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CLASSIFICATION OF STABLE CURRENTS IN THE PRODUCT

OF SPHERES

SHIHSHU WALTER WEI

In [11] we constructed the first set of examples of area-minimizing hypersurfaces with

isolated singularities in various high dimensional locally symmetric spaces of both compact

type and non-compact type. These are not the minimizing cones in Euclidean spaces R
n

constructed by Bombieri, de Giorgi and Giusti [2] and later by Lawson [6].

Among our first known examples in various locally symmetric spaces, the ones in the

product of hyperbolic spaces H n+1 × H n+1 are complete, while the examples in the product

of Euclidean spheres Sn+1×Sn+1 have boundaries, where n > 2. From the analytic viewpoint,

this is due to the fact that the non-linear elliptic partial differential inequalities involved in

Sn+1 ×Sn+1 unlike the ones in the non-compact type case, have only local solutions.

This striking contrast leads immediately to the conjecture that no closed stable rectifiable

(2n +1)-current (or roughly speaking, no closed stable minimal hypersurface with singulari-

ties) exists in Sn+1×Sn+1 , and hence motivates a general study in Sp ×Sq . A stable rectifiable

current (resp. stable minimal submanifold) is a stationary or minimal rectifiable current (resp.

minimal submanifold) that has no mass (resp. area) decreasing variations. An extension of

Synge lemma due to Simons [9] which states that there are no closed stable hypersurfaces

in a Riemannian manifold with positive Ricci curvature supports a piece of evidence of the

conjecture.

In this paper, we give a positive answer to the conjecture and classify the stable currents

in the product of Euclidean spheres Sp ×Sq .

Theorem. (Classification Theorem) For p and q 6= 1 or 2, the only closed stable rectifiable

currents in the product of Euclidean spheres Sp ×Sq are Sp ×{pt .} or {pt .}×Sq or sums of these.

In fact, any closed varifold of dimension 6= p or q is not stable, and neither is the diagonal

embedding of Sn into Sn ×Sn for n > 2. In S2×S2, the only closed stable rectifiable currents are

holomorphic or anti-holomorphic or sums of these. Hence, the diagonal and skew-diagonal

embeddings of S2 into S2 ×S2 are both stable.

The technique is to first prove a decomposition theorem for the tangent space to the sup-

port of a current in the product of Riemannian manifolds (cf. Theorem 1). Then derive a trace
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formula (Proposition 2), and make sharp estimates, case by case, of the trace of a quadratic

form involving the second variational formula over a vector space of certain selected “distin-

guished" vector fields in the product of spheres along which the deformation of a current is

being performed. Along with many other results, these trace estimates imply that a current T

in Sp ×Sq (p and q 6= 1 or 2) is stable if and only if T is either of dimension p or q with tangent

vectors almost everywhere lying in one factor of the tangent space to Sp ×Sq . We conclude

that these stable currents are in fact totally geodesic submanifolds Sp or Sq by a beautiful

characterization technique [8] in geometric measure theory.

It should be pointed out that the average process from the calculus of variations was

first employed by Lawson and Simons [7]. They have shown that there are no closed stable

varifolds in the Euclidean sphere Sn , and the only closed stable rectifiable currents in the

complex projective space C P n are algebraic cycles.

While the work generalizes an idea of Synge [10], study global geometry and topology

by deforming a geodesic along its parallel normal vector field, one can deform any current

along a “universally" fixed collection of distinguished vector fields to solve global problems by

averaging.

The method to classify the stable currents in Sp×Sq can be carried over to a more general

setting. Namely, it can be applied to the study of topology of submanifolds in Sn ×Sm as well

as in Yang-Mills fields. We have discussed these phenomena in another paper [12].

The method can be extended to an extrinsic average variational method ([15]), for var-

ious manifolds that are not symmetric spaces, and for various functionals that are not area

and mass functionals (for the motivation, see also [16, p.626]). The extended method ([15])

was applied to harmonic maps by R. Howard and S.W. Wei, p-harmonic maps by S.W. Wei

and C.M. Yau, and F -harmonic maps by M. Ara to introduce and study the notions of su-

perstrongly unstable manifold, p-superstrongly unstable manifold, and F -superstrongly un-

stable manifold ([5],[18],[1]). The extended method has also been applied to establish some

topological vanishing theorems for higher homotopy groups ([16],[17]). This is in contrast to

[7] and [12], where topological vanishing theorems for homology groups are studied.

