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THE ASYMPTOTIC AND INTEGRAL CLOSURE OPERATIONS

IN MULTIPLICATIVE LATTICE MODULES

SYLVIA M. FOSTER AND JOHNNY A. JOHNSON

Abstract. This paper is primarily concerned with the integral and asymptotic closure operations

on a multiplicative lattice relative to the greatest element of a lattice module having the ascending

chain condition. We show that a cancellation law holds for the asymptotic closure of elements

of the multiplicative lattice and we ultimately show, by means of multiplicative filtrations and

filtration transforms, that the asymptotic closure of an element in a multiplicative lattice relative

to the greatest element of a lattice module, coincides with its integral closure relative to this

element in the lattice module.

1. Introduction

Investigations by Dilworth [1] have indicated that many properties of ideal theory

in Noetherian rings can be carried over to Noether lattices. In particular, Lediaev [4]

generalized the asymptotic closure and the integral closure of ideals in Noetherian rings

to multiplicative lattices having the ascending chain condition. Sharp, Tiras, and Yassi

[10] introduced the concept of the integral closure of an ideal relative to a Noetherian

module and S. Foster and J. Johnson [2] established that the asymptotic closure of a

ideal, relative to a Noetherian module, coincides with its integral closure relative to this

Noetherian module.

In this paper, we give a lattice theoretic characterization of the notion of asymptotic

closure and integral closure relative to a module. These new closure operations encompass

those developed by Lediaev [4], and Sharp, Tiras, and Yassi [10].

In [9] P. Samuel used the asymptotic properties of high powers of ideals to establish

a cancellation law in Noetherian rings. Here, we likewise obtain a cancellation law using

the notion of asymptotic closure.

Ultimately, by means of E.W.Johnson’s a-transfrom [3] and Taylor’s [11] multiplica-

tive filtration and filtration transform, we discover that where M is a principal element

of a lattice module satisfying the ascending chain condition, and where 0 : M = 0, the

asymptotic closure of an element of L, a multiplicative lattice, relative to M coincides

with its integral closure relative to M . Since not all Noether lattices are lattices of ideals
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of a Noetherian ring, Theorem 4 extends M. Nagata’s result that the asymptotic and

integral closure operations coincide in Noetherian rings [6].

First, we review some basic definitions and terminology. By a multiplicative lattice L

we mean a complete lattice on which there is a commutative, associative, and arbitrary

join distributive multiplication. The greatest element (denoted as I) of the multiplicative

lattice is the multiplicative identity. The least element of a multiplicative lattice will be

denoted by 0.

2. The Asymptotic Closure Relative to a Module

In this section L denotes a multiplicative lattice, and I denotes its greatest element.

We will use M to represent a lattice module that satisfies the ascending chain condition.

We shall now develop the concept of the asymptotic closure of elements of a multiplicative

lattice relative to the greatest element M of an L-module. Lowercase letters will represent

elements of L and uppercase letters will represent elements of M. R denotes the extended

real numbers.

To establish the asymptotic closure operation, we first need to define a pseudovalua-

tion on L. By a pseudovaluation on L, we mean a mapping v: L → R that satisfies the

following:

(P1) v(0) = ∞,

(P2) v(I) = 0,

(P3) for all a, c ∈ L, v(ac) ≥ v(a) + v(c),

(P4) for all a, c ∈ L, v(a ∨ c) ≥ min{v(a), v(c)}.

A pseudovaluation v is said to be homogeneous if for all elements a in L and for all

positive integers n, we have v(an) = nv(a).

We now define a new pseudovaluation on L relative to an element of M. Let M be

the greatest element of M and let b be an element of L such that bM 6= M . Then we

define a function Mvb : L → R by

Mvb(a) =

{

∞, in case aM ≤ bnM for every nonnegative integer n,

n, in case aM ≤ bnM, but aM 6≤ bn+1M,

where b0 is defined to be I. It can readily be shown that Mvb is a pseudovaluation on L.

