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CONVERGENT AND DIVERGENT SOLUTIONS OF A DISCRETE

NONAUTONOMOUS LOTKA-VOLTERRA MODEL

XIN-YUAN LIAO AND SUI SUN CHENG

Abstract. In this paper, a discrete nonautonomous m-species Lotka-Volterra system is investi-

gated. By using fixed point theorems, a set of simple and easily verifiable conditions are given

for the existence of convergent or divergent positive solutions.

1. Introduction

We consider the system of difference equations

v(n + 1) = v(n) exp {r(n) + B(n)v(n)} , n = 0, 1, 2, . . . , (1)

where v(n) is a column vector (v1(n), . . . , vm(n))†, r(n) is a column vector (r1(n), . . .,

rm(n))† and B(n) = (bkl(n))m×m is a square m by m matrix for each n ∈ {0, 1, 2, ...} . In

case m = 1, our system is reduced to a scalar difference equation which can be used to

describe certain growth models. In the general case, our equation can be used to describe

growth models for several species under competition, or arm race models.

Similar models have been studied by many people. For example, Wang et al. in [6]

studied the global stability of discrete population models, Xu et al. in [7] investigated

a discrete periodic two-species Lotka-Volterra predator-prey model with time delays by

using Gaines and Mawhin’s continuation theorem of coincidence degree theory, and Li

and Ratfoul in [8] studied a classification scheme for the eventually positive solutions of

a class of two-dimensional Volterra nonlinear difference equations. Motivated by these

and other works [1-13], in the present paper, we discuss the existence of certain solutions

of system (1).

Throughout this paper we will assume that the vector sequence {r(n)}
∞

n=0 and the

matrix sequence {B(n)}
∞

n=0 are nonnegative and bounded, and

Ak =
∞
∑

i=0

rk(i) < +∞, k = 1, . . . , m. (2)
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We will also be interested in solutions of (1) that originates from positive initial distribu-
tions. More specifically, a real vector v is said to be positive (nonnegative) and denoted
by v > 0 (respectively v ≥ 0) if its components are positive (respectively nonnegative).
Let v(0) > 0, then in view of (1), we may determine v(1), v(2), ... in a unique manner.
Such a sequence {v(n)}

∞

n=0 is said to be a solution of (1) originated from a positive
distribution.

2. Main Results

Note that a solution {v(n)}
∞

n=0 originated from a positive distribution is a positive
vector sequence, that is, v(n) > 0 for each n ∈ {0, 1, ...}. Let

uk(n) = ln vk(n), k = 1, . . . , m. (3)

Then from (1), we see that

∆u(n) = r(n) + B(n) exp(u(n)), (4)

where exp(u1, . . . , um)† denotes the vector (expu1, . . . , expum)
†
. We call the sequence

{u(n)} the positive sequence associated with the solution {v(n)} . In view of (3), once
the properties of positive solutions of (4) can be obtained, then we may infer from (3) the
corresponding properties of solutions of (1) originated from positive initial distributions.

To this end, we first note that if {u(n)} is a positive solution of (4), then ∆u(n) ≥ 0
for n ≥ 0 so that each component sequence {uk(n)} is positive and nondecresing. Thus

lim
n→∞

uk(n) ≤ +∞, k = 1, . . . , m,

so that each component sequence may be divergent or convergent.
First of all, it is easy to find conditions for every component sequence to diverge.

Theorem 1. Suppose (2) holds and

Bk =
∞
∑

i=0

m
∑

l=1

bkl(i) = +∞, k = 1, . . . , m

hold. If {u(n)} is a positive solution (4), then

lim
n→∞

uk(n) = +∞, k = 1, . . . , m.

Proof. Let {u(n)} be a positive solution of (4). Then summing (4), we see that

uk(n) = uk(0) +
n−1
∑

i=0

rk(i) +
n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(i))

≥

n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(i)) ≥

n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(0))

≥ L

n−1
∑

i=0

m
∑

l=1

bkl(i),
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where L = min1≤l≤m{exp(ul(0)}. Therefore, our proof is completed by taking limits on
both sides as n tends to +∞.

Next, we turn to conditions for each component sequence to be convergent.
Teorem 2. Suppose (2) holds. If {u(n)} is a positive solution of (4) such that

lim
n→∞

uk(n) = αk < +∞, k = 1, . . . , m (5)

then

Bk =

∞
∑

i=0

m
∑

l=1

bkl(i) < +∞, k = 1, . . . , m. (6)

Conversely, if (6) holds, then (4) has an eventually positive solution {u(n)} that satisfies

(5).

