TAMKANG JOURNAL OF MATHEMATICS
Volume 44, Number 3, 313-325, Autumn 2013
doi:10.5556/].tkjm.44.2013.1053

Available online at http://journals.math.tku.edu.tw/

ON A SUBCLASS OF p-HARMONIC MAPPINGS

SAURABH PORWAL AND K. K. DIXIT

Abstract. The purpose of the present paper is to introduce two new classes HSy(«) and
HCy(a) of p-harmonic mappings together with their corresponding subclasses H Sg(a)
and H Cg(a). We prove that the mappings in HS,(«) and HC,(a) are univalent and
sense-preserving in U and obtain extreme points of H S(;,(a) and H Cg(a), HSp(a)nTy
and HCy(a)N Ty are determined, where T, denotes the set of p-harmonic mapping with
non negative coefficients. Finally, we establish the existence of the neighborhoods of
mappings in HCy(a). Relevant connections of the results presented here with various
known results are briefly indicated.

1. Introduction

A p(= 1) times continuously differentiable complex-valued function F = u +iv in a do-
main D < C is p-harmonic if F satisfies the p-harmonic equation A...A F = 0, where A repre-

p
sents the complex Laplacian operator

@ _F
© 0z0z 0x? 0y*

A mapping F is p-harmonic in a simply connected domain D if and only if F has the

following representation

p
F(@) =Y 12P* VG (2),
k=1

where each Gj,_k1(2) is harmonic, i.e. AGy_r+1(2) =0 for k € {1,2,..., p} (cf. [8, Proposition
2.1]).

It should be noted that, if we take p = 1 and p = 2, then F is harmonic and biharmonic,
respectively.

The properties of harmonic, biharmonic and p-harmonic mappings have been investi-
gated by many researchers (see [1], [2], [3], [4], [5], [7], [9], [10], [13], [17], [18], [19], [27]).
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Let U, ={z € C:|z| < r}(r > 0). In particular, we use U to denote the unit disc U;.

In 2002, Oztiirk and Yalcin [22] introduced and studied two new subclasses HS(a) and
HC(a) of harmonic univalent mappings. The class HS(a) denote the function of the form

f(&)=h(2)+g(2)
=z+ ) apz"+ ) buz"
n=2 n=1
that satisfy the condition
Y (n—a)(anl+1bh<(A-a)1-|b) O<a<l,0<|b|<])
n=2

and HC(a) the class of all mappings in HS(a) subject to the condition

Y nn—-a)(apl+1b) <A-a)A-1b1) O=<a<l,0<|b|<).

n=2

The corresponding subclasses of HS(a) and HC(a) with by = 0 are denoted by HS%(a)
and HC(a), respectively. They proved that the image domains of U under the mappings in
HS%a) and HC(a) are starlike and convex. The results for these subclasses were improved

and generalized by Dixit and Porwal in [11], (see also [23]).

For a = 0, the classes HS(a), HC(a), HS°(a) and HC®(a) are reduced to HS, HC, HS®
and HCY, respectively.

2. Preliminaries

Suppose F is a p-harmonic mapping with the following expression
L k-1
F2) =Y 12P* VG, k11(2), 2.1)
k=1

where for each k€ {1,2,... p}, the harmonic mapping Gp-k+1 has the expression
Gp—k+1 = hp—k+1 +8p-k+1

where both h,_(,1 and g, are analytic and satisfy the following conditions
o8} .
hp—k+1(z) = Z aj,p—k+lzj with ayp=1
j=1
and

o0
8p-k+1(2) = Z bj,p—k+1Z]~
j=1
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We use J to denote the Jacobian of F, that is
2 2
Jp = |F|” = |FZ|".

Then it is known that F is sense-preserving and locally univalent if Jr > 0.