Using the function defined above, we can now construct a homogeneous pseudovalu-

ation on L. Let M be an L-module. Let M be the greatest element in M and let b be

an element of L such that bM 6= M . Then, for the pseudovaluation Mvb, one can show

that for every element a in L, the limit of the sequence {M vb(a
n)

n
}∞n=1 exists. The proof

of this fact is similar to the proof given on [8, Lemma 1.2, p.109]. We therefore define

M v̄b(a) = limn→∞
M vb(a

n)
n

for all a in L.
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By applying properties of multiplicative lattices and the definition of Mvb, one can

show that M v̄b is a homogeneous pseudovaluation on L. Where bM 6= M , we set b̂ =
{a ∈ L : M v̄b(a) ≥ 1} and define M bs = ∨{a ∈ L : a ∈ b̂}. Otherwise, define Mbs = I.

The mapping b → M bs from L → L will be called the AC-operation on L relative to
M . Note that when M is L and M is I, we obtain the same AC-operation as defined

in [4] for multiplicative lattices. It follows that Mvb ≤ M v̄b. Also, M v̄b is the smallest
of all homogeneous pseudovaluations ω on L such that Mvb ≤ ω. Before continuing, we
require the following results:

Theorem 1. Let b be an element of L such that bM 6= M . Let a be an element in L
and let α be a positive real number. A necessary and sufficient condition for M v̄b(a) ≥ α

is that for each pair of positive integers p and q such 0 < p/q < α, there exists a positive

integer n such that aqnM ≤ bpnM .

Proof. The proof of the theorem is largely a consequence of the definition of M v̄b.

We leave the details of the proof to the reader.

As a consequence of Theorem 1, we note that a ≤ M bs if and only if for each pair of
positive integers p and q such that 0 < p/q < 1, there is a positive integer k such that

aqkM ≤ bpkM .
We now establish that the AC-operation an L relative to M agrees with the same

concept when specified to rings and modules. We see this by letting R represent a
commutative ring with identity and let M be an Noetherian R-module. Let b be an ideal

in R such that bM 6= M . A function vM
b : R → Z is defined the following way:

vM
b (x) =

{

n, if xM ⊆ bnM but xM 6⊆ bn+1M,

∞, if xM ⊆ bnM, for all positive integers n,

where for n = 0, we have bn = R. By defining v̄M
b (x) = limn→∞

vM

b
(xn)
n

, a homogeneous

pseudovaluation is defined on R. The asymptotic closure of b relative to M is defined
to be the set of all elements of x ∈ R such that v̄M

b (x) ≥ 1 [2]. Note that if bM = M ,

then the asymptotic closure of b is R. If L is a lattice of ideals of R then we see that the
AC- operation on L , relative to M , is exactly the asymptotic closure operation on L ,
relative to M . Define bM

y = {x ∈ R : v̄M
b (x) ≥ 1}. Let a ∈ L such that a ≤ Mbs. Then

M v̄b(a) ≥ 1. Assume that p and q are positive integers such that 0 < p/q < 1. Choose a
positive integer k such that aqkM ≤ bpkM . Thus, for each x ∈ a, we have v̄M

b (x) ≥ 1.

Therefore a ⊆ bM
y and M bs ≤ bM

y .
Conversely, let M be a Noetherian R-module, then the quotient ring R/(0 : M) is a

commutative Noetherian ring which we denote as R̃ [10]. For each ideal k of R, we let
k̃ = k + (0 : M)/(0 : M) represent the corresponding ideal in R̃. The natural image in
R̃ of an element x in R is represented by x̃. It follows that M has a natural structure

as an R̃-module. When bM
y is the asymptotic closure of b in R relative to M , then b̃M

y is

the asymptotic closure of b̃ in R̃ [2, Lemma 1.5, p.5]. Let L̃ represent the multiplicative

lattice of ideals in R̃. Since R̃ is an Noetherian ring, then the asymptotic closure of b̃ in
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L̃ is also b̃M
y [4]. Thus for positive integers p and q such that 0 < p/q < 1, pick a positive

integer k such that (b̃M
y )qk ≤ b̃pk [4]. Hence we have (bM

y )qkM ≤ bpkM and bM
y ≤ M bs

in L.

As a consequence of the above discussion, we will henceforth refer to the AC-operation

as the asymptotic closure operation.

The following six part property results mainly from the definitions of M v̄b and Mbs,

and is required for future reference.

