SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

HARJINDER SINGH AND B. S. MEHROK

Abstract

We introduce some subclasses of close-to-convex functions and obtain sharp results for coefficients, distortion theorems and argument theorems from which results of several authors follows as special cases.

1. Introduction and Definitions

Principle of Subordination ([9], [13]). Let $f(z)$ and $F(z)$ be two functions analytic in the open unit disc $E=\{z ;|z|<1\}$. Then $f(z)$ is subordinate to $F(z)$ in E if there exists a function $w(z)$ analytic in E and satisfying the conditions $w(0)=0$ and $|w(z)|<1$ such that $f(z)=F(w(z))$. If $F(z)$ is univalent in E, the above definition is equivalent to $f(0)=F(0)$ and $f(E) \subset F(E)$.

Bounded Functions. By \mathscr{U}, we denote the class of analytic functions of the form

$$
\begin{equation*}
w(z)=\sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in E \tag{1.1}
\end{equation*}
$$

which satisfy the conditions $w(0)=0$ and $|w(z)|<1$.
Let \mathscr{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.2}
\end{equation*}
$$

which are analytic in the unit disc $E=\{z ;|z|<1\}$. The subclass of univalent functions in \mathscr{A} is denoted by S.
S^{*} and C represent the classes of functions in \mathscr{A} which satisfy, respectively, the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \tag{1.3}
\end{equation*}
$$

Received December 26, 2011, accepted December 18, 2012.
Communicated by Chung-Tsun Shieh.
2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
Key words and phrases. Subordination, bounded functions, univalent functions, starlike functions, convex functions and close-to-convex functions.
Corresponding author: Harjinder Singh.

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}>0 . \tag{1.4}
\end{equation*}
$$

A function $f(z)$ in \mathscr{A} is said to be close-to-convex if there exists a function

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.5}
\end{equation*}
$$

in S^{*} such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>0 . \tag{1.6}
\end{equation*}
$$

The class of functions $f(z)$ in \mathscr{A} with the condition (1.6) is denoted by K and called the class of close-to-convex functions. The class K was introduced by Kaplan [7] it was shown by him that all close-to-convex functions are univalent.

If $g \in C$, the class of functions in \mathscr{A} subject to the condition (1.6) may be denoted by K_{1} which is the subclass of K.
$S^{*}(A, B)$ and $C(A, B)$ are the classes of functions in \mathscr{A} which satisfy, respectively, the conditions

$$
\begin{align*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}<\frac{1+A z}{1+B z}, \quad g \in S^{*}, \quad-1 \leq B<A \leq 1, \tag{1.7}\\
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}<\frac{1+A z}{1+B z}, \quad g \in C, \quad-1 \leq B<A \leq 1 . \tag{1.8}
\end{align*}
$$

In particular, $S^{*}(1,-1) \equiv S^{*}$ and $C(1,-1) \equiv C$.
The class $S^{*}(A, B)$ was introduced and study by Janowski [6] and also by Goel and Mehrok [4]. It is obvious that $g \in C(A, B)$ implies that $z g^{\prime}(z) \in S^{*}(A, B)$.
$K(C, D)$ represent the class of functions $f(z)$ in \mathscr{A} for which

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}<\frac{1+C z}{1+D z}, \quad g \in S^{*}, \quad-1 \leq D<C \leq 1 . \tag{1.9}
\end{equation*}
$$

If $g \in C$, the corresponding class may be denoted by $K_{1}(C, D)$.
The class $K^{*}(A, B)$ consists of functions $f(z)$ in \mathscr{A} such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>0, \quad g \in S^{*}(A, B), \quad-1 \leq B<A \leq 1 \tag{1.10}
\end{equation*}
$$

If $g \in C(A, B)$, the corresponding class may be denoted by $K_{1}^{*}(A, B)$.
For $-1 \leq D \leq B<A \leq C \leq 1$, let $K(A, B ; C, D)$ be the subclass of K satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}<\frac{1+C z}{1+D z}, \quad g \in S^{*}(A, B) \tag{1.11}
\end{equation*}
$$

If $g \in C(A, B)$, the corresponding class may be denoted by $K_{1}(A, B ; C, D)$.
Throughout the paper, we take $-1 \leq D \leq B<A \leq C \leq 1, w(z) \in \mathscr{U}$ and $z \in E$. From the above definitions, we have the following observations
(i) $K(1,-1 ; C, D) \equiv K(C, D)$ and $K_{1}(1,-1 ; C, D) \equiv K_{1}(C, D)$;
(ii) $K(A, B ; 1,-1) \equiv K^{*}(A, B)$ and $K_{1}(A, B ; 1,-1) \equiv K_{1}^{*}(A, B)$;
(iii) $K(1,-1 ; 1,-1) \equiv K$ and $K_{1}(1,-1 ; 1,-1) \equiv K_{1}$.