Denote by HS,(a) the class of all mappings of the form (2.1) satisfying the condition

p
)3
k=1

8

@k =D+ j—a)(aj p-ks1] +1Dj prs1])
2

J

p
<1-1|bipl— Y @k—Dayp-i+1]+1b1,p-k+1])
k=2
with )
0= 1bypl+ Y @k=Da,p-gs1l+1by,p-gs1) <1 2.2)
k=2
and the subclass
HS%(a) ={Fe HSy(a): by, =0andfor k€1{2,3,...,p}, a1, p-+1 = b1, p—k+1 = O}

Denote by HCy(a) the class of p-harmonic mappings F subject to the condition
P o i(i—a)
Y 3 2tk- 0+ =2 a; )l +1bjp i)
k=1j=2 l-a

p
< 1-1|by,pl- Y Ck-D(ap-k+1|+ b1 p-i+1])
k=2

with )
0= |by,pl+ ) k=1 (a1, p-k+1l+ b1, p-kr1D) < 1. 2.3)
k=2
The corresponding subclass of HCy(a) with by, = a1, p—k+1 = b1, p-k+1 = 0 for all k €
{2,3,..., p} is denoted by HCg(a).

(i) For a =0, the classes HSy(a) and HC,(a) reduce to the classes HS, and HC), studied
by Qiao and Wang [24].
(ii) For p =1, theclasses HS,(a) = HS(a) and HCy,(a) = HC(a) were studied by Oztiirk and
Yalcin [22].
(iii) For p=1, a =0, the classes HS,(a) = HS and HCy(a) = HC were studied by Avci and
Zlotkiewicz [6].

Suppose F is a p-harmonic mapping with the expression (2.1). Following Ruscheweyh [25],

we use N, g‘ (F) to denote the 6-neighborhood of F in p-harmonic mappings, i.e.,

p
NEF) = {F" :1by,p = By pl + 3 @k =101pmker = Arp-ienl + byt = By
=2
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P o —a
+ZZ(2(’€ 1)+ )(m]p k1~ Aj,p_k+1|+|b,~,p_k+1—B]~,p_k+1l)sé}
k=1j=2

~

where

0 00 14 0 0

. — 2(k—1 . _ .

F'(2)=z+) Ajpz' +) Bjyz'+ kZ | 22D (Z Ajp-kr12)+ ) Bj,p—k+lzj)'
j=2 j=1 =2 j=1 j=1

3. Main Results

First we discuss that the mappingsin HS, (a) and HC(«a) are univalent and sense-preserving.

Theorem 3.1. Each mapping in HSy(«) is univalent and sense-preserving.

Proof. Let F € HSy(a) and z; # zp € U with |z1| < |z3].
Then

p
IF(z1) - F(z2)| = | Y_ (12117 VG p_gr1 (21) = 122 PV G g1 (22))
k=1

=i =i
Zl - Zz 2172

IV
N
—

n
i

,—A—\

e R

|zl|2<’“—” I — 12,20V 2]

<2

[
( Z ajrp_k+1

'k:Z j=1 21— %2
|Z1|2(k_1)2{ _ |Z2|2(k_1)2]

+3 Byt )}

21— 22

\%

(]
|21 = 22l (1L= b1 pl = 122] ) jajpl +1bj,p))
j=2

p oo
—lzol ) Y k=1 + jaj p-i+1] +1bj p—k+1])

k=2j=1
> |21 - 22|(1— by pl — 22| D - a(|aj,p|+|bj,p|)
j=2
j—a
—|Z2|Z Z 2(k— 1)+n (aj p-k+1l+1bj p—k+11))
k=2j=1
> |21 - 21 = by p (1 — | 22])

> 0.

Hence each mappingin HS,(a) is univalent.

The sense-preserving property of elements in HS,(a) easily follows from the following

chain of inequalities about the Jacobian of F:
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Jr(2) = |F,(2)|? - | F5(2)?
= (IF.(2)| + |Fz(2))(|F,(2)| - | F5(2)])

= (|F;(2)| +|Fz (z)l)H1+Z]a]pz] +Z lel 20k lja]p r12 7!
k=2j=2

2(k-1) 2(k-1) 1
+Z |Z| alp k+1t Z(k 1)|Z| (Z aj p— k+1Z] + - Zb]p k+lzj )|
k=2 k=2 J ]

