t, 0)g(y) +

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds, t ∈ J.

Hence ‖y(t)‖ ≤ ‖Uy(t, 0)y0‖ + ‖Uy(t, 0)g(y)‖ +

∫ t

0

‖Uy(t, s)f(s, y(s), z(s))‖ds

≤M‖y0‖ +ML+M

∫ t

0

p(s)ψ(‖y(s)‖ + ‖z(s)‖)ds for t ∈ J.
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Let us take the right-hand side of the above inequality as v(t). Then

v(t) = M‖y0‖ +ML+M

∫ t

0

p(s)ψ(‖y(s)‖ + ‖z(s)‖)ds.

Now, v(0) = M‖y0‖ +ML. Thus we have,

v(0) = M‖y0‖ +ML and ‖y(t)‖ ≤ v(t), t ∈ J.

Since ψ is non-decreasing,

‖y(t)‖ ≤ v(t) ⇒ ψ(y(t)) ≤ ψ(v(t)), t ∈ J.

Now,

v(t) = M‖y0‖ +ML+M

∫ t

0

p(s)ψ(‖y(s)‖ + ‖z(s)‖)ds.

Therefore, v′(t) = Mp(t)ψ(‖y(t)‖ + ‖z(t)‖)

≤Mp(t)ψ

(

v(t) + L1

∫ t

0

q(s)H(v(s))ds

)

.

Let u(t) = v(t) + L1

∫ t

0
q(s)H(v(s))ds.

Then v(t) ≤ u(t) and

u(0) = v(0) = M‖y0‖ +ML

u(0) = v′(t) + L1q(t)H(v(t))

≤Mp(t)ψ(u(t)) + L1q(t)H(v(t))

≤Mp(t)ψ(u(t)) + L1q(t)H(v(t))

≤M1(t){Mψ(u(t)) +H(u(t))},

where M1(t) = max{p(t), L1q(t)}.

u′(t)/Mψ(u(t)) +H(u(t)) ≤M1(t).

Intregrating, we have

∫ u(t)

u(0)

ds

Mψ(s) +H(s)
≤

∫ t

0

M1(s)ds <

∫ b

0

M1(s)ds

≤

∫

∞

u(0)

ds

Mψ(s) +H(s)
.

This inequality implies that there exists a constant d such that u(t) ≤ d, t ∈ J . But

v(t) ≤ u(t). Therefore, v(t) ≤ d for t ∈ J . Also, ‖y(t)‖ ≤ v(t) for t ∈ J . Hence
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‖y(t)‖ ≤ d for t ∈ J . Therefore, ‖y‖∞ ≤ d, where d depends on the functions M1, ψ and

H . Now, y ∈ Ω and ‖y‖∞ ≤ d⇒ Ω is bounded. Set X = C(J,E). Then Ψ is bounded.
Now, C(J,E) is a Banach space and N : C(J,E) → C(J,E) is a continuous compact

map. Also, the set

Ψ = {y ∈ C(J,E) : λy = N(y) for λ > 1} is bounded.

Hence by Schaefer’s fixed point theorem, N has a fixed point which is a mild solution of
(1).

3.2. Strong solutions

Theorem 2. Let E be a reflexive Banach space. Let g : C(J,E) → E be a continuous

function. Assume that hypotheses (H1)-(H9) are satisfied. Then (1) has a strong solution.

Proof. Since all the assumptions of Theorem 1 are satisfied, (1) has a mild solution.
Let y(t) satisfy (1). Let g1(s) = Uy(t, s)y(s). This g1(s) is differentiable on J ,

and dg1/ds = [(d/ds){Uy(t, s)}]y(s) + Uy(t, s)y
′(s)

= Uy(t, s)f(s, y(s), z(s)).

Since f ∈ L1(J ;E), Uy(t, s)f(s, y(s), z(s)) is integrable. Integrating from 0 to t, we get,

∫ t

0

dg1
ds

ds =

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds,

Uy(t, t)y(t) − Uy(t, 0)y(0) =

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds.

Thus y(t) = Uy(t, 0)y0−Uy(t, 0)g(y)+

∫ t

0

Uy(t, s)f(s, y(s), z(s))ds

which is the mild solution of (1).
Now, we will show that this mild solution is a strong solution of (1).
Since f is differentialbe a.e. and f ′ ∈ L1(J,E), y is differentiable a.e. on J and

y′ ∈ L1(J,E). Now,

‖y(t+ h) − y(t)‖ ≤ ‖{Uy(t+ h, 0) − Uy(t, 0)}y0‖

+‖{Uy(t+ h, 0) − Uy(t, 0)}g(y)‖

+

∫ t

0

‖{Uy(t+ h, s) − Uy(t, s)}f(s, y(s), z(s))‖ds

+

∫ t+h

t

‖Uy(t+ h, s)f(s, y(s), z(s))‖ds

≤ ‖Uy(t+ h, 0) − Uy(t, 0)‖ ‖y0‖

+‖Uy(t+ h, 0) − Uy(t, 0)‖ ‖g(y)‖
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+

∫ t

0

‖{Uy(t+ h, s) − Uy(t, s)}‖ ‖f(s, y(s), z(s))‖ds

+

∫ t+h

t

‖Uy(t+ h, s)‖ ‖f(s, y(s), z(s))‖ds,

‖y(t+ h) − y(t)‖ ≤ r1Mh‖y0‖ + r1Mh‖g(y)‖ + r1Mh

∫ t

0

‖f(s, y(s), z(s))‖ds

+

∫ t+h

t

M‖f(s, y(s), z(s))‖ds

≤ r1Mh‖y0‖ + r1Mh‖g(y)‖

+r1Mh

∫ t

0

p(s)ψ(‖y‖ + ‖z‖)ds+M

∫ h

0

p(s+ t)ψ(‖y‖ + ‖z‖)ds

≤ hK1.

Thus ‖y(t+h)−y(t)‖ ≤ hK1, where K1 is constant. Therefore, y is Lipschitz continuous.

The Lipschitz continuity of y combined with the continuity of f imply that t →

f(t, y(t), z(t)) is Lipschitz continuous.

Since E is reflexive and f is Lipschitz continuous, f is differentiable a.e. on J and
f ′ ∈ L1(J ;E).

Hence, y is differentiable a.e. on J and y′ ∈ L1(J ;E). Also, y(t) satisfies (1).

Therefore, y(t) is a strong solution of (1) on J .
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