Lemma 1. If a and b are elements in L such that aM 6= M and bM 6= M , then:

1. aM ≤ bM implies M v̄a ≤ M v̄b.

2. M v̄a ≤ M v̄b implies Mas ≤ M bs.

3. nM v̄an ≤ M v̄a.

4. (Mas)(M bs) ≤ M (ab)s. Hence, (M bs)
n ≤ M (bn)s.

5. a ≤ Mbs implies Mas ≤ M bs.

6. Mas ≤ M bs implies M v̄a ≤ M v̄b.

The Cancellation property: Here we show, by using means similar to Petro [7], that

the cancellation property established for the asymptotic closure of elements of a multi-

plicative lattice having the ascending chain condition extends to the asymptotic closure of

elements of a multiplicative lattice, relative to an L-module having the ascending chain

condition. First we recall the definition of a semi-prime operation on L. A mapping

p : L → L (a → ap) is a semi-prime operation on L if it satisfies the following conditions

for all a, b in L:

(a) a ≤ ap.

(b) a ≤ b implies ap ≤ bp.

(c) app = ap.

(d) apbp ≤ (ab)p.

We want to prove that the asymptotic closure operation on L relative to an L-module

(as defined above) is a semi-prime operation satisfying a cancellation law. We, therefore,

review two necessary results:

Proposition 1. Let M be the greatest element in M and let a and b ∈ L such that

aM 6= M and bM 6= M . Then for all c ∈ L, such that M v̄ab(c) 6= 0, we have

1

M v̄ab(c)
≤

1

M v̄a(c)
+

1

M v̄b(c)
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We also have the following result.

Proposition 2. Let M be the greatest element of M such that M 6= 0. Let a and

b be elements of L such that aM 6= M and bM 6= M . Then for all c ∈ L, we have

limn→∞ nM v̄anb(c) exists . Moreover, the following are also true:

(a) If there exists a positive integer m such that cmM ≤ bM , then limn→∞ nM v̄anb(c) =

M v̄a(c).

(b) If for all positive integers m, we have cmM ≤ bM , then limn→∞ nM v̄anb(c) = 0.

(c) If there exists a positive integer m such that amM ≤ bM , then for all c ∈ L, we

have limn→∞ nM v̄anb(c) = M v̄a(c).

The proofs of Propositions 1 and 2 follow using arguments similar to those given in
[7] and we omit the details.

We now turn our attention to a cancellation law associated with the asymptotic
closure of elements of L, relative to M .

Theorem 2. (Cancellation Law) Let a, b, and c be elements in L, and let M be the

greatest element of M. Then we have the following:

(a) If M (ac)s ≤ M (bc)s and if for some integer m, we have amM ≤ cM , then Mas ≤

M bs.

(b) If M (ac)s = M (bc)s and if for some integer m, we have (a ∨ b)mM ≤ cM , then

Mas = M bs.

By applying Lemma 1, we thus conclude that the asymptotic closure operation in
L relative to M is a semi-prime operation. The remaining parts of the proof follow a
pattern similar to [9].

In Theorem 1, we established that where α is a positive real number, we have M v̄b ≥ α
if and only if for each pair of positive integers p and q such that 0 < p/q < α, there
corresponds a positive integer n such that aqnM ≤ bpnM . We noticed that the integer n
was dependent on the rational number p/q. It can be shown that n depends only on the
element b in L and this result gives a simpler characterization of the asymptotic closure
relative to an element of a lattice module [cf. 4].

Lemma 2. Let b be an element of L and let M be the greatest element of M. Then

there exists a positive integer n such that, for each pair of positive integers p and q such

that 0 < p/q < 1, we have (M bs)
nqM ≤ bnpM . Furthermore, c ≤ M bs if and only if

there exists positive integers n and k such that for all integers i, where i ≥ 1, it is true

that (cn)k+iM ≤ (bn)iM .

Proof. For all integers m ≥ 1, let bm = {c ∈ L : cm(k+1)M ≤ bmkM for all k ≥ 1}
and let

(bm)′ = {c ∈ L : for each integer k ≥ 1,
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there exists an integer i ≤ m such that we have ci(k+1)M ≤ bikM}.