2. Preliminary lemmas

Lemma 2.1 ([3]). Let $P(z)=\frac{1+C w(z)}{1+D w(z)}=1+\sum_{n=1}^{\infty} p_{n} z^{n}$, then

$$
\left|p_{n}\right| \leq(C-D) .
$$

Result is sharp for the functions $P_{n}(z)=\frac{1+C \delta z^{n}}{1+D \delta z^{n}},|\delta|=1$ and $n \geq 1$.
Lemma 2.2 ([4]). Let $g \in S^{*}(A, B)$, then, for $A-(n-1) B \geq(n-2),(n \geq 3)$,

$$
\left|b_{n}\right| \leq \frac{1}{(n-1)!} \prod_{k=2}^{n}(A-(k-1) B)
$$

Equality holds for the function $g_{0}(z)$ defined by

$$
g_{0}(z)=z(1+B \delta z)^{(A-B) / B}, \quad|\delta|=1 .
$$

Since $g(z) \in C(A, B)$ implies that $z g^{\prime}(z) \in S^{*}(A, B)$, we have the following
Lemma 2.3. Let $g \in C(A, B)$, then, for $A-(n-1) B \geq(n-2),(n \geq 3)$,

$$
\left|b_{n}\right| \leq \frac{1}{n!} \prod_{k=2}^{n}(A-(k-1) B) .
$$

Result is sharp for the function $g_{1}(z)$ defined by

$$
g_{1}^{\prime}(z)=(1+B \delta z)^{(A-B) / B}, \quad|\delta|=1 .
$$

Lemma 2.4 ([5]). Let $g \in S^{*}(A, B)$, then, for $|s| \leq 1,|t| \leq 1,(s \neq t)$

$$
\frac{\operatorname{tg}(s z)}{\operatorname{sg}(t z)}< \begin{cases}\left(\frac{1+B s z}{1+B t z}\right)^{(A-B) / B}, & B \neq 0 ; \\ \exp A(s-t) z, & B=0 .\end{cases}
$$

Lemma 2.5. If $g \in S^{*}(A, B)$, then, for $|z|=r<1$,

$$
\begin{align*}
r(1-B r)^{(A-B) / B} & \leq|g(z)| \leq r(1+B r)^{(A-B) / B}, \quad B \neq 0 ; \tag{2.1}\\
r \exp (-A r) & \leq|g(z)| \leq r \exp (A r), \quad B=0 ; \tag{2.2}\\
\left|\arg \frac{g(z)}{z}\right| & \leq \frac{(A-B)}{B} \sin ^{-1}(B r), \quad B \neq 0 ; \tag{2.3}
\end{align*}
$$

$$
\begin{equation*}
\left|\arg \frac{g(z)}{z}\right| \leq A r, \quad B=0 . \tag{2.4}
\end{equation*}
$$

Equality sign in these bounds is attained by the function $g_{0}(z)$ defined by

$$
g_{0}(z)= \begin{cases}z(1+B \delta z)^{(A-B) / B}, & B \neq 0 ; \\ z \exp (A \delta z), & B=0,|\delta|=1 .\end{cases}
$$

Proof. Letting $s \rightarrow 1$ and $t \rightarrow 0$ in the Lemma 2.4, we obtain

$$
\begin{align*}
& \frac{g(z)}{z}<(1+B z)^{(A-B) / B}, \quad B \neq 0 ; \tag{2.5}\\
& \frac{g(z)}{z}<\exp (A z), \quad B=0 . \tag{2.6}
\end{align*}
$$

(2.5) implies that

$$
\begin{equation*}
\frac{g(z)}{z}=(1+B w(z))^{(A-B) / B}, \quad B \neq 0 . \tag{2.7}
\end{equation*}
$$

