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Abstract: We introduce some subclasses of close-to-convex functions and obtain sharp
results for coefficients, distortion theorems and argument theorems from which results
of several authors follows as special cases.
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1. Introduction and Definitions

Principle of Subordination([9], [13]). Let f(z) and F (z)be two functions analytic
in the open unit disc E = {z; |z| < 1}. Then f(z)is subordinate to F(z) in E if there
exists a function w(z) analytic in E and satisfying the condition w(z) = 0, |[w(z)| < 1
such that f(z) = F(w(z)). If F(2) is univalent in E, the above definition is equivalent to
f(0) = F(0) and f(E) c F(E).

Bounded Functions. By U, we denote the class of analytic functions of the form

(1.1) w(z) = 2 c,z", z€E,
n=1
which satisfy the conditions w(z) = 0 and |w(z)| < 1.
Let A denote the class of functions of the form

(1.2) F2) =27+ Z a2
n=2

which are analytic in the unit disc E = {z; |z| < 1}. The subclass of univalent functions
in A is denoted by S.
S* and C represent the classes of functions in <A which satisfy, respectively, the

conditions ,
zf (z)
(1.3) Re { 110 }> 0,

(zf @)
(1.4) Re ———{ > 0.
f (2
A function f(z) in A is said to be close-to-convex if there exists a function

(1.5) 9(z) = z +anzn
n=2

in S* such that

(1.6) Re {Zf (Z)} > 0.

9(2)
The class of functions f(z) in A with the condition (1.6) is denoted by K and
called the class of close-to- convex functions. The class K was introduced by Kaplan [7]
it was shown by him that all close-to-convex functions are univalent.
If g € C, the class of functions in A subject to the condition (1.6) may be denoted
by K; which is the subclass of K.



S*(A, B) and C(A, B) are the classes of functions in A which satisfy, respectively,
the conditions

zg' (z) 1+Az
1.7 < €S, —1<B<A<1
(1.7) g(2) ,1+Bz' 5% =b<dasd
zg (z 1+ Az
(1.8) (g())< geC —1<B<A<1

g (2) 1+Bz’
In particular, S*(1,—1) = S*and C(1,—-1) = C.

The class S*(A, B) was introduced and study by Janowski [6] and also by Goel and
the first author [4]. It is obvious that g € C(A, B) implies that zg (z) € S$*(A, B).
K(C, D) represent the class of functions f(z) in A for which

zf (z) 14Cz
g(2) ~1+Dz’

If g € C, the corresponding class may be denoted by K, (C, D).
The class K* (A, B) consists of functions f(z) in A such that

zf (2) .

(1.10) Re P >0, geS'(AB), —1<B<A<L

If g € C(A, B), the corresponding class may be denoted by Kj (A, B).
For—1<D<B<A<C(C<1,1letK(A B;C, D) be the subclass of K satisfying

(1.9)

€ES", —1<D<(C<1.

zf (z) 1+Cz
g9(2) =1 + Dz’
If g € C(A, B), the corresponding class may be denoted by K; (A, B; C, D).
Throughout the paper,wetake -1< D<B<A<(C<1,w(z)EUandz € E.

From the above definitions, we have the following observations:

(i) K(1,—-1;C,D) = K(C,D) and K;(1,—1;C,D) = K;(C,D);

(i) K(AB;1,—1) =K*(A,B) and K (A, B; 1,—1) = Kj (A, B);

(iii)) K(1,-1;1,-1)=K and K;(1,-1;1,-1) = K;.

(1.11)

g € S*(A,B).

2. Preliminary Lemmas

14Cw (2) o
Lemma 2.1 [3]. Let P(2) = 1+D‘va(z) =14, p,z", then
lpn| < (C—D).
Result is sharp for the functions P, (z) = i:gizn ,|6] =1landn > 1.

