#### SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

## B. S. MEHROK AND HARJINDER SINGH

**Abstract:** We introduce some subclasses of close-to-convex functions and obtain sharp results for coefficients, distortion theorems and argument theorems from which results of several authors follows as special cases.

Mathematics Subject Classification: Primary 30C45; Secondary 30C50.

**Keywords:** Subordination, Bounded Functions, Univalent Functions, Starlike Functions, Convex Functions and Close-to-convex Functions.

#### 1. Introduction and Definitions

**Principle of Subordination**([9], [13]). Let f(z) and F(z) be two functions analytic in the open unit disc  $E = \{z; |z| < 1\}$ . Then f(z) is subordinate to F(z) in E if there exists a function w(z) analytic in E and satisfying the condition w(z) = 0, |w(z)| < 1 such that f(z) = F(w(z)). If F(z) is univalent in E, the above definition is equivalent to f(0) = F(0) and  $f(E) \subset F(E)$ .

**Bounded Functions**. By  $\mathcal{U}$ , we denote the class of analytic functions of the form

(1.1) 
$$w(z) = \sum_{n=1}^{\infty} c_n z^n, \quad z \in E,$$

which satisfy the conditions w(z) = 0 and |w(z)| < 1.

Let  ${\mathcal A}$  denote the class of functions of the form

(1.2) 
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disc  $E = \{z; |z| < 1\}$ . The subclass of univalent functions in  $\mathcal{A}$  is denoted by S.

 $S^{\ast}$  and C represent the classes of functions in  ${\cal A}$  which satisfy, respectively, the conditions

(1.3) 
$$\operatorname{Re}\left\{\frac{zf^{'}(z)}{f(z)}\right\} > 0,$$

(1.4) 
$$\operatorname{Re}\left\{\frac{\left(zf'(z)\right)'}{f'(z)}\right\} > 0.$$

A function f(z) in  $\mathcal{A}$  is said to be close-to-convex if there exists a function

(1.5) 
$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n$$

in S\* such that

(1.6) 
$$\operatorname{Re}\left\{\frac{zf^{'}(z)}{g(z)}\right\} > 0.$$

The class of functions f(z) in  $\mathcal{A}$  with the condition (1.6) is denoted by K and called the class of close-to-convex functions. The class K was introduced by Kaplan [7] it was shown by him that all close-to-convex functions are univalent.

If  $g \in C$ , the class of functions in  $\mathcal{A}$  subject to the condition (1.6) may be denoted by  $K_1$  which is the subclass of K.

 $S^*(A, B)$  and C(A, B) are the classes of functions in  $\mathcal{A}$  which satisfy, respectively, the conditions

(1.7) 
$$\frac{zg'(z)}{g(z)} < \frac{1 + Az}{1 + Bz}, \quad g \in S^*, \quad -1 \le B < A \le 1,$$

(1.8) 
$$\frac{(zg'(z))'}{g'(z)} < \frac{1 + Az}{1 + Bz}, \quad g \in \mathbb{C}, \quad -1 \le B < A \le 1.$$

In particular,  $S^*(1,-1) \equiv S^*$  and  $C(1,-1) \equiv C$ .

The class S\*(A, B) was introduced and study by Janowski [6] and also by Goel and the first author [4]. It is obvious that  $g \in C(A, B)$  implies that  $zg'(z) \in S^*(A, B)$ .

K(C, D) represent the class of functions f(z) in  $\mathcal{A}$  for which

(1.9) 
$$\frac{zf'(z)}{g(z)} < \frac{1+Cz}{1+Dz}, \quad g \in S^*, \quad -1 \le D < C \le 1.$$

If  $g \in C$ , the corresponding class may be denoted by  $K_1(C, D)$ .

The class  $K^*(A, B)$  consists of functions f(z) in  $\mathcal{A}$  such that

(1.10) 
$$\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\right\} > 0, \quad g \in S^*(A, B), \quad -1 \le B < A \le 1.$$

If  $g \in C(A, B)$ , the corresponding class may be denoted by  $K_1^*(A, B)$ .

For  $-1 \le D \le B < A \le C \le 1$ , let K(A, B; C, D) be the subclass of K satisfying

(1.11) 
$$\frac{zf'(z)}{g(z)} < \frac{1 + Cz}{1 + Dz}, \quad g \in S^*(A, B).$$

If  $g \in C(A, B)$ , the corresponding class may be denoted by  $K_1(A, B; C, D)$ .