Case (i) $B>0$.

$$
\begin{aligned}
\left|(1+B w(z))^{(A-B) / B}\right| & =\left|\exp \left\{\frac{(A-B)}{B} \log (1+B w(z))\right\}\right| \\
& =\exp \left\{\frac{(A-B)}{B} \log |1+B w(z)|\right\} \\
& =|1+B w(z)|^{(A-B) / B} \\
& \leq(1+B r)^{(A-B) / B} .
\end{aligned}
$$

Case (ii) $B<0$.
Let $B=-B^{\prime}, B^{\prime}>0$. Then

$$
\begin{aligned}
\left|(1+B w(z))^{(A-B) / B}\right| & =\left|\left\{\left(1-B^{\prime} w(z)\right)^{-1}\right\}^{(A-B) / B^{\prime}}\right| \\
& =\left|\left(1-B^{\prime} w(z)\right)^{-1}\right|^{(A-B) / B^{\prime}} \\
& \leq\left(\frac{1}{1-B^{\prime} r}\right)^{(A-B) / B^{\prime}} \\
& =(1+B r)^{(A-B) / B} .
\end{aligned}
$$

Combining the cases (i) and (ii), (2.1) follows from (2.7). Similarly, we get (2.2) from (2.6). Again from (2.5), we obtain (2.3) as follows

$$
\left|\arg \frac{g(z)}{z}\right| \leq \frac{(A-B)}{B}|\arg (1+B w(z))| \leq \frac{(A-B)}{B} \sin ^{-1}(B r) .
$$

Similarly (2.4) directly follows from (2.6).
On the same lines we can prove the following

Lemma 2.6. If $g \in C(A, B)$, then, for $|z|=r<1$,

$$
\begin{aligned}
\frac{1}{A}\left\{1-(1-B r)^{A / B}\right\} & \leq|g(z)| \leq \frac{1}{A}\left\{(1+B r)^{A / B}-1\right\}, \quad B \neq 0 \\
\frac{1}{A}\{1-\exp (-A r)\} & \leq|g(z)| \leq \frac{1}{A}\{\exp (A r)-1\}, \quad B=0 \\
\left|\arg \frac{g(z)}{z}\right| & \leq \frac{A}{B} \sin ^{-1}(B r), \quad B \neq 0 \\
\left|\arg \frac{g(z)}{z}\right| & \leq A r, \quad B=0
\end{aligned}
$$

Lemma 2.7 ([2]). Let f and g are analytic functions and h be convex univalent function in E such that $f<h$ and $g<h$. Then $(1-\lambda) f+\lambda g<h,(0 \leq \lambda \leq 1)$.

3. Coefficient estimates

Theorem 3.1. Let $f \in K(A, B ; C, D)$. Then, for $A-(n-1) B \geq(n-2),(n \geq 3)$,

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{n!} \sum_{k=2}^{n}\{A-(k-1) B\}+\frac{(C-D)}{n}\left(1+\sum_{k=2}^{n-1} \frac{1}{(k-1)!} \prod_{j=2}^{k}\{A-(j-1) B\}\right) . \tag{3.1}
\end{equation*}
$$

Bound (3.1) is sharp.
Proof. By definition of $K(A, B ; C, D)$,

$$
\frac{z f^{\prime}(z)}{g(z)}=\frac{1+C w(z)}{1+D w(z)}=P(z)
$$

Expanding the series,

$$
\begin{align*}
& \left(z+2 a_{2} z^{2}+\cdots+n a_{n} z^{n}+\cdots\right) \\
& \quad=\left(z+b_{2} z^{2}+\cdots+b_{n-1} z^{n-1}+b_{n} z^{n}+\cdots\right)\left(1+p_{1} z+p_{2} z^{2}+\cdots+p_{n-1} z^{n-1}+\cdots\right) \tag{3.2}
\end{align*}
$$

Equating the coefficients of z^{n} in (3.2),

$$
n a_{n}=b_{n}+p_{1} b_{n-1}+p_{2} b_{n-2}+\cdots+p_{n-2} b_{2}+p_{n-1}
$$

Applying triangular inequality and Lemma 2.1, we get

$$
\begin{equation*}
n\left|a_{n}\right| \leq\left|b_{n}\right|+(C-D)\left(1+\sum_{k=2}^{n-1}\left|b_{k}\right|\right) \tag{3.3}
\end{equation*}
$$