The author wishes to thank Professors H. Blaine Lawson Jr., and Ralph Howard for their

helpful discussions, and Professor Herman R. Gluck for his interest. The author also wishes to

express his gratitude to the editor, the staff, and Tamkang Journal of Mathematics for making

the present form of the paper possible.

1. Definitions and preliminary remarks

To solve the variational problems (e.g. oriented Plateau’s problem) and represent the

homology groups of a manifold N , Federer and Fleming [4] introduced rectifiable currents
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which may be thought of as an oriented surface with singularities. They have tangent planes

almost everywhere and can be strongly approximated by smooth surfaces.

For the purpose of completeness and calculation, we shall adopt the notation developed

in detail in [7] and outline briefly below. For convenience N can be considered as embedded

in some Euclidean space. We begin with the Hausdorff p-measure H
p of a set S ⊂ N defined

by

H
p (S)= lim

ǫ→0+
inf

{

∑

θ∈C

αp (
diamθ

2
)p , C ∈Cǫ(S)

}

where Cǫ(S) is the collection of countable coverings of S by sets of diameter ≤ ǫ and αp is

the p-area of the unit p-ball. An H
p -measurable set S ⊂ N with H

p (S) < ∞ is called p-

rectifiable if for all ǫ > 0, there is an embedded C 1 submanifold S ′ of dimension p such that

H
p (S∆S ′)< ǫ, where ∆ denotes symmetric difference.

We call (S,ξ) an oriented p-rectifiable set if S is a p-rectifiable set and ξ an H
p -measurable

section ξ : S →
∧p T (N ) of the p-th exterior product of the tangent-bundle of N with the prop-

erty that for H
p - almost all x ∈ S, ξx is a simple vector of unit length which represents Tx (S).

Therefore, given an oriented p-rectifiable set S = (S,ξ) and a smooth p-form ω, we can

interpret

S (ω) =

∫

S
ω(ξx )dH

p (x)

as a continuous linear functional on the space
∧p (N ) of differential p-forms on N with the

sup-norm topology. Furthermore, the norm M(S ) =H
p (S ) and the M-closure of the group

generated by the oriented p-rectifiable sets in the dual space of
∧p (N ) is called the set of

rectifiable p-currents and shall be denoted by Rp (N ). It is known that for any S ∈Rp (N )

S =

∞
∑

n

nSn

where Sn are disjoint collections of oriented p-rectifiable set (Sn ,ξn) with M(S ) =
∑∞

1 nH
p (Sn)

<∞. Hence we associate with each S ∈ Rp (N ) , a Borel measure ‖S ‖ called the total varia-

tion measure of S .

For every x ∈ Sn , we define~Sx = ξn(x). Thus~S denotes the field of oriented tangent planes

of S . The boundary of S is given by

(∂S )(ω) =S (dω)

where d denotes exterior differentiation. S is an integral current if S and ∂S are rectifiable.

We call S an m-dimensional normal current if S and ∂S are representable by integration (or

m = 0) with compact support.
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Just as rectifiable currents are defined as Z -chains of oriented rectifiable sets, so are rec-

tifiable G-currents Rp (G) defined to be G-chains of oriented p-rectifiable sets

S =
∑

g∈G−{0}

gSg

where {Sg = (Sg ,ξg ) : g ∈G} is a disjointed family of oriented p-rectifiable sets with

M(S)=
∑

|g |H p (Sg ) <∞.

We can define the support of G-current S , the field of unit tangent p-planes, and the

variation measure ‖S ‖ in an analogous way.

A p-dimensional varifold on N is a radon measure on the total space of the fiber bundle

G ′
p (N )

π
→N of unoriented p-dimensional subspaces of tangent space of N .