Define βm = {cM : c ∈ bm} and (βm)′ = {cM : c ∈ (bm)′}. Then for each m, (bm)′ ⊆
(bm+1)

′ and hence (βm)′ ⊆ (βm+1)
′. Since we know that M satisfies the ascending chain

condition and (βm)′ ⊆ (βm+1)
′, pick an integer n∗ such that β∗ = ∨(∪∞

m=1(βm)′) =
∨(βn∗)′. Since bp ⊆ bq if p divides q then likewise βp ⊆ βq whenever p divides q.
The definition of bm and (bm)′ imply that bm ⊆ (bm)′. Consequently, (βm) ⊆ (βm)′ ⊆
βΠ{i:0<i≤m}. It follows that β∗ = ∨βΠ{i:0<i≤n∗} ≥ ∨βm for all m. We then establish that
there exists a positive integer n such that β∗ ∈ βn. Next for each integer k ≥ 1, we select a
positive integer h such that (M bs)

h(k+1)M ≤ bnkM . Then M bsM ≤ ∨(∪∞
m=1(βm)′) = β∗.

Since β∗ ∈ βn for some integer n, it follows that M bsM ∈ βn and hence for all positive
integers p and q such that 0 < p/q < 1, we have

(M bs)
nqM ≤ (M bs)

n(p+1)M ≤ bnpM.

To prove the second part of the lemma, assume that c ≤ M bs. Pick a positive
integer n such that for each pair of positive integers p and q such that 0 < p/q < 1, we
have that cnqM ≤ bnpM . In particular, for all integers i ≥ 1 and k ≥ 1, we see that
(cn)k+iM ≤ (bn)iM . Conversely, if we choose positive integers n and k such that for all
i ≥ 1, we have (cn)k+iM < (bn)iM , then

Mvb(c
nk+ni)

n(k + i)
≥

i

k + i
.

Hence M v̄b(c) ≥ 1 and c ≤ Mbs.

We now turn our attention to a theorem that provides a simpler characterization of
the asymptotic closure relative to an element of a lattice module.

Let b be an element of L and let M bc = ∨{a ∈ L : for all integers i ≥ 0, there exists a
positive integer n such that an+iM ≤ biM}. The element M bc is the asymptotic closure
of b relative to the element M of a lattice module.

Theorem 3. If b is an element in L, then Mbc = M bs.

Proof. Let W = {c ∈ L : there exists a positive integer n such that for all i ≥
0, we have cn+iM ≤ biM}. If e, d ∈ W then d∨ e ∈ W , hence Mbc ∈ W . Pick a positive
integer n such that for all i ≥ 0, we have (Mbc)

n+iM < biM . Thus, we have

Mvb(M bn+i
c )

(n + i)
≥

i

n + i

and we see that limn→∞
M vb(M bn+i

c
)

(n+i) ≥ 1 and Mbc ≤ M bs.

Next if c ≤ Mbs, choose a positive integer n, then for all i ≥ 0, we have (cn)i+1M ≤
bniM . Also for each integer i ≥ 0 there are integers q and r such that i = nq + r where
0 ≤ r < n. Then we have, c2n+iM = c2n+nq+rM ≤ c2n+nqM ≤ (bn)q+1M = bqn+nM ≤
bqn+rM = biM . Therefore, M bs ≤ Mbc and we have equality.
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3. The Integral Closure Operation Relative to a Module

In this section we develop the concept of the integral closure of an element of L, a
multiplicative lattice, relative to an element of M, an L-module with the ascending chain
condition. The notions of the reduction and integral closure of an ideal in a commutative
ring were introduced and studied by Northcott and Rees [6][8]. Lediaev [4] generalizes
these operations in a Noether lattice setting. Sharp, Tiras, and Yassi [10] introduced
similar operations in a ring, relative to a module. We obtain the same sort of results in
this section. As we have done before, in this chapter we let M represent the greatest
element of the L-module, M.

First, we develop the concept of a-dependency of an element of L relative to M and
use this concept to establish the definition of a new mapping on L.

Definition 1. An element c in L is a-dependent on an element b in L relative to M ,
if there exists a positive integer n such that cn+1M ≤ b(c ∨ b)nM .