Lemma 2.2 [4]. Let g € S*(A, B), then, for A— (n—1)B = (n—2),(n = 3),

1
Ib, | < mH(A — (k—1)B).
k=2

Equality holds for the function g,(z) defined by
go(z) = z(1+ B8z)AB/B |§] = 1.
Since g(z) € C(A, B) implies that zg (z) € S*(A, B), we have the following
Lemma 2.3. Let g € C(A, B), then, for A— (n—1)B = (n— 2),(n = 3),

1
Ib, | < EH(A — (k—1)B).

k=2
Result is sharp for the function g; (z) defined by

g1(z) = (1 +B&z)A~B/B |5 = 1.
Lemma 2.4 [5]. Let g € S*(A, B), then, for |s|] <1, |t| <1,(s#1t)

2



(A-B)/B

tg(s2) _ (1 al BSZ) . B=#0;
Sg(tZ) 1+ Btz
expA(s — t)z, B=0.
Lemma 2.5. If g € S*(A, B), then, for |z| =r < 1,
(2.1) r(1 — Br)»=B)/B < |g(2)| < r(1 + Br)A-B)/B B % 0;
(2.2) rexp(—Ar) < |g(2)| < rexp(Ar),B = 0;
z A—B

(2.3) ’a g(Z ) < ( 5 )sin—l(Br),B # 0;
(2.4) |arg@ <Ar,B=0.

Equality sign in these bounds is attained by the function g((z) defined by

_ (z(1 + Bsz)A-B)V/B B 2 0;
go(z) = _ _
zexp(Adz),B=10,|6| = 1.
Proof. Letting s = 1 and t = 0 in the Lemma 2.4, we obtain
(2.5) 9 < (1+Bz)A-BJ/B B £ 0;
(2.6) & < exp(Az), B=0.
(2.5) 1mp11es that
g(Z) _ (A-B)/B

Case (i) B> 0.
|(1 + Bw(z))(A_B)/B| = ‘exp {(A _

—B log|1 + Bw(z)l}

B) log(l + Bw(z))}‘

= exp

< |1+ Bw(z)|4~B)/B < (1 + Br)(A-B)/B,
Case (ii) B< 0.LetB=—B, B > 0.Then

|(1 + Bw(z))(A_B)/B| = ‘{(1 — B’W(Z))_l}

_1|(A—B)/B'

(A-B)/B’

= |(1 - B'w(z))
(A-B)/B’

1
< ; = (1+ Br)@-BV/B,
B (1 —B r) (1+Bn)

Combining the cases (i) and (ii), (2.1) follows from (2.7). Similarly, we get (2.2) from

(2.6). Again from (2.5), we obtain (2 3) as follows
A—

9@ ( |ar (1 + Bw(z))|

Similarly (2.4) dlrectly follows from (2.6).
On the same lines we can prove the following
Lemma 2.6. If g € C(A, B), then, for |z| =r <1,

%{1 - (1-Bn?*B} < |g(2)| < %{(1 +Br)A/B —1},B £ 0;

-B)  _
=—sin L(Br).

[arg 2

1 1
A exp(—Ar) < |g(2)| < A exp(Ar),B=10

z A
argg < Esin‘1 (Br),B # 0;




argM <Ar,B=0.

Lemma 2.7 [2]. Let f and g are analytic functions and h be convex univalent function in
Esuchthatf <handg < h.Then(1-A)f +Ag <h, (0<A<1).
Lemma 2.8 Let g € C(A, B), then, for |z| =r < 1,
’ _ R\ (A-B)/B
(2.8) Re {Zg (Z)} , Ard — B .
9(2) 1-(1-Br)A/B
Proof. Since g € C(A, B) implies that zg' (z) € S$*(A, B), we have
zg (z) = z(1 + Bz)(A~B)/B

which yield

g(@) = %{(1 + Bz)"/B — 1},
Therefore

zg (z) _Az(1+ Bz)A-B)/B

g(z)  (1+Bz)AB -1
which implies (2.8).