Proof. Suppose that {u(n)} is a positive solution of (4) such that limn→∞ uk(n) =
αk < +∞ for k = 1, . . . , m. Then, there exists an integer N > 0 and positive constants
c1, . . . , cm such that ck ≤ uk ≤ αk for n ≥ N and k = 1, . . . , m. In view of (4), for n ≥ N ,

uk(n) = uk(N) +

n−1
∑

i=N

rk(i) +

n−1
∑

i=N

m
∑

l=1

bkl(i) exp(ul(i)). (7)

Thus

ck ≤ uk(n) ≤ uk(N) +

n−1
∑

i=N

rk(i) +

n−1
∑

i=N

m
∑

l=1

bkl(i) exp(αl)

≤ uk(N) +

n−1
∑

i=N

rk(i) + M

n−1
∑

i=N

m
∑

l=1

bkl(i) < +∞,

where M = max1≤l≤m{exp(αl)}.
Conversely, suppose that Bk =

∑∞
i=0

∑m

l=1 bkl(i) < ∞ for k = 1, . . . , m. Note that
(4) can be written as

uk(n) = uk(0) +

n−1
∑

i=0

rk(i) +

n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(i)), k = 1, . . . , m. (8)

Next, we can choose an integer N large enough so that

∞
∑

i=N

m
∑

l=1

bkl(i) ≤
dk

4 exp(d)
,

where d = max1≤k≤m{dk}, and d1, . . . , dk are positive constants which satisfies

∞
∑

i=N

rk(i) ≤
dk

4
, k = 1, . . . , m.
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Let χ be the Banach space of all bounded real-valued sequences {u(n)}∞n=N = {(u1(n),

. . . , um(n))}∞n=N with the norm

‖(u1(n), u2(n), · · · , um(n))‖ = max

{

sup
n≥N

|u1(n)|, sup
n≥N

|u2(n), · · · , sup
n≥N

|um(n)|

}

,

and with the usual pointwise ordering ≤.

Define a subset Ψ of χ by

Ψ = {{u(n)} ∈ χ :
dk

2
≤ uk(n) ≤ dk, k = 1, . . . , m, n ≥ N}.

For any subset B of Ψ, it is easy to see that inf B ∈ Ψ and supB ∈ Ψ. Define the

operator S : Ψ → χ by

S







u1

...

um






(n) =







d1

2
...
dm

2






+







∑n−1

i=N r1(i) +
∑n−1

i=N

∑m

l=1 b1l(i) exp(ul(i))
...

∑n−1

i=N rm(i) +
∑n−1

i=N

∑m

l=1 bml(i) exp(ul(i))







for n ≥ N. We claim that S maps Ψ into Ψ. To see this we let {u(n)} ∈ Ψ, then

dk

2
≤ (Suk)(n) =

dk

2
+

n−1
∑

i=N

rk(i) +

n−1
∑

i=N

m
∑

l=1

bkl(i) exp(ul(i))

≤
dk

2
+

dk

4
+

n−1
∑

i=N

m
∑

l=1

bkl(i) exp(dl)

≤
dk

2
+

dk

4
+ exp(d)

n−1
∑

i=N

m
∑

l=1

bkl(i) ≤ dk

for n > N. Since S is increasing, the mapping S satisfies the hypothesis of Knaster’s

fixed point theorem and hence we conclude that there exists {u(n)} ∈ Ψ such that

{u(n)} = S({u(n)}), that is,

uk(n) =
dk

2
+

n−1
∑

i=0

rk(i) +

n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(i)), k ∈ 1, . . . , m,

from which we obtain

lim
n→∞

uk(n) = d0
k, k = 1, . . . , m,

where d0
k are positive constants. This completes the proof.

We now turn to the existence of solutions with only one convergent component se-

quence.
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Theorem 3. Suppose (2) holds. Suppose Bj0 =
∑∞

i=0

∑m

l=1 bj0l(i) < +∞ and

Bk =
∑∞

i=0

∑m

l=1 bkl(i) = +∞ for k ∈ {1, . . . , m}\{j0}. If there exists a positive solution

{u(n)} of (4) such that

lim
n→∞

uj0(n) = αj0 < +∞, (9)

and

lim
n→∞

uk(n) = αk = +∞, k ∈ {1, .., m}\{j0}, (10)

then
∞
∑

i=0

m
∑

l=1

bj0l(i) exp[

i−1
∑

h=0

blj0(h) exp(c)] < +∞, (11)

for some positive constant c. Conversely, if (11) holds, then (4) has an eventually positive

solution {u(n)} that satisfies (9) and (10).