Let bI = {m ∈ L : m is a-dependent on b relative to M}; then define M ba = ∨bI .
The mapping a : L → L such that b → mba is called the IC-operation on L relative

to M . The next lemma readily follows.

Lemma 3. Let c and b be elements of L, then c is a-dependent on b relative to M if

and only if there exists a positive integer n such that

(b ∨ c)n+1M = b(b ∨ c)nM.

We now present other properties for the element Mba in L. Clearly, if c ∈ L such that
c ≤ b, then c is a-dependent on b relative to M .

Lemma 4. If c and d are a-dependent on b relative to M , then so is c∨d. Therefore,

we have Mba is a-dependent on b relative to M .

Proof. Apply simple multiplicative lattice and lattice module properties along with
the ascending chain condition on M.

As was the case with the AC-operation, the IC-operation is also a semi-prime opera-
tion on L.

Sharp, Tiras, Yassi [10] developed the concept of the integral closure of an ideal of
a ring R relative to a Noetherian R-module. They then established properties for this
operation similar to the classical properties of the integral closure of an ideal. In this
section, we will make some observations concerning the IC- operation in a lattice of ideals
of a ring, relative to M , the greatest element of a lattice module.

In [2] we let M be a Noetherian R-module and let b be an ideal of R. An element x
of a ring R is said to be integrally dependent on b relative to M if there exists a positive
integer n such that

xnM ⊆

n
∑

i=1

xn−ibiM.
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Moreover, when M is a Noetherian R-module, then R/(0 : M) is a commutative

Noetherian ring which we will denote as R̃ [10]. For all ideals k in R, we denote k∨(0:M)
(0:M)

by k̃. Note that M has a natural structure as an R̃-module.

We can now turn our attention to the following lemma found in [10]. Let M be a
Noetherian R-module. Denote the natural image in R̃ of an element r in R by r̃. Now

let x ∈ R and let b be an ideal of R. It thus follows that x is integrally-dependent on b
relative to M if and only if x̃ is integrally-dependent on b̃ in R̃. Define bM

a = {x ∈ R : x
is integrally-dependent on b, relative to M}. Hence, we have bM

a is the integral closure

of b relative to M , if and only if b̃M
a is the integral closure of b̃ in R̃.

The integral closure of an ideal relative to M is also an ideal and we can show

that if L is a lattice of ideals of a ring R and M is the greatest element of a lattice
L-module, then the IC-operation on L relative to M is precisely the integral closure

operation on L relative to M as we show now. By [Lemma 4, Page 6], we know that in
L, Mba is a-dependent on b relative to M . Thus, select a postitve integer k such that

(M ba)
k+1M = b(Mba)kM .

This last statement implies that b and M ba have the same integral closure in R

relative to M . Let bM
a denote the integral closure of b in R relative to M . Hence,

Mba ⊂ (M ba)
M
a = bM

a . Thus, M ba ⊆ bM
a . On the other hand, if we let bM

a be the

integral closure of b in R relative to M , then b̃M
a represents the integral closure of b̃

in R̃ [10]. Let L̃ denote the lattice of ideals for R̃. Since R̃ is a Noetherian ring, the

integral closure of b̃ in R̃ is equal to the integral closure of b̃ in L̃ [4]. Hence, choose a
positive integer k such that (b̃M

a )k+1 = b̃(b̃M
a )k [4: Page 240, Lemma 7]. This implies

(b + bM
a )k+1M = b(b + bM

a )kM . Hence, bM
a ⊆ Mba.

Next, let c ⊆ M ba = bM
a . Then c̃ ⊆ b̃M

a in R̃ and L̃. By [5, Theorem 2.43, Page 48],

select a positive integer k such that c̃k+1 ⊆ b(̃b + c)
k

, therefore ck+1M ⊆ b(b + c)kM .

By applying the definition of M ba, we find that if c ∈ L such that ck+1M ⊆ b(b+c)kM
then c ⊆ M ba. As a consequence of the above, we will now call M ba the integral closure

of b relative to M . We also say that b is integrally closed relative to M if b = M ba.