A current T ∈ Rk (N ) is said to be stationary or minimal if d
dt M(φV

t∗(T ))
∣

∣

∣

t=0
= 0 for all

vector fields V on N with compact support where φV
t is the flow associated with V . A current

T ∈Rk (N ) is said to be stable if for every vector field V with compact support, there exists an

ǫ> 0 such that

M(T ) ≤ M(φV
t∗(T ))

for |t | < ǫ.

Note that if T is stable, then for each V we have

d

d t
M(φV

t∗(T ))
∣

∣

∣

t=0
= 0

d 2

d t 2
M(φV

t∗(T ))
∣

∣

∣

t=0
≥ 0.

A current T ∈Rk (N ) is homologically (or absolutely) mass-minimizing over Z if for all com-

pact sets K ⊂ N , we have

M(φK T ) ≤M((φK T )+S )

for all S ∈ R
loc
k

(N ) have compact support and boundary of a current in R
loc
k+1

(N ) (or zero),

where φK is the characteristic function on K .

Suppose now that N n is an n-dimensional complex manifold with almost complex struc-

ture J . A current S ∈ R2p (N ) is holomorphic if J~Sx = 0 for ‖S ‖ almost all x. A current

S ∈R2p (N ) is anti-holomorphic if J~Sx is orthogonal to ~Sx for ‖S ‖ almost all x.
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2. A decomposition theorem in general product spaces

Theorem 1. Let x = (x1, x2) be a point in the product manifolds M1×M2 of Riemannian man-

ifolds M1 and M2 . Suppose the support of a rectifiable p-current in Rp (M1 ×M2), or Rp (M1 ×

M2,G) , or a p-varifold on M1×M2 has a tangent space W at (x1, x2) . Then there exist i , j ,k ≥ 0

such that i + j + k = p , and an orthonormal basis B for W , of the form B = B1 ∪B2 ∪B3 ,

where B1 = {ē1, · · · , ēi , } ⊂ Tx1
(M1) , B2 = { ¯̄e1, · · · , ¯̄e j } ⊂ Tx2

(M2) , and B3 = {e1 = a1+b1, · · · ,ek =

ak +bk } with {a1, · · · , ak } ⊂Tx1
(M1) , and {b1, · · · ,bk } ⊂ Tx2

(M2) , such that

〈aℓ, aℓ′〉 = 〈bℓ,bℓ′〉 = 〈aℓ, ēs〉 = 〈bℓ, ¯̄e t 〉 = 0, (1)

for every ℓ 6= ℓ′ , where 1 ≤ ℓ,ℓ′ ≤ k , 1 ≤ s ≤ i , and 1 ≤ t ≤ j . If i = 0 (resp. j = 0, k = 0), we define

B1 =; , (resp. B2 =; , B3 =; .) In particular, both aℓ and bℓ are orthogonal to W1
⊕

W2 , where

Wι =W ∩Txι
(Mι) , ι= 1,2.

Proof. Since Wι , ι = 1,2 is an inner product space, if Wι 6= ; , then there exists an orthogonal

basis {ē1, · · · , ēi } of W1 , an orthogonal basis { ¯̄e1, · · · , ¯̄e j } of W2 , and an orthogonal complement

W3 of W1
⊕

W2 in W , such that W = W1
⊕

W2
⊕

W3 . Denote the orthogonal projections by Pi :

T(x1,x2)(M1×M2) → Txι
(Mι) , ι= 1,2. Then P2 induces a symmetric bilinear form B on W3 (resp.

on W ) given by

B (X ,Y )= 〈X ,P2(Y )〉 ,

for every X ,Y ∈W3 (resp. every X ,Y ∈W ). It follows from a diagonalization theorem in linear

algebra that there exists an orthonormal basis {e1, · · · ,ek } of W3 (if W3 6= ;) such that

〈eℓ,P2(eℓ′)〉 = δℓ,ℓ′αℓ (2)

for some αℓ ∈R . Let P1(eℓ) = aℓ , and P2(eℓ)= bℓ . In view of (2)

〈bℓ,bℓ′〉 = 〈P2(eℓ),bℓ′〉 = 〈eℓ,P2(eℓ′)〉 = 0,

for every ℓ 6= ℓ′ , and

〈bℓ, ¯̄e t 〉 = 〈P2(eℓ), ¯̄e t 〉 = 〈eℓ,P2( ¯̄e t )〉 = 〈eℓ, ¯̄e t 〉 = 0.