Throughout the paper, we take  $-1 \le D \le B < A \le C \le 1$ ,  $w(z) \in \mathcal{U}$  and  $z \in E$ . From the above definitions, we have the following observations:

- $K(1,-1;C,D) \equiv K(C,D)$  and  $K_1(1,-1;C,D) \equiv K_1(C,D)$ ;
- $K(A, B; 1, -1) \equiv K^*(A, B)$  and  $K_1(A, B; 1, -1) \equiv K_1^*(A, B)$ ; (ii)
- $K(1,-1;1,-1) \equiv K$  and  $K_1(1,-1;1,-1) \equiv K_1$ . (iii)

# 2. Preliminary Lemmas

**Lemma 2.1** [3]. Let 
$$P(z) = \frac{1 + Cw(z)}{1 + Dw(z)} = 1 + \sum_{n=1}^{\infty} p_n z^n$$
, then  $|p_n| \le (C - D)$ .

Result is sharp for the functions  $P_n(z) = \frac{1+C\delta z^n}{1+D\delta z^n}$ ,  $|\delta| = 1$  and  $n \ge 1$ . **Lemma 2.2** [4]. Let  $g \in S^*(A,B)$ , then, for  $A - (n-1)B \ge (n-2)$ ,  $(n \ge 3)$ ,

$$|b_n| \le \frac{1}{(n-1)!} \prod_{k=2}^n (A - (k-1)B).$$

Equality holds for the function  $g_0(z)$  defined by

$$g_0(z)=z(1+B\delta z)^{(A-B)/B}\text{, }|\delta|=1.$$

Since  $g(z) \in C(A, B)$  implies that  $zg'(z) \in S^*(A, B)$ , we have the following **Lemma 2.3**. Let  $g \in C(A, B)$ , then, for  $A - (n - 1)B \ge (n - 2)$ ,  $(n \ge 3)$ ,

$$|b_n| \le \frac{1}{n!} \prod_{k=2}^{n} (A - (k-1)B).$$

Result is sharp for the function  $g_1(z)$  defined by  $g_1^{'}(z) = (1 + B\delta z)^{(A-B)/B}, \ |\delta| = 1.$ 

$$g_1'(z) = (1 + B\delta z)^{(A-B)/B}, |\delta| = 1.$$

**Lemma 2.4** [5]. Let  $g \in S^*(A, B)$ , then, for  $|s| \le 1$ ,  $|t| \le 1$ ,  $(s \ne t)$ 

$$\frac{\operatorname{tg}(\operatorname{sz})}{\operatorname{sg}(\operatorname{tz})} < \begin{cases} \left(\frac{1+\operatorname{Bsz}}{1+\operatorname{Btz}}\right)^{(A-B)/B}, & B \neq 0; \\ \exp A(s-t)z, & B = 0. \end{cases}$$

**Lemma 2.5**. If  $g \in S^*(A, B)$ , then, for |z| = r < 1

(2.1) 
$$r(1 - Br)^{(A-B)/B} \le |g(z)| \le r(1 + Br)^{(A-B)/B}, B \ne 0;$$
  
(2.2)  $r \exp(-Ar) \le |g(z)| \le r \exp(Ar), B = 0;$ 

$$(2.2) r \exp(-Ar) \le |g(z)| \le r \exp(Ar), B = 0;$$

(2.3) 
$$\left|\arg\frac{g(z)}{z}\right| \le \frac{(A-B)}{B}\sin^{-1}(Br), B \ne 0;$$

(2.4) 
$$\left| \arg \frac{g(z)}{z} \right| \le \text{Ar, B} = 0.$$

Equality sign in these bounds is attained by the function  $g_0(z)$  defined by

$$g_0(z) = \begin{cases} z(1+B\delta z)^{(A-B)/B}, & B \neq 0; \\ z\exp(A\delta z), B = 0, |\delta| = 1. \end{cases}$$
 **Proof.** Letting  $s \to 1$  and  $t \to 0$  in the Lemma 2.4, we obtain

(2.5) 
$$\frac{g(z)}{z} < (1 + Bz)^{(A-B)/B}, B \neq 0;$$

(2.6) 
$$\frac{g(z)}{z} < \exp(Az), \qquad B = 0.$$

(2.5) implies that

(2.7) 
$$\frac{g(z)}{z} = (1 + Bw(z))^{(A-B)/B}, B \neq 0.$$

Case (i) B > 0.