Proof. Let {u(n)} be a positive solution of (4). Then each component sequence
{uk(n)} is increasing, and then there exists a positive constant β such that uj0(0) ≤
uj0(n) ≤ β for n ≥ 0. From (4) we have

uk(n) = uk(0) +

n−1
∑

i=0

rk(i) +

n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(i))

≥

n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(0)),

for k 6= j0. On the other hand, we have

β ≥ uj0(n) = uj0(0) +

n−1
∑

i=0

rj0(i) +

n−1
∑

i=0

m
∑

l=1

bj0l(i) exp(ul(i))

≥

n−1
∑

i=0

m
∑

l=1

bj0l(i) exp(ul(i)) ≥

n−1
∑

i=0

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=0

blj0(h) exp(uj0(0))

}

.

By taking the limit at infinity in the above inequality, we obtain (11).
Conversely, suppose that (11) holds. We can choose an integer N large enough so

that
∞
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=N

blj0(h)

}

<
D

4 exp(D)
, n > N, (12)

and
∞
∑

i=n

rj0 (i) ≤
D

4
, n > N.

Let χ be the set of all bounded real-valued scalar sequences of the form w={w(n)}∞i=N

with the norm
‖w‖ = sup

n≥N

|w(n)|},
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Then χ is a Banach space. Define a subset Ψ of χ by

Ψ = {{w(n)} ∈ χ :
D

2
≤ w(n) ≤ D, n ≥ N}.

Then Ψ is a bounded, convex and closed subset of χ . Define the operator E : Ψ → χ by

(Ew)(n) = D −

∞
∑

i=n

rj0 (i) −

∞
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=0

blj0(h) exp(w(h))

}

, n ≥ N. (13)

First, E maps Ψ into Ψ since

D ≥ (Ew)(n) = D −
∞
∑

i=n

rj0 (i) −
∞
∑

i=n

m
∑

l=1

bj0l(i) exp[
i−1
∑

h=N

blj0(h) exp(w(h))]

≥ D −
D

4
− exp(D)

∞
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=N

blj0(h)

}

≥
D

2
.

Next, we show that E is continuous. Let {ws} be a sequence in Ψ such that

lim
s→∞

‖ws − w‖ = 0.

Since Ψ is closed, w ∈ Ψ. Then by (13), we have

|(Ews)(n) − (Ew)(n)|

=

∣

∣

∣

∣

∣

∞
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=N

blj0(h) exp(ws(h))

}

−

∞
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=N

blj0(h) exp(w(h))

}∣

∣

∣

∣

∣

≤
∞
∑

i=n

m
∑

l=1

bj0l(i)

∣

∣

∣

∣

∣

exp

{

i−1
∑

h=N

blj0(h) exp(ws(h))

}

− exp

{

i−1
∑

h=N

blj0(h) exp(w(h))

}∣

∣

∣

∣

∣

.

By the continuity of the exponential function and the Lebesgue dominated convergence
theorem, it follows that

lim
s→∞

sup
n≥N

|(Ews)(n) − (Ew)(n)| = 0.

This shows that E is continuous.
Finally, we show that EΨ is precompact. Let w ∈ Ψ and k > n ≥ N , then in view of

(12),

|(Ew)(k) − (Ew)(n)| ≤

k−1
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=N

blj0(h) exp(w(h))

}

≤

∞
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=N

blj0(h) exp(D)

}

.
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This means that EΨ is precompact.

Now, by Schauder’s fixed point theorem, we conclude that there exists w′ ∈ Ψ such

that w′(n) = (Ew′)(n), that is,

w′(n) = D −
∞
∑

i=n

rj0 (i) −
∞
∑

i=n

m
∑

l=1

bj0l(i) exp

{

i−1
∑

h=N

blj0(h) exp(w′(h)

}

, n > N,

from which we obtain

lim
n→∞

w′(n) = d0,

where d0 is a positive constant. On the other hand, set uj0(n) = w′(n) and

uk(n) =
n−1
∑

i=0

rk(i) +
n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(i)), k 6= j0.

Then

△uk(n) = rk(n) +
m

∑

l=1

bkl(n) exp(ul(n)), k = 1, . . . , m,

and

uk(n) ≥

n−1
∑

i=0

m
∑

l=1

bkl(i) exp(ul(0)) → +∞

for k 6= j0. The proof is complete.
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