Using Lemma 2.2 in (3.3), we obtain

$$
n\left|a_{n}\right| \leq \frac{1}{(n-1)!} \prod_{k=2}^{n}\{A-(k-1) B\}+(C-D)\left(1+\sum_{k=2}^{n-1} \frac{1}{(k-1)!} \prod_{j=2}^{k}\{A-(j-1) B\}\right)
$$

which yields (3.1). The bound (3.1) is sharp for the function $f_{0}(z)$ defined by

$$
f_{0}(z)=\left(\frac{1+C \delta_{1} z}{1+D \delta_{1} z}\right)\left(1+B \delta_{2} z\right)^{(A-B) / B}, \quad\left|\delta_{1}\right|=\left|\delta_{2}\right|=1 .
$$

Similarly we can prove
Theorem 3.2. Let $f \in K_{1}(A, B ; C, D)$. Then, for $A-(n-1) B \geq(n-2),(n \geq 3)$,

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{n}\left[\frac{1}{n!} \prod_{k=2}^{n}(A-(k-1) B)+(C-D)\left(1+\sum_{k=2}^{n-1} \frac{1}{k!} \prod_{j=2}^{k}\{A-(j-1) B\}\right)\right] . \tag{3.4}
\end{equation*}
$$

The bound (3.4) is sharp for the function $f_{1}(z)$ given by

$$
f_{1}^{\prime}(z)=\frac{1}{A z}\left(\frac{1+C \delta_{1} z}{1+D \delta_{1} z}\right)\left\{\left(1+B \delta_{2} z\right)^{A / B}-1\right\}, \quad\left|\delta_{1}\right|=\left|\delta_{2}\right|=1 .
$$

Remark 3.1. (i) If $f \in K(1,-1 ; C, D) \equiv K(C, D),\left|a_{n}\right| \leq 1+\frac{(n-1)(C-D)}{2}$ which is the result due to Mehrok [10].
(ii) If $f \in K_{1}(1,-1 ; C, D) \equiv K_{1}(C, D),\left|a_{n}\right| \leq \frac{1}{n}\{1+(n-1)(C-D)\}$, a result due to Mehrok and Singh [11].

Remark 3.2. (i) If $f \in K(A, B ; 1,-1) \equiv K^{*}(A, B)$, for $A-(n-1) B \geq(n-2)$, $(n \geq 3)$,

$$
\left|a_{n}\right| \leq \frac{1}{n!} \prod_{k=2}^{n}\{A-(k-1) B\}+\frac{2}{n}\left(1+\sum_{k=2}^{n-1} \frac{1}{(k-1)!} \prod_{j=2}^{k}\{A-(j-1) B\}\right) .
$$

This result was proved by Goel and Mehrok [5].
(ii) If $f \in K_{1}(A, B ; 1,-1) \equiv K_{1}^{*}(A, B)$, for $A-(n-1) B \geq(n-2)$, $(n \geq 3)$,

$$
\left|a_{n}\right| \leq \frac{1}{n(n!)} \prod_{k=2}^{n}\{A-(k-1) B\}+\frac{2}{n}\left(1+\sum_{k=2}^{n-1} \frac{1}{k!} \prod_{j=2}^{k}\{A-(j-1) B\}\right) .
$$

Remark 3.3. (i) If $f \in K(1,-1 ; 1,-1) \equiv K$, then $\left|a_{n}\right| \leq n$. The result due to Reade [13].
(ii) If $f \in K_{1}(1,-1 ; 1,-1) \equiv K_{1}$, then $\left|a_{n}\right| \leq 2-\frac{1}{n}$. This result was obtained by Silverma and Telage [15].