$$\left| \left( 1 + Bw(z) \right)^{(A-B)/B} \right| = \left| \exp \left\{ \frac{(A-B)}{B} \log \left( 1 + Bw(z) \right) \right\} \right|$$

$$= \exp \left\{ \frac{(A-B)}{B} \log |1 + Bw(z)| \right\}$$

$$\leq |1 + Bw(z)|^{(A-B)/B} \leq (1 + Br)^{(A-B)/B}.$$
Case (ii) B < 0. Let B = -B', B' > 0. Then

$$\begin{aligned} \left| \left( 1 + Bw(z) \right)^{(A-B)/B} \right| &= \left| \left\{ \left( 1 - B'w(z) \right)^{-1} \right\}^{(A-B)/B'} \right| \\ &= \left| \left( 1 - B'w(z) \right)^{-1} \right|^{(A-B)/B'} \\ &\leq \left( \frac{1}{1 - B'r} \right)^{(A-B)/B'} &= (1 + Br)^{(A-B)/B}. \end{aligned}$$

Combining the cases (i) and (ii), (2.1) follows from (2.7). Similarly, we get (2.2) from (2.6). Again from (2.5), we obtain (2.3) as follows

$$\left|\arg\frac{g(z)}{z}\right| \le \frac{(A-B)}{B} \left|\arg(1+Bw(z))\right| \le \frac{(A-B)}{B} \sin^{-1}(Br).$$

Similarly (2.4) directly follows from (2.6).

On the same lines we can prove the following

**Lemma 2.6.** If  $g \in C(A, B)$ , then, for |z| = r < 1,

$$\begin{split} &\frac{1}{A} \left\{ 1 - (1 - Br)^{A/B} \right\} \le |g(z)| \le \frac{1}{A} \left\{ (1 + Br)^{A/B} - 1 \right\}, B \ne 0; \\ &\frac{1}{A} \exp(-Ar) \le |g(z)| \le \frac{1}{A} \exp(Ar), B = 0; \\ &\left| \arg \frac{g(z)}{z} \right| \le \frac{A}{B} \sin^{-1}(Br), B \ne 0; \end{split}$$

$$\left|\arg\frac{g(z)}{z}\right| \le Ar, B = 0.$$

**Lemma 2.7** [2]. Let f and g are analytic functions and h be convex univalent function in E such that f < h and g < h. Then  $(1 - \lambda)f + \lambda g < h$ ,  $(0 \le \lambda \le 1)$ .

**Lemma 2.8** Let  $g \in C(A, B)$ , then, for |z| = r < 1,

(2.8) 
$$\operatorname{Re}\left\{\frac{zg'(z)}{g(z)}\right\} \ge \frac{\operatorname{Ar}(1-\operatorname{Br})^{(A-B)/B}}{1-(1-\operatorname{Br})^{A/B}}.$$

**Proof.** Since  $g \in C(A, B)$  implies that  $zg'(z) \in S^*(A, B)$ , we have

$$zg'(z) = z(1 + Bz)^{(A-B)/B}$$

which yield

$$g(z) = \frac{1}{A} \{ (1 + Bz)^{A/B} - 1 \}.$$

Therefore

$$\frac{zg'(z)}{g(z)} = \frac{Az(1 + Bz)^{(A-B)/B}}{(1 + Bz)^{A/B} - 1}$$

which implies (2.8)

### 3. Coefficient Estimates

**Theorem 3.1**. Let *f* ∈ K(A, B; C, D). Then, for A - (n - 1)B  $\geq$  (n - 2), (n  $\geq$  3),

$$(3.1) \quad |a_n| \le \frac{1}{n!} \prod_{k=2}^{n} \{A - (k-1)B\} + \frac{(C-D)}{n} \left(1 + \sum_{k=2}^{n-1} \frac{1}{(k-1)!} \prod_{j=2}^{k} \{A - (j-1)B\}\right).$$

Bound (3.1) is sharp.