It follows that

〈aℓ, aℓ′〉 = 〈eℓ−bℓ,eℓ′ −bℓ′〉 = δℓ,ℓ′ −〈bℓ,bℓ′〉 = 0,

for every ℓ 6= ℓ′ . Similarly, 〈aℓ, ēs〉 = 〈eℓ, ēs〉 = 0. ���
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3. Derivation of a trace formula

Let Sn ×Sm be the product of Euclidean sphere with metric tensor 〈 , 〉 and Riemannian

connection ∇. We define

V =

{

grad( f
∣

∣

∣

Sn
) : f ∈ (Rn+1)′

}

⊕

{

grad(g
∣

∣

∣

Sm
) : g ∈ (Rm+1)′

}

.

, where (Rn+1)′ is the dual space of Rn+1 . There is a canonical isomorphism

R
n+1

×R
m+1

→ V

which associates to (v, w )∈R
n+1×R

m+1 , the gradient of the function defined by the Euclidean

inner product

〈(v, w ), (x1, x2)〉Rn+1×Rm+1 = fv (x1)+ gw (x2)

(

where (fv(x1),gw(x2)) = (〈v,x1〉,〈w,x2〉)
)

, i.e., the isomorphism is given by

(v, w ) 7→ (V (x1),W (x2)) = (v −〈v, x1〉x1, w −〈w, x2〉x2)

for every point (x1, x2)∈ Sn ×Sm ⊂R
n+1×R

m+1. This identification introduces a natural inner

product on V and V is an (n +m + 2)-dimensional vector space. For any simple p-vector

ξ ∈
∧p Tx (Sn×Sm) at x ∈ Sn×Sm, we associate a quadratic form Qξ on V as follows: For V ∈ V ,

let φV
t be the flow generated by V ,

Qξ(V )=
d 2

d t 2
‖φV

t∗ξ‖
∣

∣

∣

t=0
where ‖φV

t∗ξ‖= 〈φV
t∗ξ,φV

t∗ξ〉
1
2 .

Likewise, given a p-varifold S in Sn ×Sm we can define a quadratic form QS on V

QS(V ) =
d 2

d t 2
M(φv

t∗S)
∣

∣

∣

t=0
.

Their traces are linked by

tr QS=

∫

G ′
p (Sn×Sm)

trQξdS(ξ) ,

where G ′
p (Sn×Sm) is the Grassmannian of unoriented p-dimensional subspace of T(x1,x2)(Sn×

Sm) . In general, to express the second variation formula in terms of geometry of submanifold

in N , we introduce two tensor fields A
V and ∇V ,•V associated to a vector field V on N as

follows:

(1) Given any point x ∈ N we define a linear map A
V : Tx (N )→ Tx (N ) by A

V (X ) =∇X V .

The map extends uniquely as a derivation to
∧p Tx (N ).

(2) At any point x ∈ N , we define also a linear map ∇V ,•V : Tx (N ) → Tx (N ) by ∇V ,X V =

∇V ∇X̃ V −∇∇V X̃ V where X̃ is any extension of X to a local vector field. Let ξ = e1 ∧ ·· · ∧ ep
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where {e1, . . . ,ep ,n1, . . . ,nq } is an orthonormal basis for Tx (N ). It was computed in [5] that for

a gradient vector field V

d 2

d t 2
M(φV

t∗S )
∣

∣

∣

t=0
=

∫

N
Qξ(V )d ||S ||

=

∫

N

(
p
∑

α=1

〈A
V (eα),eα〉

)2
+2

p
∑

α=1

q
∑

β=1

〈A
V (eα),nβ〉

2
+

p
∑

α=1

〈∇V ,eαV ,eα〉d ||S ||.