4. Distortion theorems

Theorem 4.1. Let $f \in K(A, B ; C, D)$, then

$$
\begin{align*}
\left(\frac{1-C r}{1-D r}\right)(1-B r)^{(A-B) / B} & \leq\left|f^{\prime}(z)\right| \leq\left(\frac{1+C r}{1+D r}\right)(1+B r)^{(A-B) / B}, \quad B \neq 0 ; \tag{4.1}\\
\left(\frac{1-C r}{1-D r}\right) \exp (-A r) & \leq\left|f^{\prime}(z)\right| \leq\left(\frac{1+C r}{1+D r}\right) \exp (A r), \quad B=0 ; \tag{4.2}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{r}\left(\frac{1-C u}{1-D u}\right)(1-B u)^{(A-B) / B} d u \leq|f(z)| \leq \int_{0}^{r}\left(\frac{1+C u}{1+D u}\right)(1+B u)^{(A-B) / B} d u, \quad B \neq 0 ; \tag{4.3}\\
& \int_{0}^{r}\left(\frac{1-C u}{1-D u}\right) \exp (-A u) d u \leq|f(z)| \leq \int_{0}^{r}\left(\frac{1+C u}{1+D u}\right) \exp (A u) d u, \quad B=0 . \tag{4.4}
\end{align*}
$$

All these bounds are sharp.

Proof. Since $f \in K(A, B ; C, D)$, it follows that

$$
\frac{z f^{\prime}(z)}{g(z)}=\frac{1+C w(z)}{1+D w(z)}
$$

which maps $|w(z)| \leq r$ onto the circle

$$
\left|\frac{\left(z f^{\prime}(z)\right.}{g(z)}-\frac{1-C D r^{2}}{1-D^{2} r^{2}}\right| \leq \frac{(C-D) r}{\left(1-D^{2} r^{2}\right)}
$$

This yields

$$
\frac{(1-C r)}{(1-D r)} \leq\left|\frac{\left(z f^{\prime}(z)\right.}{g(z)}\right| \leq \frac{(1+C r)}{(1+D r)}
$$

which further implies that

$$
\begin{equation*}
\frac{(1-C r)}{(1-D r)}|g(z)| \leq\left|z f^{\prime}(z)\right| \leq \frac{(1+C r)}{(1+D r)}|g(z)| . \tag{4.5}
\end{equation*}
$$

Using (2.1) and (2.2) along with (4.5), we obtain (4.1) and (4.2).
Now

$$
\begin{aligned}
|f(z)| & =\int_{0}^{z} f^{\prime}(z) d z \\
& \leq \int_{0}^{r}\left|f^{\prime}(z)\right| d r \\
& \leq \begin{cases}\int_{0}^{r}\left(\frac{1+C r}{1+D r}\right)(1+B r)^{(A-B) / B} d r, & B \neq 0 \\
\int_{0}^{r}\left(\frac{1+C r}{1+D r}\right) \exp (A r) d r, & B=0\end{cases}
\end{aligned}
$$

Let $z_{0},\left|z_{0}\right|=1$, be so chosen that $\left|f\left(z_{0}\right)\right| \leq|f(z)|$ for all $z,|z|=r$. If $L\left(z_{0}\right)$ is the pre-image of the segment $\overline{\left[0, f\left(z_{0}\right)\right]}$ in E, then

$$
\begin{aligned}
|f(z)| & =\int_{L\left(z_{0}\right)}\left|f^{\prime}(z)\right| d z \\
& \geq \begin{cases}\int_{0}^{r}\left(\frac{1-C r}{1-D r}\right)(1-B r)^{(A-B) / B} d r, & B \neq 0 ; \\
\int_{0}^{r}\left(\frac{1-C r}{1-D r}\right) \exp (-A r) d r, & B=0\end{cases}
\end{aligned}
$$

Equality signs in (4.1), (4.2), (4.3) and (4.4) are attained by the function $f_{2}(z)$ defined by

$$
f_{2}^{\prime}(z)= \begin{cases}\left(\frac{1+C \delta_{1} z}{1+D \delta_{1} z}\right)\left(1+B \delta_{2} r\right)^{(A-B) / B}, & B \neq 0 \tag{4.6}\\ \left(\frac{1+C \delta_{1} z}{1+D \delta_{1} z}\right) \exp \left(A \delta_{2} z\right), & B=0,\left|\delta_{1}\right|=\left|\delta_{2}\right|=1 .\end{cases}
$$