2(k-1) 1
|Zlb1 pzj + Z Z |2 ijp k12
= k=2 j=2

(o) o0
2(k-1)7; 2(k-1) | # -1 - —j-1
+ Z 275"V, p—k+1 7t Z (k- 1)lzl* (% Y ajp-kr12' T+ Y bjpre1Z ) H
=1

k=2 j=1

> (IFz(2)| +Fz(2)D[1 = by, pl = Z @k-1(la1,p-k+11+1b1,p—k+11)
k=2

P o
—lzl ) Y @k =1+ pUajp-k+1l +bjp-is1])]
k=1j=2

> (|Fz(2) + F) (1= |by,p N1 — |2l)

p
> (IFz(2)| + | Fz(2)D[1 = |by pl — Z @k-1(lay,p-k+11+1b1,p—k+11)

_lzlz Z(z(k 1)+_)(|a]p k+1|+|b]p k+1]
k=1j=2

> (IF;(2)| +Fz(2))(1 = |by,p ) (1 —|z])
>0

for z # 0 and the obvious fact
Jr(0) = 1=1by ,I* > 0.

Thus the proof of Theorem 3.1 is established. O

Next, we discuss the geometric properties of mappings belonging to H Sg (o) and H Cg (a),

respectively.
Theorem 3.2. Each mapping in Hsg(a) maps U onto a domain starlike with respect to the
origin.

Proof. Let r € (0,1) be a fixed number and

p
Fr2)= ) r** VG, 1412
k=1

a1 P EE of G P

j k=1
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Obviously, F, is a harmonic mapping. Since

p
2(k-1) 2(k-1)
r Aj,p-k+1 2T bjp-k+1

k=1

+Zj

j=2

18
M=

~.
Il

B
Il

—

IA
.Mg [\
M~

~

Il
Do
>

Il
—

jlajp-k+1l+10j p—k+11)

IA
18
M~

-«
(Z(k— 1+ {—_(X) (laj,p—k+1| + |bj,p—k+1|)

|
N
>
1l
—

IA
—_ .

it follows that F, € HS°. By [[6], Theorem 2], we know that F, maps U onto a domain starlike
with respect to the origin. That is, for each r; € (0,1),

i argF,(rleie) >0
00
for 0 <6 < 27. Letting r; = r yields

9 i0
argF.(rie’’) >0

00
for 0 <0 < 2x. That fact
i argF,(r ') = i argF(reie)
a9 o ! a0
show that F is starlike with respect to the origin. a

Theorem 3.3. Each mapping in HC?,(a) maps U, (r € (0,1)) onto a convex domain.

Proof. The proof of above theorem is similar to Theorem 3.2. So we omit details involved. [
Next we determine the extreme points of H S(},(a) and H Cg(a), respectively.

Theorem 3.4. The extreme points of H Sg(a) are the mappings with the following forms

2(k-1)

Fi(z)=z+]|z| App-k+12" OF

2(k-1)7, =
Fi (@) =z+1z2lP* Vb, pog1Z™,

where
1

m (n=2)

kefl,2,....phlanp-ka1l=

and
1

2(k-1)+ =2

1-a

|bm,p—k+1| = (m=2).
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Proof. Assume that F is an extreme point of H Sg(a) and let

p
F(2)=) |zP* VG, .1 (2)
k=1

p 00 oo

2(k-1 j A =j

=z+) 12 )(Z ajpk12'+ Y bjpkn? |.
k=1 j:2 j:2

Obviously, the coefficients of F satisfy the following equality

P oo i —a
>y (zuc— 1+ —) (ajp-k+1l+1bj pr+1) = 1.
k=1j=2 l1-a

we claim that there exist at most one coefficient ag, ,—k+1 Or by, p—k+1 for some k = 2 of F
which is not 0.