From now on let a simple p-vector ξ ∈
∧p (Tx (Sn ×Sm)) at a point x = (x1, x2) ∈ Sn ×Sm be

given by ξ = ē1 ∧ ·· ·∧ ēi ∧ ¯̄e1 ∧ ·· ·∧ ¯̄e j ∧ e1 ∧ ·· ·∧ ek where ēs , ¯̄e t ,eℓ are as in Theorem 1, with

eℓ = aℓ+bℓ, ēs , aℓ ∈ Tx1
(Sn), ¯̄e t ,bℓ ∈ Tx2

(Sm). Note i , j ,k ≥ 0 are such that i + j +k = p . That

is, throughout this paper, we assume as in Theorem 1 (in which M1 = Sn and M2 = Sm) that

among local frame of p tangent vectors a.e. to a given current in Sn ×Sm , there are i vectors

ēs lying in the first factor of the tangent space (to Sn ×Sm), j vectors ¯̄e t in the second factor

and k vectors eℓ = aℓ+bℓ in both factors.

Proposition 2.

trQξ = i 2
+( j +k)2

−ni −m( j +k)+(2i −2 j −2k+4−n+m)
k
∑

ℓ=1

|aℓ|
2
+2

( k
∑

ℓ=1

|aℓ|
2
)2
−4

k
∑

ℓ=1

|aℓ|
4.

Proof. To compute the trace over V , we first consider the gradient vector field V over Sn

corresponding to a fixed v ∈R
n+1 (with the Riemannian connection ∇̄) through the canonical

isomorphism,

A
V (eℓ) =∇eℓV =∇aℓ

V = (∇̄aℓ
v −〈v, x ′

1〉x ′
1)T

x ′=x =−〈v, x1〉aℓ =− fv aℓ

where ℓ= 1, · · ·k , x ′
1 is the projection of x ′ to the first n+1 coordinates, and ( )T is an orthog-

onal projection Tx1
(Rn+1)→ Tx1

(Sn). Similarly, we have

A
V (ēs ) = − fv ēs , where s = 1, · · · , i

A
V ( ¯̄e t ) = 0 where t = 1, · · · , j .

Furthermore,

∇V ,eℓV = ∇V ∇eℓV =∇V (− fv aℓ)=−|V |
2aℓ

∇V ,ēs
V = ∇V (− fv ēs) =−|V |

2ēs

∇V , ¯̄e t
V = 0.

Therefore,

Qξ(V ) =
( i
∑

s=1

〈− fv ēs , ēs〉+

k
∑

ℓ=1

〈− fv aℓ, aℓ〉

)2
+2

i
∑

s=1

q
∑

β=1

〈− fv ēs ,nβ〉
2
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+2
k
∑

ℓ=1

q
∑

β=1

〈− fv aℓ,nβ〉
2
+

i
∑

s=1

−|V |
2
〈ēs , ēs〉

2
+

k
∑

ℓ=1

−|V |
2
〈aℓ, aℓ〉.

Likewise, for w ∈ Tx2
(Sm) , through the canonical isomorphism w 7−→W ,

Qξ(W ) =
(

j
∑

t=1

〈−gw ¯̄e t , ¯̄e t 〉+

k
∑

ℓ=1

〈−gw bℓ,bℓ〉

)2
+2

j
∑

t=1

q
∑

β=1

〈−gw ¯̄e t ,nβ〉
2

+2
k
∑

ℓ=1

q
∑

β=1

〈−gw bℓ,nβ〉
2
+

j
∑

t=1

−|W |
2
〈 ¯̄et , ¯̄e t 〉

2
+

k
∑

ℓ=1

−|W |
2
〈bℓ,bℓ〉.

Let {ē1, . . . , ēn} and { ¯̄e1, . . . , ¯̄em} be orthonormal bases for Tx1
(Sn) and Tx2

(Sm) respectively. We

choose orthonormal basis {x1, x2, ē1, . . . , ēn , ¯̄e1, . . . , ¯̄em} for Rn+m+2. Through the identification,

this fixes an orthonormal basis

{X1, X2, Ē1, . . . , Ēn , ¯̄E 1, · · · , ¯̄E m} for V .