**Proof**. By definition of K(A, B; C, D),

$$\frac{zf'(z)}{g(z)} = \frac{1 + Cw(z)}{1 + Dw(z)} = P(z).$$

Expanding the series,

(3.2) 
$$(z + 2a_2z^2 + \cdots + na_nz^n + \cdots)$$
  
=  $(z + b_2z^2 + \cdots + b_{n-1}z^{n-1} + b_nz^n + \cdots)(1 + p_1z + p_2z^2 + \cdots + p_{n-1}z^{n-1} + \cdots)$   
Equating the coefficients of  $z^n$  in (3.2),

 $na_n = b_n + p_1b_{n-1} + p_2b_{n-2} + \cdots + p_{n-2}b_2 + p_{n-1}$ Applying triangular inequality and Lemma 2.1, we get

(3.3) 
$$n|a_n| \le |b_n| + (C - D) \left(1 + \sum_{k=2}^{n-1} |b_k|\right).$$

Using Lemma (2.2) in (3.3), we obtain

$$|a_n| \le \frac{1}{(n-1)!} \prod_{k=2}^n \{A - (k-1)B\} + (C - D) \left(1 + \sum_{k=2}^{n-1} \frac{1}{(k-1)!} \prod_{j=2}^k \{A - (j-1)B\}\right)$$

which yields (3.1). The bound (3.1) is sharp for the function  $f_0(z)$  defined by

$$f_0(z) = \left(\frac{1 + C\delta_1 z}{1 + D\delta_1 z}\right) (1 + B\delta_2 z)^{(A-B)/B}, \quad |\delta_1| = |\delta_2| = 1.$$

Similarly we can prove

**Theorem 3.2.** Let *f* ∈  $K_1(A, B; C, D)$ . Then, for  $A - (n - 1)B \ge (n - 2)$ ,  $(n \ge 3)$ ,

$$(3.4) \quad |a_n| \le \frac{1}{n} \left[ \frac{1}{n!} \prod_{k=2}^{n} (A - (k-1)B) + \frac{(C-D)}{n} \left( 1 + \sum_{k=2}^{n-1} \frac{1}{k!} \prod_{j=2}^{k} \{A - (j-1)B\} \right) \right].$$

The bound (3.4) is sharp for the function  $f_1(z)$  given by

$$f_{1}^{'}(z) = \frac{1}{Az} \left( \frac{1 + C\delta_{1}z}{1 + D\delta_{1}z} \right) \left\{ (1 + B\delta_{2}z)^{A/B} - 1 \right\}, \qquad |\delta_{1}| = |\delta_{2}| = 1.$$

**Remark 3.1 (i)** If  $f \in K(1, -1; C, D) \equiv K(C, D)$ ,  $|a_n| \le 1 + \frac{(n-1)(C-D)}{n}$  which is the result due to first author [10].

**Remark 3.1 (ii)** If  $f \in K_1(1, -1; C, D) \equiv K_1(C, D), |a_n| \le \frac{1}{n} \{1 + (n-1)(C-D)\}, \text{ a result }$ due to first author and G. Singh [11].

Remark 3.2 (i) If 
$$f \in K(A, B; 1, -1) \equiv K^*(A, B)$$
, for  $A - (n - 1)B \ge (n - 2)$ ,  $(n \ge 3)$ ,  $|a_n| \le \frac{1}{n!} \prod_{k=2}^{n} \{A - (k - 1)B\} + \frac{2}{n} \left(1 + \sum_{k=2}^{n-1} \frac{1}{(k-1)!} \prod_{j=2}^{k} \{A - (j-1)B\}\right)$ .

This result was proved by Goel and the first author [5].

**Remark 3.2 (ii)** If  $f \in K_1(A, B; 1, -1) \equiv K_1^*(A, B)$ , for  $A - (n - 1)B \ge (n - 2)$ ,  $(n \ge 3)$ ,

$$|a_n| \le \frac{1}{n(n!)} \prod_{k=2}^n \{A - (k-1)B\} + \frac{2}{n^2} \left(1 + \sum_{k=2}^{n-1} \frac{1}{k!} \prod_{j=2}^k \{A - (j-1)B\}\right).$$

**Remark 3.3 (i)** If  $f \in K(1, -1; 1, -1) \equiv K$ , then  $|a_n| \le n$ . The result due to Reade [13]. **Remark 3.3 (ii)** If  $f \in K_1(1, -1; 1, -1) \equiv K_1$ , then  $|a_n| \le 2 - \frac{1}{n}$ . This result was obtained by Silverma and Telage [15].