We prove this claim by contradiction. Suppose that there exist some k; =2 and k, = 2
such that ag, p—k,+1 # 0and by, p—k,+1 #00r ag, p—k,+1 #0and ag, p—k,+1 Z00r by, p—f,+1 70
and bg, p—k,+1 # 0. Without loss of generality, we assume the first case, i.e., both a4, ,,—k,+1 and

by, p-k,+1 are not 0 for some k; =2 and k, > 2.
Choosing A > 0 small enough and x, y with |x| = |y| = 1 properly, leaving all coefficients
+ Ay
Z(ki_ D+ 22 2(k, - 1)+ =2
Or g, p—ki+1— m and bg, p—k,+1+ m respectively, we obtain two mappings
F; and F,.

of Fbut ag, p—k,+1,bgy, p—k,+1 BY agy p—k, +1 and by, p-—k,+1—

1-a

Obviously, F; and F, € H Sg((x) and F = %(Fl + F5). This is the desired contradiction. Our

claim is proved. Therefore any extreme point F € H Sg (o) must have the form

Fr(2)=z+2**Vay, , 12"
or
Fi(2)=z+ Izlz(k_l)Em,p_kHEm
with
lan,p—k+11 = m(ﬂ =2)
and
1D, p—kc+1] = m(ﬂl =2).

Now we come to prove that for any F € H Sg(a) with the above form must be an extreme

point of H Sg((x). It suffices to prove the case of Fy since the proof for the case of F is similar.
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Suppose there exist two functions F3 and Fy € H Sg(a) such that Fj. = tF3+ (1 — t)F4 with
some ¢ € (0,1). For g = 3,4, let

Lo ot-n [ @ ) ;
Fy(2)=z+ ) |zl Zaj’p_k+1zf+2bj’p_k+1z] :
k=1 j=2 j=2
Then
tay) o+ =0ay 1= anp kel
B 1
S 2(k-1)+n’
Since all coefficients of F;(q = 3,4) satisfy
(@ 1 @ 1
la. k41 =S— and |b —k+1|S—'—’
where j =2 and kp €1{1,2,..., p}, (4.5) implies
3) _ ,@4)

an,p—k+1 ~ Tnp-k+1

all all other coefficients of F3, F4 are 0. Thus Fy = F3 = F4, which shows that Fj. is an extreme
point of HS)(a). O

Theorem 3.5. The set of extreme points of H Cg(a) consists of mappings with the forms

Fi(2) = z+12P% Vay 12"
or

Fi@=z+12P* Vb p 12"
wherek=1,2,...,p,

1
lan p—k+1] = (n=2)
PP (k- 1) 4+ 2r=a)
and )
|bm,p—k+1| = (m=2)

m(m—a)
2(k-1+ ==

Proof. The proof of this theorem is much akin to that of Theorem 3.4. Therefore we omit
details. g

The classes of analytic and harmonic functions with nonnegative (or negative) coeffi-

cients possess many interesting properties and many references have been in literature, see,
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for example, [[12], [15], [16], [20], [21], [26]], (see also [14]). In the following, we consider the
p-harmonic mappings with non negative coefficients. Let

p o) . — .
T,={F:F(z) = kz |2PED Y (@) pkn12) + D) pok1Z)
=1 j=1

withay p=1,ajp-k+1=0,bj pk+1 = Oforj=1,k=1,2,...,p}.

Theorem 3.6. Suppose F is p-harmonicinU. Then F € HSy(a) N Ty if and only if

p oo
F(2)= ) > (Xijhij(2)+ Yijgrj(2),

k=1j=1
where
hij(z) = z+ |z|2(k_1)—._a(2 <kspj=z1,
2(k—1)+4=2
2(k-1) z!
8kj(2) = z+zl —@2<k=pj=zD,
2(k—1)+ 4=
2
hi(2) = 2z, hj(2) =2+ 5—(j 22),
T-a
Zl
g1j(z2) =z+ j——a(j =1),
T-a
and

||M8

Xk]+Yk])—1 (Xk] 0, ijEO).

In particular, the extreme points ofHSp((x) nT, are {hkj} and {8k}

Proof. Since

p oo
F(2) =) ) (Xgjhyj(2)+ Yijgrj(2)
k=1j=1

_z+le|k12( X z) + b Ef)+Zj_izf+Z#Ef
k=2 '

2(k — 1)+J“ 2(k-1)+ 1= =y J'=1{-—Z
and

p oo X i Y

ZZ(Z(k 1)+ a)( ul + b ._a)

&5 1- 2(k— D+ 22 J2tk-D+ 122

P X1 Yia
Y, 2k-1
Hul+ 2 )(‘Zk—l 2k—1)

p
(Xij+ Yij)+ ) (Xpr + Yi) + Y1
2 k=2

18

=y

k=1j

.
Il
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<1-Xn

<1,

we see that F € HSp(a).