Let B1 = {X1, Ē1, . . . , Ēn} , B2 = {X2, ¯̄E 1, · · · , ¯̄E m} , and fx1
, gx2

, f ē1
, . . . , f ēn

, g ¯̄e1
, g ¯̄em

be the linear

functions corresponding to x1, x2, ē1, . . . , ēn , ¯̄e1, · · · ¯̄em . Then obviously, X1(x) = X2(x) = f ē1
(x) =

·· · = f ēn
(x) = g ¯̄e1

(x) = ·· · = g ¯̄em
(x) = 0 and |Ē1(x)| = · · · = |Ēn(x)| = | ¯̄E 1(x)| = · · · = | ¯̄E m(x)| =

| fx1
(x1)| = |gx2

(x2)| = 1.

Therefore, the trace tr over V

tr = trQξ =
∑

V ∈B1

Qξ(V )+
∑

W ∈B2

Qξ(W )

=

(

i +
k
∑

ℓ=1

|aℓ|
2
)2

+

(

j +
k
∑

ℓ=1

|bℓ|
2
)2

+2
( k

∑

ℓ=1

q
∑

β=1

〈aℓ,nβ〉
2
+

k
∑

ℓ=1

q
∑

β=1

〈bℓ,nβ〉
2
)

−n
(

i +
k
∑

ℓ=1

|aℓ|
2
)

−m
(

j +
k
∑

ℓ=1

|bℓ|
2
)

.

(3)

It follows from Theorem 1 that for 1 ≤ ℓ≤ k ,

aℓ =

i
∑

s=1

〈aℓ, ēs〉ēs +

j
∑

t=1

〈aℓ, ¯̄e t 〉 ¯̄e t +

q
∑

β=1

〈aℓ,nβ〉nβ+

k
∑

h=1

〈aℓ, ah +bh〉(ah +bh)

=

q
∑

β=1

〈aℓ,nβ〉nβ+|aℓ|
2(aℓ+bℓ).

Hence

|aℓ|
2
=

q
∑

β=1

〈aℓ,nβ〉
2
+|aℓ|

4.
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Therefore,
q
∑

β=1

〈aℓ,nβ〉
2
= |aℓ|

2
−|aℓ|

4. (4)

Likewise,
q
∑

β=1

〈bℓ,nβ〉
2
= |bℓ|

2
−|bℓ|

4.

Consequently, it follows from (3) and (4) that

tr= trQξ = i 2
+2i

k
∑

ℓ=1

|aℓ|
2
+

( k
∑

ℓ=1

|aℓ|
2
)2
+ j 2

+2 j
( k

∑

ℓ=1

|bℓ|
2
)

+

( k
∑

ℓ=1

|bℓ|
2
)2

+4
k
∑

ℓ=1

|aℓ|
2
|bℓ|

2
−n

(

i +
k
∑

ℓ=1

|aℓ|
2
)

−m
(

j +
k
∑

ℓ=1

|bℓ|
2
)

= i 2
+ ( j +k)2

−ni −m( j +k)+ (2i −2 j −2k +4−n +m)
k
∑

ℓ=1

|aℓ|
2

+2
( k

∑

ℓ=1

|aℓ|
2
)2
−4

k
∑

ℓ=1

|aℓ|
4.

���

When we consider the case in a single sphere Sn where m = j = k = |ak | = 0, the proposi-

tion yields tr = i (i −n)< 0 and

Theorem 3 (Lawson and Simons [7]). There are no closed stable varifolds in Sn, in particular

there are no closed stable rectifiable currents for any finitely generated abelian group G.

4. Proof of the classification theorem

The trace estimates vary as the relative size of the degree p of an integral current to the

dimensions of Sn and Sm varies. We divide them into five major cases.

Case 1. p ≤ m < n (i = j = 0, k = p)

(i) 1 < p

Since 2|ah |
2|aℓ|

2 ≤ |ah|
4 +|aℓ|

4 and |aℓ|
4 ≤ |aℓ|

2 ≤ 1,

tr = p2
−mp + (−2p +4−n +m)

( k
∑

ℓ=1

|aℓ|
2
)

+4
∑

h 6=ℓ

|aℓ|
2
|ah|

2
−2

k
∑

ℓ=1

|aℓ|
4

≤ p2
−mp + (−2p +4−n +m)

( k
∑

ℓ=1

|aℓ|
2
)

+2(p −1)
k
∑

ℓ=1

|aℓ|
4
−2

k
∑

ℓ=1

|aℓ|
4

≤ p(p −m)− (n −m)
k
∑

ℓ=1

|aℓ|
2
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≤ 0 and “=" holds if and only if p = m and aℓ = 0.