### 4. Distortion Theorems

**Theorem 4.1** Let  $f \in K(A, B; C, D)$ , then

$$(4.1) \qquad \left(\frac{1-Cr}{1-Dr}\right)(1-Br)^{(A-B)/B} \le |f'(z)| \le \left(\frac{1+Cr}{1+Dr}\right)(1+Br)^{(A-B)/B}, B \ne 0;$$

(4.2) 
$$\left(\frac{1-Cr}{1-Dr}\right) \exp(-Ar) \le |f'(z)| \le \left(\frac{1+Cr}{1+Dr}\right) \exp(Ar), B = 0;$$

$$(4.3) \int_{0}^{r} \left(\frac{1-Cu}{1-Du}\right) (1-Bu)^{(A-B)/B} du \le |f(z)| \le \int_{0}^{r} \left(\frac{1+Cu}{1+Du}\right) (1+Bu)^{(A-B)/B} du, B \ne 0;$$

$$(4.4) \int_0^r \left(\frac{1-Cu}{1-Du}\right) \exp(-Au) du \le |f(z)| \le \int_0^r \left(\frac{1+Cu}{1+Du}\right) \exp(Au) du, B = 0.$$

All these bounds are sharp.

**Proof**. Since  $f \in K(A, B; C, D)$ , it follows that

$$\frac{zf'(z)}{g(z)} = \frac{1 + Cw(z)}{1 + Dw(z)}$$

which maps  $|w(z)| \le r$  onto the circle

$$\left| \frac{zf'(z)}{g(z)} - \frac{1 - CDr^2}{1 - D^2r^2} \right| \le \frac{(C - D)r}{(1 - D^2r^2)}$$

This yields

$$\frac{(1-\operatorname{Cr})}{(1-\operatorname{Dr})} \le \left| \frac{zf'(z)}{g(z)} \right| \le \frac{(1+\operatorname{Cr})}{(1+\operatorname{Dr})}$$

which further implies th

(4.5) 
$$\frac{(1-Cr)}{(1-Dr)}|g(z)| \le |zf'(z)| \le \frac{(1+Cr)}{(1+Dr)}|g(z)|.$$

Using (2.1) and (2.2) along with (4.5), we obtain (4.1) and (4.2). Now

$$|f(z)| = \left| \int_{0}^{z} f'(z) dz \right| \le \int_{0}^{r} |f'(z)| dr \le \begin{cases} \int_{0}^{r} \left( \frac{1 + Cr}{1 + Dr} \right) (1 + Br)^{(A-B)/B} dr, B \neq 0; \\ \int_{0}^{r} \left( \frac{1 + Cr}{1 + Dr} \right) \exp(Ar) dr, \quad B = 0. \end{cases}$$

Let  $z_0$ ,  $|z_0| = 1$ , be so chosen that  $|f(z_0)| \le |f(z)|$  for all z, |z| = r. If  $L(z_0)$  is the preimage of the segment  $[0, f(z_0)]$  in E, then

$$|f(\mathbf{z}_{0})| = \int_{L(\mathbf{z}_{0})} |f'(z)| d\mathbf{r} \ge \begin{cases} \int_{0}^{r} \left(\frac{1 - Cr}{1 - Dr}\right) (1 - Br)^{(A - B)/B} d\mathbf{r}, B \neq 0; \\ \int_{0}^{r} \left(\frac{1 - Cr}{1 - Dr}\right) \exp(-Ar) d\mathbf{r}, \quad B = 0. \end{cases}$$

Equality signs in (4.1), (4.2), (4.3) and (4.4) are attained by the function  $f_2(z)$  defined

(4.6) 
$$(f_2(z))' = \begin{cases} \left(\frac{1 + C\delta_1 z}{1 + D\delta_1 z}\right) (1 + B\delta_2 z)^{(A-B)/B}, & B \neq 0; \\ \left(\frac{1 + C\delta_1 z}{1 + D\delta_1 z}\right) \exp(A\delta_2 z), B = 0, |\delta_1| = |\delta_2| = 1. \end{cases}$$