4. The Asymptotic and Integral Closure Operations in a Lattice Relative to

an Element of a Lattice Module

Throughout this section we will let L denote a multiplicative lattice and let M denote

an L-module with the ascending chain condition. We will show that where M , the
greatest element of M, is principal with 0 : M = 0, and where L is modular, the

asymptotic closure of an element in L, relative to M , coincides with its integral closure,
relative to M . This extends [Theorem 3 [4], (Page 241)], and also extends Nagata’s

similar result about rings [6]. We make use of the a-transform of L and a filtration of M
to accomplish this.

First we review properties of these forms taken from [11].
A multiplicative filtration in L is a sequence {fi}, where i ∈ Z, of elements of L which

satisfies the following:
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1. for all i ≤ 0, we have fi = I.

2. for all i, k ∈ Z we have fifk ≤ fi+k.

Let {fi} be a fixed multiplicative filtration in L and consider the collection R(L, {fi})
of all formal sums

∑

i∈Z
bi of elements bi of L such that, for all i ∈ Z and for all k ∈ Z+

we have fi ≥ bi ≥ bi+k > fkbi. Next, for elements b =
∑

i∈Z
bi and c =

∑

i∈Z
ci in

R(L, {fi}), the following are defined:

1. b ∨ c =
∑

i∈Z
(bi ∨ ci).

2. b ∧ c =
∑

i∈Z
(bi ∧ ci).

3. bc =
∑

i∈Z
(
∨

r+t=i brct).

4. b ≤ c if and only if, we have bi ≤ ci, for all i ∈ Z.

It also follows that for all integers i and k, we have bi+k ≥ fkbi. The collection
R(L, {fi}) together with the operations ∨,∧, ., and the relation ≤, forms a multiplicative
lattice. Note that if L is modular, then R(L, {fi}) is also modular. Also for an element

b in R(L, {fi}) and an integer i, the i-th component of b is represented bi. It follows that
R(L, {fi}) is a complete lattice [11].

If we let a be an element of L, where a 6= I and if, for all i ∈ Z, we let fi = ai,

then the collection R(L, {ai}) is called the a-transform of L [3]. Observe that if n is an
integer such that c ≤ an, then c[n] represents the least element, d, of R(L, {ai}) such
that dn ≥ c.

Let a be a fixed element in L such that a 6= I. We now summarize a number of
results from [3] concerning a-transforms of L. Let n and m be integers, and let c and d
be elements of L. Then, for the a-transforms R(L, {ai}) of L, we have:

Lemma 5.

1. If c ≤ an, then c[n] =
∑

i∈Z
cai−n.

2. If c ≤ an and d ≤ an, then c[n] ∨ d[n] = (c ∨ d)[n].

3. If b ∈ R(L, {ai}) and c ≤ an in L then bc[n] =
∑

i∈Z
bi−nc.

4. If c and d are elements of L such that c ≤ an and d ≤ am then c[n]d[m] = (cd)[n+m].

5. If L is modular and b is a principal element of L such that b ≤ an, then b[n] is

principal in R(L, {ai}).

Next, we define filtrations in a lattice module. Let M be a lattice L-module with
greatest element M . A filtration in M is a sequence {Fi} of elements of M , where i is

an integer, satisfying:

1. For all i ≤ 0, we have Fi = M .



354 SYLVIA M. FOSTER AND JOHNNY A. JOHNSON

2. For all integers i, we have Fi+1 ≤ Fi.

Consequently, it follows that for b ∈ L, we have {biM} is a filtration in M. The
elements of a multiplicative filtration in L are connected with elements of a filtration in
M in the following way: Suppose {fi} is a multiplicative filtration in L and {Fi} is a
filtration in M. Then, {Fi} is an {fi} filtration in M if for all integers i and k, we have
fkFi ≤ Fi+k.

Adopting the notation in [11], define F (L,M, {fi}, {Fi}) to be the set of all formal
sums

∑

i∈Z
Bi satisfying:

1. For all integers i, we have Bi ∈ M.

2. For all non-negative integers k and for all integers i, we have fkBi ≤ Bi+k ≤ Bi ≤
Fi.

We call Bi the i-th component of B =
∑

i∈Z
Bi. For all C ∈ F (L,M, {fi}, {Fi}), we

let Ci denote the i-th component of C, so that C =
∑

i∈Z
Ci. We will denote formal

sums simply as
∑

Bi for elements in F (L,M, {fi}, {Fi}) and
∑

bi for formal sums in
R(L, {fi}).