3. Coefficient Estimates

Theorem 3.1. Let f € K(A, B; C,D). Then, forA— (n—1)B = (n—2),(n = 3),

n n-1 k
1 (e 1 :
(3.1) IanlsaB{A (k- 1)B} + 1+;(k_1)!D{A—(]—1)B} .

Bound (3.1) is sharp.
Proof. By definitipn of K(A,B; C,D),
zf (2) _ 1+ Cw(z) — ().
g(z) 1+ Dw(z)
Expanding the series,
(3.2) (z+2a,z* + -+ nayz™ + )
=(z+byz®+ - +by 172" P+ bz" + )1+ p1z + pz® + -+ pyqz" T+
Equating the coefficients of z" in (3.2),
na, = by, + piby—g +pabn_z + -+ py_zbz + pn-1
Applying triangular inequality and Lemma 2.1, we get

(3.3) nla,| < |b,|+(C—D) (1 + zlbkl).

k=
Using Lemma (2.2) in (3.3), we obtain

n n—1 k
1 1—[ 1
nlanlﬁm {A—(k—1)B}+(C—-D) 1+Zm| |{A_(]'_1)B}
“k=2 k=2 Ti=2

which yields (3.1). The bound (3.1) is sharp for the function f;(z) defined by

1+ Cé;z

fo@ = (Trpas) A+ B&DAE, 18, =15, = 1.
1Z

Similarly we can prove

Theorem 3.2. Letf € K;(A,B; C,D). Then, for A — (n — 1)B > (n —-2),(n>=3),

z = ]_[{A G- 1B}

(3.4) |a|< H(A k- 1)B) + &



The bound (3. 4) is sharp for the function f; (z) given by

1+0Co
A = (e (A + 88" 1), il = loal =1

Remark 3.1 (i) If f € K(1,-1;C,D) =K(C,D), |a,| <1+
due to first author [10].
Remark 3.1 (ii) If f € K;(1,—-1;C,D) = K;(C,D), |a,| < %{1 + (n—1)(C— D)}, aresult

due to first author and G. Singh [11].
Remark 3.2 (i) If f € K(A,B;1,—1) =K*(A,B),forA— (n—1)B = (n —2),(n = 3),
K

n n—1
1 2 1 )
IanlsaB{A—(k—l)B}+H 1+kzzz(k_1)!g{A—(]—1)B} .

This result was proved by Goel and the first author [5].
Remark 3.2 (i) If f € K;(A,B;1,—1) = Kj(AB),forA—(n—1)B > (n—2),(n > 3),

n n—1 k
1 2 1 .
la, | smB{A— (k= DB} + 1+;ED{A— G-1B} |.

Remark 3.3 (i) If f € K(1,—1;1,—1) = K, then |a,| < n. The result due to Reade [13].
Remark 3.3 (ii) If f € K;(1,—-1;1,—1) = Ky, then|a,| <2 — % . This result was obtained
by Silverma and Telage [15].

0=DED) which is the result

4., Distortion Theorems

Theorem 4.1 Let f € K(A, B; C, D), then

(4.1 (1 : Cr) (1 -Br)AB/B < |f'(2)] < (1 : o= )(1 + Br)A-B)/B B « (;
1-Cr 14Cr
(42) (1 —)exp(-An) < If )] < (T o) exp(AD), B = 0
(4.3) j(i - Cu) (1 — Bu)@B/Bdu < |f(2)] < J (i:g )(1 +Bu)AB/Bdy, B # 0;
0 0
F1-C F14C
(4.4) f ( — DD exp(—Aw)du < |f(2)| < f ( - IDD exp(Au)du, B = 0.
0 0

All these bounds are sharp.
Proof. Since f € K(A, B; C, D), it follows that
zf (z) 1+ Cw(z)
g(z)  1+Dw(z)
which maps |[w(z)| < r onto the circle
zf (z) 1—CDr? - (C—D)r
g(z) 1-D2r2|~ (1 —D?%r2)

This yields

(1-Cr) |zf (2 - (1+ Cr)
(1-Dr) " |g(z»)|~ (1+Dr)
which further implies that
(1-Cr) (1+Cr)
(45) = 9@ < lf @] < 5 9@
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Using (2.1) and (2.2) along with (4.5), we obtain (4.1) and (4.2).
Now

r

1+ Cr
. f (1 = Dr) (14 Br)A-B)/Bdr,B # 0;
< f|f’<z>|drs 0

0

J‘(1+Cr) (And B=o
L 1+ Dr exp(Ar)ar, =0.