Conversely, assuming that F € HS p(a) N T}, and setting

Xk]—(Z(k 1)+ )a]pk+1(2<k<p]>1),

a
le:{—ajp (j=2),

Yk]—(Z(k 1)+J_ )b,p w1 (lskspj=1),

and
P oo 14
Xip=1-) Y (Xgj+ Yij) = ) (Xga + Yir) = Vi,
k=1j=2 k=2
we obtain

P oo
F(2)= ) ) (Xgjhij(2)+ Yijgkj(2),
k=1j=1

The proofis complete.

Theorem 3.7. Suppose F is p-harmonicinU. Then F € HCy(a) N Ty, if and only if

P oo
F(2)=) ) (Xxjhij(2)+ Yi;8kj(2),

k=1j=1
where
M(m:z+wﬁb”———ji———(skSpsz
! 20k —1)+ 49
2 k
griz)=z+ |z ———————2<k<p,j=1),
! 20k~ 1)+J(f 9
hi(2) =z, hj(z) =z + ](] G U 22),
1-a
rZ
81j(&) =2+ 57—z D)
1-a
and

Xk]+Yk])—1 (Xk] 0, ijEO).

||M8

In particular, the extreme points ofHCp(a) nT, are {hkj} and {8k}
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Proof. The proof of above theorem is similar to that of Theorem 3.6. So we omit details in-
volved. O

4. Neighborhoods

Theorem 3.1. Assume that
Fl(2)=z+ Z ajpz’ 4+ Z b; pz] + Z | 22D Z ajp-k+12’ + Z b - kr12
j=2 j=1 k=2 Jj= Jj=
belongs to HCp(a). If
p
§<(—-co)A—1b1pl— Y Rk—1(ayp-k+1|+ b1, p-k+1D),

k=2

then N(‘;(Fl) c HSp(a), where

2p-DAl-a)+2—-a)
2[p-D0-a)+R2-a)]

Co =
Proof. The §-neighborhood of F; is the set
P oo ] -
N (Fy) = {le > (Z(k— 1)+ —) (ajp-k+1—Ajp-rsl
k=1j=2 l-a

P
+1bj p-k+1 = Bj p-k+1)) +1b1,p + Bipl+ Y k=1 (la1,p-k+1 — A1, p—k+1l
k=2

+1b1,p-k+1— B1p-k+1D = 5},

where

. o8} —_ .
F(z)=z+ Z Aj, pz] + Z Bj, pz] + Z | 221 Z Ajp-ke12' + Y Bjp k12’

j=2 j=1 =2 j=1 j=1
If
p
§<(-co)A—1b1pl— Y Rk—=1(ayp-k+1l+ b1 p-k+1D),
k=2
then we have
[ee) '_a [ee) '_
=g il Z B,p|+ZZ(2(k 1)+ )(|A]p k1l +1Bj p-k+10)
j=2 j=1 k=2j=2

p
Z 2k - 1)(|a1,p—k+1 - Al,p—k+1| + |b1,p—k+1 - Bl,p—k+1| + |b1,p - Bl,pl)
k=2

P o i—a
+y ) (Z(k— 1)+ —) (lajp-k+1—Ajp-k+11+1Dj p—k+1 = Bj p-k+1)
k=1j=2 l1-a



324 SAURABH PORWAL AND K. K. DIXIT
p
+ ) @2k=1)(ay,p-ks1]+1b1,p-ks1]) + by pl
k=2
b oo j-a
+Y Y (Z(k— )+ ﬁ) (@) p-rs1]+1bj pois1)
k=1j=2
p
<6+ (k- Day,p—k+1l+1b1,p—+1D + by pl
k=2
P o j—a
+co ), ) (Z(k -D+ —) (ajp-k+1l+1bjp-k+1D
k=1j=2 l1-a
p
<b6+cy+(1-cp) (Z Rk -1(a1,p-r+1!+ b1, p—r+1D + b1, pl
k=2
<1,
whence F; € HSp(a). O
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