**Theorem 4.2** Let  $f \in K_1(A, B; C, D)$ , then

$$\frac{1}{Ar} \left(\frac{1-Cr}{1-Dr}\right) \left\{ 1 - (1-Br)^{A/B} \right\} \le |f'(z)| \le \frac{1}{Ar} \left(\frac{1+Cr}{1+Dr}\right) \left\{ (1+Br)^{A/B} - 1 \right\}, B \ne 0;$$

$$\frac{1}{Ar} \left(\frac{1-Cr}{1-Dr}\right) \exp(-Ar) \le |f'(z)| \le \frac{1}{Ar} \left(\frac{1+Cr}{1+Dr}\right) \exp(Ar), \quad B = 0;$$

$$\frac{1}{A} \int_{0}^{1} \frac{1}{u} \left(\frac{1-Cu}{1-Du}\right) \left\{ 1 - (1-Bu)^{A/B} \right\} du \le |f(z)| \le \frac{1}{A} \int_{0}^{1} \frac{1}{u} \left(\frac{1+Cu}{1+Du}\right) \left\{ (1+Bu)^{A/B} - 1 \right\} du, B \ne 0;$$

$$\frac{1}{A} \int_{0}^{1} \frac{1}{u} \left(\frac{1-Cu}{1-Du}\right) \exp(-Au) du \le |f(z)| \le \frac{1}{A} \int_{0}^{1} \frac{1}{u} \left(\frac{1+Cu}{1+Du}\right) \exp(Au) du, B = 0.$$

All these bounds are sharp and extremal function is given by  $f_3(z)$  defined by

(4.7) 
$$(f_3(z))' = \begin{cases} \frac{1}{Az} \left( \frac{1 + C\delta_1 z}{1 + D\delta_1 z} \right) \{ (1 + B\delta_2 z)^{A/B} - 1 \}, & B \neq 0; \\ \frac{1}{Az} \left( \frac{1 + C\delta_1 z}{1 + D\delta_1 z} \right) \exp(A\delta_2 z), & B = 0, |\delta_1| = |\delta_2| = 1. \end{cases}$$

# 5. Argument Theorems

**Theorem 5.1** Let  $f \in K(A, B; C, D)$ , then

(5.1) 
$$|\arg f'(z)| \le \frac{(A-B)}{B} \sin^{-1}(Br) + \sin^{-1}\left\{\frac{(C-D)r}{(1-CDr^2)}\right\}, B \ne 0;$$
  
(5.2)  $|\arg f'(z)| \le Ar + \sin^{-1}\left\{\frac{(C-D)r}{(1-CDr^2)}\right\}, B = 0.$ 

(5.2) 
$$|\arg f'(z)| \le \operatorname{Ar} + \sin^{-1} \left\{ \frac{(C-D)r}{(1-CDr^2)} \right\}, \quad B = 0.$$

The results are sharp.

**Proof.** From (1.11), we have  $\frac{zf'(z)}{g(z)} = \frac{1 + Cw(z)}{1 + Dw(z)}$ .

Since the transformation  $\frac{zf'(z)}{g(z)} = \frac{1+Cw(z)}{1+Dw(z)}$  maps  $|w(z)| \le r$  onto the circle

$$\left| \frac{zf'(z)}{g(z)} - \frac{1 - CDr^2}{1 - D^2r^2} \right| \le \frac{(C - D)r}{(1 - D^2r^2)},$$

therefore

$$\left|\arg \frac{zf'(z)}{g(z)}\right| \le \sin^{-1}\left\{\frac{(C-D)r}{(1-CDr^2)}\right\}.$$

This implies that

(5.3) 
$$\left| \arg f'(z) \right| \le \left| \arg \frac{g(z)}{z} \right| + \sin^{-1} \left\{ \frac{(C - D)r}{(1 - CDr^2)} \right\}.$$

(5.3) together with (2.3) and (2.4) yield (5.1) and (5.2) respectively. Equality sign in

(5.1) and (5.2) holds for the function 
$$f_2(z)$$
 defined by (4.6) in which (5.4) 
$$\delta_1 = \frac{r}{z} \left[ \frac{-(C+D)r + i\{(1-C^2r^2)(1-D^2r^2)\}^{1/2}}{(1+CDr^2)} \right]$$

(5.5) 
$$\delta_2 = \frac{r}{z} \{ -Br + i(1 - B^2r^2)^{1/2} \}.$$

Similarly, by using Lemma 2.6, we have

**Theorem 5.2** Let  $f \in K_1(A, B; C, D)$ , then

$$|\arg f'(z)| \le \frac{A}{B} \sin^{-1}(Br) + \sin^{-1}\left\{\frac{(C-D)r}{(1-CDr^2)}\right\}, B \ne 0;$$

$$|\arg f'(z)| \le \operatorname{Ar} + \sin^{-1} \left\{ \frac{(C-D)r}{(1-CDr^2)} \right\}, \quad B = 0.$$

The results are sharp for the function  $f_3(z)$  defined in (4.7) where  $\delta_1$  and  $\delta_1$  are given by (5.4) and (5.5), respectively.