(ii) 1= p < m < n

tr = 1−m + (2−n +m)|a1|
2
−2|a1|

4

≤ 1−m +|a1|
2
−2|a1|

4
< 0.

(iii) 1 = p =m < 2≤ n

tr = (3−n)|a1|
2
−2|a1|

4

≤ (1−n)|a1|
4

≤ 0 and “=" holds if and only if a1 = 0.

Case 2. m <n ≤ p (i = p −m, j = p −n, k =−p +m +n)

(i) k > 1

tr = i 2
+ ( j +k)2

−ni −m( j +k)+ (2i −2 j −2k +4−n +m)
k
∑

ℓ=1

|aℓ|
2

+4
∑

h 6=ℓ

|aℓ|
2
|ah |

2
−2

k
∑

ℓ=1

|aℓ|
4

≤ (p −m −n)(p −m)+ (2i −2 j −n +m)
k
∑

ℓ=1

|aℓ|
2

≤ (p −m −n)(p −m)+ (n −m)
k
∑

ℓ=1

|aℓ|
2

≤ (p −m −n)(p −n)+ (m −n)
k
∑

ℓ=1

|bℓ|
2

≤ 0 and “=" holds if and only if p = n, bℓ = 0.

(ii) k = 1, 1 < m < n ≤ p

tr = −(p −m)+ (n −m +2)|a1|
2
−2|a1|

4

= (1−n)+ (n −m)+2|a1|
2
−2|a1|

4

≤ −1+
sin2 2θ

2
where cos2θ = |a1|

2

< 0.

(iii) k = 1, 1 = m < 2 ≤ n ≤ p

tr = (1−n)+ (n +1)|a1|
2
−2|a1|

4

= −(|a1|
2
−1)(2|a1|

2
− (n +1))
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≤ 0 and “=" holds if and only if |a1| = 1.

Case 3. m ≤ p ≤ n (i = p −m, j = 0, k =m)

(i) k > 2, 2p −m −n ≤ 0

tr = (p −m)(p −m −n)+ (2p −3m −n +4)
k
∑

ℓ=1

|aℓ|
2
+2

( k
∑

ℓ=1

|aℓ|
2
)2
−4

k
∑

ℓ=1

|aℓ|
4

≤ (p −m)(p −m −n)+ (2p −m −n)
k
∑

ℓ=1

|aℓ|
2

≤ 0 and “=" holds if and only if p = m < n, aℓ = 0 or p =m =n, |aℓ| = 0 or 1.

(ii) k > 2, 2p −m −n > 0

tr ≤ (p −m)(p −m −n)+ (p −m −n)m +pm

= (p −n)p

≤ 0 and “=" holds if and only if m < p = n and |aℓ| = 1.

(iii) k = 2, 2p −m −n ≤ 0

tr = (p −m)(p −m −n)+ (2p −m −n)
k
∑

ℓ=1

|aℓ|
2

≤ 0 and “=" holds if and only if p =m <n, aℓ = 0 or p = m = n = 2, |a1| = |a2|.

(iv) k = 2, 2p −m −n > 0

tr ≤ (p −m)(p −m −n)+ (2p −m −n)k

= (p −n)p

≤ 0 and “=" holds if and only if m < p = n and |aℓ| = 1.

(v) k = 1, m ≤ p ≤ n and m < n

See Case 2(iii).