Similarly, by using Lemma 2.6, we can prove
Theorem 4.2. Let $f \in K_{1}(A, B ; C, D)$, then

$$
\begin{aligned}
& \frac{1}{A r}\left(\frac{1-C r}{1-D r}\right)\left\{1-(1-B r)^{A / B}\right\} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{A r}\left(\frac{1+C r}{1+D r}\right)\left\{(1+B r)^{A / B}-1\right\}, \quad B \neq 0 ; \\
& \frac{1}{A r}\left(\frac{1-C r}{1-D r}\right) \exp (-A r) \leq\left|f^{\prime}(z)\right| \leq \frac{1}{A r}\left(\frac{1+C r}{1+D r}\right) \exp (A r), \quad B=0 ; \\
& \frac{1}{A} \int_{0}^{r} \frac{1}{u}\left(\frac{1-C u}{1-D u}\right)\left\{1-(1-B u)^{A / B}\right\} d u \leq|f(z)| \leq \frac{1}{A} \int_{0}^{r} \frac{1}{u}\left(\frac{1+C r}{1+D r}\right)\left\{(1+B u)^{A / B}-1\right\} d u, \quad B \neq 0 ; \\
& \frac{1}{A} \int_{0}^{r} \frac{1}{u}\left(\frac{1-C u}{1-D u}\right) \exp (-A u) d u \leq|f(z)| \leq \frac{1}{A} \int_{0}^{r} \frac{1}{u}\left(\frac{1+C u}{1+D u}\right) \exp (A u) d u, \quad B=0 .
\end{aligned}
$$

All these bounds are sharp and extremal function is given by $f_{3}(z)$ defined by

$$
f_{3}^{\prime}(z)= \begin{cases}\frac{1}{A z}\left(\frac{1+C \delta_{1} z}{1+D \delta_{1} z}\right)\left\{\left(1+B \delta_{2} z\right)^{A / B}-1\right\}, & B \neq 0 ; \tag{4.7}\\ \frac{1}{A z}\left(\frac{1+C \delta_{1} z}{1+D \delta_{1} z}\right) \exp \left(A \delta_{2} z\right), & B=0,\left|\delta_{1}\right|=\left|\delta_{2}\right|=1\end{cases}
$$

5. Argument theorems

Theorem 5.1. Let $f \in K(A, B ; C, D)$, then

$$
\begin{align*}
& \left|\arg f^{\prime}(z)\right| \leq \frac{(A-B)}{B} \sin ^{-1}(B r)+\sin ^{-1}\left\{\frac{(C-D) r}{\left(1-C D r^{2}\right)}\right\}, \quad B \neq 0 ; \tag{5.1}\\
& \left|\arg f^{\prime}(z)\right| \leq A r+\sin ^{-1}\left\{\frac{(C-D) r}{\left(1-C D r^{2}\right)}\right\}, \quad B=0 . \tag{5.2}
\end{align*}
$$

The results are sharp.
Proof. From (1.11), we have $\frac{z f^{\prime}(z)}{g(z)}=\frac{1+C w(z)}{1+D w(z)}$. Since the transformation $\frac{z f^{\prime}(z)}{g(z)}=\frac{1+C w(z)}{1+D w(z)}$ maps $|w(z)| \leq r$ onto the circle

$$
\left|\frac{z f^{\prime}(z)}{g(z)}-\frac{1-C D r^{2}}{1-D^{2} r^{2}}\right| \leq \frac{(C-D) r}{\left(1-D^{2} r^{2}\right)}
$$

therefore

$$
\left|\arg \frac{z f^{\prime}(z)}{g(z)}\right| \leq \sin ^{-1}\left\{\frac{(C-D) r}{\left(1-C D r^{2}\right)}\right\} .
$$

This implies that

$$
\begin{equation*}
\left|\arg f^{\prime}(z)\right| \leq\left|\arg \frac{g(z)}{z}\right|+\sin ^{-1}\left\{\frac{(C-D) r}{\left(1-C D r^{2}\right)}\right\} . \tag{5.3}
\end{equation*}
$$

Inequality (5.3) together with (2.3) and (2.4) yield (5.1) and (5.2) respectively. Equality sign in (5.1) and (5.2) holds for the function $f_{2}(z)$ defined by (4.6) in which

$$
\begin{equation*}
\delta_{1}=\frac{r}{z}\left[\frac{-(C+D) r+i\left\{\left(1-C^{2} r^{2}\right)\left(1-D^{2} r^{2}\right)\right\}^{1 / 2}}{\left(1+C D r^{2}\right)}\right] \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{1}=\frac{r}{z}\left\{-B r+i\left(1-B^{2} r^{2}\right)^{1 / 2}\right\} . \tag{5.5}
\end{equation*}
$$