**Remark 5.1** Taking A = 1 and B = -1 in the Theorem 4.1, we get the result proved by the first author [10].

**Remark 5.2** On taking C = 1 and D = -1 in the Theorems 4.1 and 5.1, we get the results due to Goel and the first author [5].

**Remark 5.3** Letting A = C = 1 and B = D = -1 in the Theorems 4.1 and 5.1, we obtain the results proved by Ogawa [12] and Krzyz [8] for the class K.

**Remark 5.4** For C = 1 and D = -1 in Theorems 4.2 and 5.2, we get the results established by Gawad and Thomas [1].

#### 6. Convex Set of Functions

**Theorem 6.1** If f and  $h \in K(A, B; C, D)$ , then

$$(1 - \lambda)f + \lambda h \in K(A, B; C, D), \quad (0 \le \lambda \le 1)$$

 $(1-\lambda)f + \lambda h \in K(A,B;C,D), \quad (0 \le \lambda \le 1).$  **Proof.** Since  $\frac{1+Cz}{1+Dz}$  is convex univalent in E, the theorem follows by Lemma 2.7 definition of K(A, B; C, D).

# 7. Radius of Convexity for $K^*(A, B)$ and $K_1^*(A, B)$

**Theorem 7.1** If  $f \in K^*(A, B)$ , then f(z) is convex in  $|z| \le r_0$  where  $r_0$  is the smallest positive root of the equation

(7.1) 
$$Ar^3 - (1 - 2B)r^2 - (2 + A)r + 1 = 0.$$

The radius  $r_0$  is sharp.

**Proof.** Since  $f \in K^*(A, B)$ , for  $g \in S^*(A, B)$  we have

(7.2) 
$$zf'(z) = g(z)P(z).$$

Differentiating (7.1) logarithmically, we get

$$1 + \frac{zf'(z)}{f(z)} = \frac{zg'(z)}{g(z)} + \frac{zP'(z)}{P(z)}$$

which implies that

(7.3) 
$$Re\left\{1 + \frac{zf'(z)}{f(z)}\right\} \ge Re\left\{\frac{zg'(z)}{g(z)}\right\} - \left|\frac{zP'(z)}{P(z)}\right|.$$

Since  $g \in S^*(A, B)$ , it follows that  $\frac{zg'(z)}{g(z)} = \frac{1 + Aw(z)}{1 + Bw(z)}$  from which it is easily verify that for  $|w(z)| \le r$ ,

(7.4) 
$$\frac{1 - \operatorname{Ar}}{1 - \operatorname{Br}} \le Re \left\{ \frac{zg'(z)}{g(z)} \right\} \le \frac{1 + \operatorname{Ar}}{1 + \operatorname{Br}}.$$

Also it is known that

(7.5) 
$$\left| \frac{zP'(z)}{P(z)} \right| \le \frac{2r}{1 - r^2}.$$

From (7.3), (7.4) and (7.5), it is deduce that  $Re\left\{1 + \frac{zf^{'}(z)}{f(z)}\right\} > 0$ , provided  $|z| \le r_0$  where  $r_0$  is the smallest positive root of the equation (7.1). Sharp result is obtained for the function  $f_0(z)$  defined by

$$f_0'(z) = \left(\frac{1+\delta_1 z}{1-\delta_1 z}\right) \{1+B\delta_2 z\}^{(A-B)/B}, |\delta_1| = |\delta_2| = 1.$$

**Remark 7.1** Taking A=1 and B= -1 in the Theorem, we get  $r_0 = 2 - \sqrt{3}$  which is the radius of convexity for the class of convex functions.

**Theorem 7.2** If  $f \in K_1^*(A, B)$ , then f(z) is convex in  $|z| \le r_1$  where  $r_1$  is the smallest positive root of the equation

(7.6) 
$$2\{1 - (1 - Br)^{A/B}\} - A(1 - r^2)(1 - Br)^{(A-B)/B} = 0.$$

The radius  $r_1$  is sharp.