0
Let zy, |zg| = 1, be so chosen that |f(zy)| < |f(2)]| forall z, |z| = r.If L(z) is the pre-
image of the segment [0, f(z,)] in E, then
((/1-Cr
_ (A-B)/B .
f(l—Dr)(l Br) dr,B # 0;
fal= [ If @lar=1 0

L(z0) f (1 — Cr) exp(—Ar)dr B=0
kO 1 - DI‘ ’ '

Equality signs in (4.1), (4.2), (4.3) and (4.4) are attained by the function f;(z) defined
by

If ()] =

E)ff'(z)dz

1+C8
(—12) (1 + BS,z)A-B)/E, B #0;
! 1+ D512
(T])Slz) exp(ASzz),B =0, |81| = |82| =1.

Similarly, by using Lemma 2.6, we can prove
Theorem 4.2 Let f € K;(A, B; C,D), then

1 /1—-Cr 1 /1+Cr
= (1 —RMABY < £ <_< ) A/B _ .
Ar(l—Dr){l (1=B**}<If @I < (355 )1 +BD) 1}B#0;
1<1—Cr) (A)<|' |<1(1 Cr) (AD) B =0
Ar\1—pr) P n=lf @l=g 1+pr) P -
1(1/1-Cu 1(1/1+Cu
I _ _ A/B I A/B _ .
Aju<1_Du){1 (1 —BwA/Bldu < |f(2)| sAfu(HDu){(HBu) 1}du,B # 0;
0 0
1j1(1—Cu) (—Awdu < | |<1f1(1+Cu) (Awdu,B = 0
a) s\T=py) SPAWdu < f @ < 3 | Tl g, ) explAwdu, B =0.
0 0

All these bounds are sharp and extremal function is given by f3(z) defined by

1 /14C8
_<—1Z) {(1+B&2)8 -1}, B=#0;
! Az \1 + DSlz
“n - B®) =11 1+,
kE(l + D81Z) eXp(ASzZ), B = O, |81| = |82| = 1

5. Argument Theorems

Theorem 5.1 Let f € K(A, B; C, D), then

(5.1) argf (2)| < 4 ; B) sin~1(Br) + sin™! {%}, B =+ 0;

(5.2) largf (2)| < Ar+sin! {%}, B =0.

The results are sharp.



Zf,(Z) __ 1+Cw(z)
, g(2) - 1+Dw (z)’
zf (z) _ 1+Cw(z)
g(2) - 14+Dw (z)

Proof. From (1.11), we have

Since the transformation maps |w(z)| < r onto the circle

zf' (z) 1—CDr? - (C—D)r
g(z) 1-Dr2|~ (1-D%r?)’
therefore ,
arg L2 @|_ sin~1 _(C-Dj)r
9@ | T (1—CDr2)J’
This implies that
/ C-D

(5.3) together with (2.3) and (2.4) yield (5.1) and (5.2) respectively. Equality sign in
(5.1) and (5.2) holds for the function f,(z) defined by (4.6) in which

r[—(C+ D)r + i{(1 — C?r?)(1 — D?r?)}/2
(5.4) 61=—[ ( or + i{( )( )} l

(1 + CDr?)
and

r
(55) &, = E{—Br +i(1—B2%r?)1/2}.
Similarly, by using Lemma 2.6, we have
Theorem 5.2 Let f € K (A, B; C,D), then

larg £ (2)| < %sin_l(Br) + sin™! {%}, B + 0;