For elements B and C in F (L,M, {fi}, {Fi}), where B =
∑

Bi and C =
∑

Ci, the
following definitions will be used: For all integers i, we say B ≤ C if and only if Bi ≤ Ci.
The set F (L,M, {fi}, {Fi}) forms a lattice under ≤ with the following meet and join
properties:

• B ∧ C =
∑

i∈Z
(Bi ∧ Ci);

• B ∨ C =
∑

i∈Z
(Bi ∨ Ci);

The lattice will be represented by R(L,M, {fi}, {Fi}) [11]. That R(L,M, {fi}, {Fi})
can be considered as an R(L, {fi})-module follows based on the following three properties
that hold on elements in R(L,M, {fi}, {Fi}). Let B ∈ R(L,M, {fi}, {Fi}):

(a) For all integers i and k, we have fkBi ≤ Bk+i.

(b) For all integers i, we have
∨

r∈Z
(frBi−r) = Bi.

(c) Let
∑

bi ∈ R(L, {fi}) and
∑

Bi ∈ R(L,M, {fi}, {Fi}). Then
∑

(
∨

r∈Z
brBi−r) is

an element of R(L,M, {fi}, {Fi}).

Define the following mapping µ [11], µ : R(L{fi}) × R(L,M, {fi}, {Fi}) → R(L,M,
{fi}, {Fi}) by the following equation:

µ(b, B) =
∑

(
∨

r∈Z

brBi−r).

We denote µ(b, B) as bB.
Let b =

∑

bi be an element in R(L, {fi}) and let B =
∑

Bi be an element in
R(L,M, {fi}, {Fi}). The lattice R(L,M, {fi}, {Fi} is an R(L{fi})-module, where bB =
(
∑

bi)(
∑

Bi) =
∑

(
∨

r∈Z
(brBi−r)). The following conclusions can be made:
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1. Where b and c ∈ R(L, {fi}) and D ∈ R(L,M, {fi}, {Fi}), we have (bc)D = b(cD).

2. For all α ∈ Λ let bα ∈ R(L, {fi}) and for all β ∈ Ω, let Cβ ∈ R(L,M, {fi}, {Fi});
then (∨bα)(∨Cβ) = ∨(bαCβ).

3. If B ∈ R(L,M, {fi}, {Fi}), then (
∑

fi)(B) = B.

4. 0B = 0.

The next definition is important for proofs that follow:

Definition 2. Suppose r is an integer and C is an element in M with C ≤ Fr .
Define C [r] = ∧{B ∈ R(L,M, {fi}, {Fi}) : C ≤ Br}.

Note that C [r] =
∑

r∈Z
(fi−rC).

Lemma 6 from [11] is needed for computations.

Lemma 6. Let r be an integer and b ∈ L satisfying b ≤ fr. Let s be an integer and

let C and D be elements in M satisfying C ≤ Fs, and D ≤ Fs. Let
∑

ai ∈ R(L{fi})
and

∑

Ei ∈ R(L,M, {fi}, {Fi}). Then we have the following:

(a) (C ∨ D)[s] = C [s] ∨ D[s].

(b) (
∑

ai)C
[s] =

∑

(ai−sC).

(c) b[r]C [s] = (bC)[r+s].

(d) Let L be a modular. If r is an integer and B is a principal element of M satisfying

B ≤ Fr, then B[r] is a principal element of R(L,M, {fi}, {Fi}).

Let a
′

and s
′

denote the integral closure and the asymptotic closure operations (rel-
ative to (IM)[0]) in R(L, {ai}). We then have the following lemma:

Lemma 7. Let L be modular and let b be an element of L. Let d be a principal

element in L and let M be a principal element in M with 0 : M = 0. If b ≤ Mds, then b
is integrally-dependent on d relative to L. Therefore, we have Mds = Mda.