**Proof.** Since  $f \in K_1^*(A, B)$ , for  $g \in C(A, B)$  we have

(7.7) 
$$zf'(z) = g(z)P(z).$$

Differentiating (7.7) logarithmically, we get

$$1 + \frac{zf'(z)}{f(z)} = \frac{zg'(z)}{g(z)} + \frac{zP'(z)}{P(z)}$$

which implies that

(7.8) 
$$Re\left\{1 + \frac{zf'(z)}{f(z)}\right\} \ge Re\left\{\frac{zg'(z)}{g(z)}\right\} - \left|\frac{zP'(z)}{P(z)}\right|.$$

Using Lemma 2.8 and (7.5) in (7.8), we obtain

$$Re\left\{1 + \frac{zf'(z)}{f(z)}\right\} \ge \frac{Ar(1 - Br)^{(A-B)/B}}{1 - (1 - Br)^{A/B}} - \frac{2r}{1 - r^2}.$$

This impies that  $Re\left\{1 + \frac{zf'(z)}{f(z)}\right\} > 0$ , provided  $|z| \le r_1$  where  $r_1$  is the smallest positive root of the equation (7.6). Sharp result is obtained for the function  $f_1(z)$  defined by

$$f_1'(z) = \frac{1}{Az} \left( \frac{1 + \delta_1 z}{1 - \delta_1 z} \right) \left\{ (1 + B\delta_2 z)^{A/B} - 1 \right\}, \ |\delta_1| = |\delta_2| = 1.$$

**Remark 7.2** Taking A=1 and B= -1 in the Theorem, we get  $r_1 = \frac{1}{3}$  which is the radius of convexity for the class  $K_1$ . This result was due to Gawad and Thomas [1].

#### References

- [1] H. R. Abdel-Gawad and Thomas, D. K., *A subclass of close-to-convex functios*, Publicatios De L'Institut Mathématique, Nouvelle série tome, **49**(63)(1991), 61-66.
- [2] S. D. Bernardi, *Special classes of subordinate functions*, Duke Math. J. **33**(1966), 55-67.
- [3] M. R. Goel and B. S. Mehrok, *A subclass of univalent functions*, Houston J. Math., **8**(1982), 343-357.
- [4] M. R. Goel and B. S. Mehrok, B. S., *On the coefficients of a subclass of starlike functions*, Indian J. Pure Appl. Math., **12**(1981), 634-647.
- [5] M. R. Goel and B. S. Mehrok, *On a class of close-to-convex functions*, Indian J. Pure Appl. Math., **12**(1981), 648-658.
- [6] W. Janowski, *Some extremal problems for certain families of analytic functions*, Ann. Polon Math., **28**(1973), 297-326.
- [7] W. Kaplan, *Close-to-convex schlicht functions*, Mich. Math. J, **1**(1952), 169-185.
- [8] J. Krzyz, *On the derivative of close-to-convex functions,* Colloq Math., **10**(1963), 139-142.
- [9] L. E. Littlewood, *On inequalities in the theory of functions*, Proc. London Math. Soc., **23**(1925), 481-519.
- [10] B. S. Mehrok, *A subclass of close-to-convex functions*, Bull. Inst. Math. Acad. Sinica, **10**(1982), 389-398.
- [11] B. S. Mehrok and Gagandeep Singh, *A subclass of close-to-convex functions*, Int. J. Math. Anal., **4**(2010), 1319-1327.
- [12] S. Ogawa, *A note on close-to-convex functions,* J. Nara Gakugei Univ., **8**(1959), 9-10.
- [13] M. O. Reade, *On close-to-convex univalent functions,* Mich. Math. J., **3**(1955-56), 59-62.
- [14] W. W. Rogosinski, *On subordinate functions*, Proc. Camb. Philos Soc., **35**(1939), 1-26.
- [15] H. Silverman and D. N. Telage, *Extreme points of subclasses of close-to-convex functions*, Proc. Amer. Math. Soc., **74**(1979), 59-65.

#643E, Bhai Randhir Singh Nagar, Ludhiana, Punjab (India) – 141001

E-mail: beantsingh.mehrok@gmail.com

Department of Mathematics, Govt. Rajindra College, Bathinda, Punjab (India) – 151001 E-mail: <a href="mailto:harjindpreet@gmail.com">harjindpreet@gmail.com</a>