Similarly, by using Lemma 2.6, we have
Theorem 5.2. Let $f \in K_{1}(A, B ; C, D)$, then

$$
\begin{aligned}
& \left|\arg f^{\prime}(z)\right| \leq \frac{A}{B} \sin ^{-1}(B r)+\sin ^{-1}\left\{\frac{(C-D) r}{\left(1-C D r^{2}\right)}\right\}, \quad B \neq 0 ; \\
& \left|\arg f^{\prime}(z)\right| \leq A r+\sin ^{-1}\left\{\frac{(C-D) r}{\left(1-C D r^{2}\right)}\right\}, \quad B \neq 0 .
\end{aligned}
$$

The results are sharp for the function $f_{3}(z)$ defined in (4.7) where δ_{1} and δ_{2} are given by (5.4) and (5.5), respectively.

Remark 5.4. Taking $A=1$ and $B=-1$ in the Theorem 4.1, we get the result proved by Mehrok [10].

Remark 5.5. On taking $C=1$ and $D=-1$ in the Theorems 4.1 and 5.1, we get the results due to Goel and Mehrok [5].

Remark 5.6. Letting $A=C=1$ and $B=D=-1$ in the Theorems 4.1 and 5.1, we obtain the results proved by Ogawa [12] and Krzyz [8] for the class K.

Remark 5.7. For $C=1$ and $D=-1$ in Theorems 4.2 and 5.2 , we get the results established by Gawad and Thomas [1].

6. Convex set of functions

Theorem 6.1. If f and $h \in K(A, B ; C, D)$, then

$$
(1-\lambda) f+\lambda h \in K(A, B ; C, D), \quad(0 \leq \lambda \leq 1) .
$$

Proof. Since $\frac{1+C z}{1+D z}$ is convex univalent in E, the theorem follows by Lemma 2.7 definition of $K(A, B ; C, D)$.

References

[1] H. R. Abdel-Gawad and D. K. Thomas, A subclass of close-to-convex functios, Publicatios De L'Institut Mathématique, Nouvelle sŕie tome, 49(1991), 61-66.
[2] S. D. Bernardi, Special classes of subordinate functions, Duke Math. J., 33(1966), 55-67.
[3] M. R. Goel and B. S. Mehrok, A subclass of univalent functions, Houston J. Math., 8(1982), 343-357.
[4] M. R. Goel and B. S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math., 12(1981), 634-647.
[5] M. R. Goel, and B. S. Mehrok, On a class of close-to-convex functions, Indian J. Pure Appl. Math., 12(1981), 648-658.
[6] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon Math., 28(1973), 297-326.
[7] W. Kaplan, Close-to-convex schlicht functions, Mich. Math. J., 1(1952), 169-185.
[8] J. Krzyz, On the derivative of close-to-convex functions, Colloq Math., 10(1963), 139-142.
[9] L. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(1925), 481-519.
[10] B. S. Mehrok, A subclass of close-to-convex functions, Bull. Inst. Math. Acad. Sinica, 10(1982), 389-398.
[11] B. S. Mehrok and Gagandeep Singh, A subclass of close-to-convex functions, Int. J. Math. Anal., 4(2010), 13191327.
[12] S. Ogawa, A note on close-to-convex functions, J. Nara Gakugei Univ., 8(1959), 9-10.
[13] M. O. Reade, On close-to-convex univalent functions, Mich. Math. J., 3(1955-56), 59-62.
[14] W. W. Rogosinski, On subordinate functions, Proc. Camb. Philos Soc., 35(1939), 1-26.
[15] H. Silverman and D. N. Telage, Extreme points of subclasses of close-to-convex functions, Proc. Amer. Math. Soc., 74(1979), 59-65.

Department of Mathematics, Govt. Rajindra College, Bathinda, Punjab-151001, India.
E-mail: harjindpreet@gmail.com
\#643E, Bhai Randhir Singh Nagar, Ludhiana, Punjab-141001, India.
E-mail: beantsingh.mehrok@gmail.com