Proof. Let b ≤ Mds, by Theorem 3, choose a positive integer n such that for every
non-negative integer i, we have

bn+iM ≤ diM

Hence, it follows that

bn+iM ≤ (diM) ∨ ((d ∨ b)n+iM) = (di ∧ ((d ∨ b)n+iM : M))M

= (di ∧ ((d ∨ b)n+i ∨ 0 : M))M = (di ∧ (d ∨ b)n+i)M = (di[(d ∨ b)n+i : di])M.

Since M has the ascending chain condition, select a positive integer r such that, for
all non-negative integers i, we have

((d ∨ b)n+r+i : dr+i)M = ((d ∨ b)n+r : dr)M
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Thus we say that

bn+r+1M ≤ dr+1[(d ∨ b)n+r+1 : dr+1]M = d[(dr(d ∨ b)n+r : dr)]M) ≤ d(d ∨ b)n+rM.

Therefore, b is integrally-dependent on d relative to M , and we conclude that Mds =

Mda.

Next we show that if b ≤ Mas, then b[0] ≤ I
[−1]
s′ = I

[−1]
a′ in R(L, {ai}).

By Lemmas 5 part(e) and 6 part(d), we have I [−1] is a principal element in R(L, {ai})

and (IM)[0] is principal in R(L,M, {ai}, {aiM}). Hence, by the first part of this theorem,

we see that I
[−1]
s′ = I

[−1]
a′ . Since b ≤ Mas, choose an integer n such that for all non-

negative integers i, bn+iM ≤ aiM .

Consequently, for all non-negative integers i,

(bn+iM)[i] ≤ (aiM)[i].

Thus, we have

(bn+iM)[i] ≤ (ai)[i](IM)[0],

and

I [−i](bn+iM)[i] ≤ I [−i](ai)[i](IM)[0].

Consequently,

(bn+iM)[0] ≤ I [−i](IM)[0],

and also

(bn+i)[0](IM)[0] ≤ I [−i](IM)[0].

Therefore, it follows that

(b[0])n+i(IM)[0] ≤ (I [−1])i(IM)[0].

and

b[0] ≤ I
[−1]
s′ .

We conclude our work with the following theorem which shows that the asymptotic

closure of an element of L relative to M coincides with its integral closure relative to M

when L is modular and 0 : M = 0. This theorem extents the lattice theoretic results of

Lediaev [4] and the Nagata’s result that the asymptotic and integral closures coincide in

Noetherian rings [6].

Theorem 4. Let L be modular and let M be a principal element of M with 0 : M = 0.

For all elements a in L, we have Maa = Mas. Furthermore, b ≤ Mas implies that b is

integrally-dependent on a, relative to M .

Proof. Let b and a be elements in L. Let b ≤ Mas and (IM)[0] be an element

in R(L,M, {ai}, {aiM}). Thus, by Lemma 7, we know that in R(L, {ai}), we have
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b[0] ≤ I
[−1]
a′ , and we see that b[0] is integrally-dependent on I [−1] relative to (IM)[0].

Choose a positive integer n such that

(I [−1] ∨ b[0])n+1(IM)[0] = I [−1](I [−1] ∨ b[0])n(IM)[0]. (1)

The left side of (1) is equal to

n+1
∨

i=0

(b[0])i(I [−1])n+1−i(IM)[0] = (

n+1
∨

i=0

(b[0])i(I [−1])n+1−i)(IM)[0]

= (I [−n−1] ∨ · · · ∨ (bi)[i−1−n] ∨ · · · ∨ (bn+1)[0])(IM)[0].

The zero component of this part is (
∨n+1

i=0 bian+1−iM) = (a ∨ b)n+1M .

The right side of (1) is equal to

I [−1](

n
∨

i=0

(b[0])i(I [−1])n−i)(IM)[0]

= (I [−n−1] ∨ · · · ∨ (bn−i)[−i−1] ∨ · · · ∨ (bn)[−1])(IM)[0].

The zero component of this side is (
∨n

i=0 bian+1−iM) = a(a ∨ b)nM .
Therefore, (a ∨ b)n+1M = a(a ∨ b)nM , and b is integrally-dependent on a relative to

M .
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