larg f (2)| < Ar + sin™! =D B=0

& = (1—cDr2)|’ e
The results are sharp for the function f3(z) defined in (4.7) where §; and 8§, are given
by (5.4) and (5.5), respectively.
Remark 5.1 Taking A = 1 and B = —1 in the Theorem 4.1, we get the result proved by
the first author [10].
Remark 5.2 On taking C = 1 and D = —1 in the Theorems 4.1 and 5.1, we get the results
due to Goel and the first author [5].
Remark 5.3 Letting A = C=1and B =D = —1 in the Theorems 4.1 and 5.1, we obtain
the results proved by Ogawa [12] and Krzyz [8] for the class K.
Remark 5.4 For C = 1 and D = —1 in Theorems 4.2 and 5.2, we get the results
established by Gawad and Thomas [1].

6. Convex Set of Functions

Theorem 6.1 If f and h € K(A, B; C, D), then
1-Af+Ah€eK(AB;CD), (0<1<1).

Proof. Since % is convex univalent in E, the theorem follows by Lemma 2.7 definition
of K(A, B; C, D).

7. Radius of Convexity for K*(A, B) and K (A, B)

Theorem 7.1 If f € K*(A, B), then f(2) is convex in |z| < ry where r is the smallest
positive root of the equation



(7.1) Ar} —(1-2B)r’ = (2+Ar+1=0.
The radius ry is sharp.
Proof. Since f E,K*(A, B), for g € S*(A, B) we have
(7.2) zf (2) = g(2)P(2).
Differentiating (7.1) logarithmically, we get

14 zf (z) _zg (z) zP(2)

@ 9@  P@

which implies that

zf (z zg (z zP'(z
(7.3) Re{1+ f()}ZRe{g()}— ().
f(2) 9@ P(z)
Since g € S*(A, B), it follows that Zgg(g) igw Ezi from which it is easily verify that for
lw@)| <,
1—Ar zg (z 1+ Ar
(7.4) < pel2 @1 .
1—Br g9(2) 1+ Br
Also it is known that
(7.5) zP (z) 2r
' P(z) |~ 1—-r%"

From (7.3), (7.4) and (7.5), it is deduce that Re {1 + Z]]:((;)

r( is the smallest positive root of the equation (7.1). Sharp result is obtained for the
function f;(z) defined by

7' @) = (= 5
Remark 7.1 Taking A=1 and B= -1 in the Theorem, we get r, = 2 — v/3 which is the
radius of convexity for the class of convex functions.

Theorem 7.2 If f € K] (A, B), then f(z) is convex in |z| < r; where ry is the smallest
positive root of the equation

(7.6) 2{1- (1 -Bn)*B} - A1 —r?)(1 - Br)&-B/B =,

The radius r; is sharp.

Proof. Since f € Kj (A, B), for g € C(A, B) we have

(7.7) zf (2) = g(2)P(2).
Differentiating (7.7) logarithmically, we get
zf ' (z) _29 (z) | zP'(2)

_|_
f@) g  P()
which implies that

zf (z) zg (z)
(7.8) Re{1+ f(z)}ZRe{g(z)}_

Using Lemma 2.8 and (7.5) in (7.8), we obtain
zf' (z Ar(1 — Br)(A-B)/B 2r
Re {1 i ( )} > ( )

f(2) 1—(1—Br)A/B  1—r2
This impies that Re {1 + Z;(S)} > 0, provided |z| < r; where r; is the smallest positive

root of the equation (7. 6) Sharp result is obtained for the function f; (z) defined by
1+6
R @ = (o) (@ + 852~ 1), 151l = J65] = 1.

} > 0, provided |z| < ry where

Z
2) 1+ B8, A0/5 18] = 18, = 1.

1+

zP' (2)
P(2) |




Remark 7.2 Taking A=1 and B= -1 in the Theorem, we getr; = gwhich is the radius of

convexity for the class K;. This result was due to Gawad and Thomas [1].

[10]
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