Case 4. 2 < m = n

(i) k > 1, 2 < m = n ≤ p (i = p −m, j = p −m,k = 2m −p)

tr = i 2
+ ( j +k)2

−ni −m( j +k)+ (2i −2 j −2k +4−n +m)
k
∑

ℓ=1

|aℓ|
2

+4
∑

ℓ′ 6=ℓ

|aℓ|
2
|aℓ′ |

2
−2

k
∑

ℓ=1

|aℓ|
4
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≤ (p −2m)(p −m)+ (2p −4m +4)
k
∑

ℓ=1

|aℓ|
2
+ (4m −2p −4)|aℓ|

4

≤ 0 and “=" holds if and only if |aℓ| = 1 or 0, and p =m.

(ii) k = 1, 2 < m = n < p

tr = −(p −m)+2|a1|
2
−2|a1|

4

= −(m −1)+2|a1|
2
−2|a1|

4

< 0.

(iii) 3 ≤m =n and p ≤ m, k > 1 (i = j = 0, k = p)

tr = p2
−mp + (−2p +4)

k
∑

ℓ=1

|aℓ|
2
+2

( k
∑

ℓ=1

|aℓ|
2
)2
−4

k
∑

ℓ=

|aℓ|
4

≤ p(p −m)

≤ 0 and “=" holds if and only if |aℓ| = 0 or 1 , p = m.

(iv) 2 < m = n and p ≤ m, k = 1

tr = 1−m +2|a1|
2
−2|a1|

4

< 0.

Case 5. n = m = 2

(i) p = 1 (i = j = 0, k = 1)

tr = −

(

1−|a1|
2
)2

−|a1|
4

< 0.

(ii) p = 2 , (i = j = 0, k = 2)

Let

e1 = cosθ1ē1 +sinθ1 ¯̄e1

e2 = cosθ2ē2 +sinθ2 ¯̄e2

tr = 4|a1|
2
|a2|

2
−2|a1|

4
−2|a2|

4

= −2
(

|a1|
2
−|a2|

2
)2

≤ 0 and “=" holds

if and only if |a1| = |a2|,

if and only if |cosθ1| = |cosθ2| and |sinθ1| = |sinθ2|,
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if and only if J(e1 ∧e2) = 0 or J(e1 ∧e2)⊥(e1 ∧e2).

We note that if tr < 0, then there exists a vector field V ∈B1 , or W ∈B2 , along which the

variation decreases the mass of T . Hence T is not stable.

By the result of Case 5, the only stable currents in S2×S2 are holomorphic or anti-holomor-

phic or sums of these. The estimates in Cases 1 through 4 indicate that if T is a p-dimensional

stable current in Sn ×Sm where p and q 6= 1 or 2, then

p =n and |bℓ| = 0

or

p = m and |aℓ| = 0.

Without loss of generality, let T be a current such that Tx = ¯̄e1 ∧·· ·∧ ¯̄em , ‖T ‖ a.e. Take a dual

version of current T

T = ud x1
∧·· ·∧d xn

where a distribution coefficient u ∈ E0(Sn ×Sm) is given by

u( f )= T ( f ¯̄e1 ∧·· ·∧ ¯̄em) for f ∈ E
0(Sn

×Sm).

Since

0 = ∂T =
∂u

∂y j
d y j

∧d x1
∧·· ·∧d xn ,

∂u

∂y j
≡ 0 for j = 1, . . .m.

Define

φ
j
t (x, y)= (x, y1, . . . , y j + t , . . . , ym) for j = 1, . . . ,m.

Then

φ
j
t∗T for j = 1, . . . ,m.

It follows that T and therefore supp T are invariant under all translations in the y-direction.

Hence support of T is a union of y-planes. Since T is a closed stationary rectifiable current,

the Hausdorff n-measure of supp(T ) is finite [3]. It follows that supp T is a finite union of y-

planes. By [4] any closed rectifiable m-current supported in an m-dimensional submanifold

is given, up to integral multiples, by integration over that submanifold.

Corollary 1. For p 6= n or m, there are no closed stable integral p-currents on Sn × Sm . In

fact there are no closed stable rectifiable p-currents in Rp (Sn ×Sm,G) for any finitely generated

abelian group G and there are no closed stable p-dimensional varifolds in Sn ×Sm.

Proof. Since the proof involves only a point by point computation, and since the result is

independent of orientation, a similar formula holds for varifolds. ���
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