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REGIME SHIFT IN A PHYTOPLANKTON–PHOSPHORUS MODEL

WITH VERTICAL STRUCTURE AND SEASONALITY

KOTA IKEDA AND TAKESHI MIKI

Abstract. Many ecological systems are influenced by positive feedbacks between organ-

isms and abiotic environments, which generates multiple stable equilibria of a mathe-

matical model with a hysteresis structure. In addition, discontinuous shifts of system at

equilibrium is predicted, which is often called regime shift in ecosystem sciences. This

hysteresis structure is unfavorable from environmental management point of view, be-

cause the reconstruction of original equilibrium state requests much lower levels of exter-

nal forcing. Mathematical models proposed in previous works are simple and mathemat-

ically tractable ([7], [2]). However, it is difficult to extrapolate from such simple models

the occurrence likelihood of regime shift in natural environments since temporally dy-

namic features in ecology and physico-chemical environments, and spatial dimension

are less explored in those models.

In this study, we construct a realistic but mathematically tractable model of interac-

tion between phytoplankton and phosphorus, which incorporates (1) 1-dimensional ver-

tical structure of lake ecosystem and (2) seasonal periodic cycle of water mixing. We aim

to understand the impact of changes in seasonality in various types of lakes on the oc-

currence of multiple attractors (periodic solution) and hysteresis structure.

1. Introduction

Many ecological systems such as grassland vegetation, lake food chain, and coral reef

are influenced by positive feedbacks between organisms and abiotic environments. From dy-

namical point of view, multiple (locally) asymptotically stable equilibria (or alternative stable

states) emerge when positive feedbacks are dominant processes in such systems ([6], [4], [3]).

In addition, with multiple stable equilibria, along with continuous changes in external forc-

ing (e.g. water availability in soil for grassland system or nutrient loading to lake ecosystem),

discontinuous shifts of system at equilibrium is predicted (it is often called regime shift in

ecosystem sciences). Furthermore, the critical level of the external forcing that induces the

shift from state “1” to state “2” is different from the level that induces the return from state
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“2” to state “1”; this is called hysteresis. This hysteresis structure is unfavorable from environ-

mental management point of view, because the reconstruction of original equilibrium state

requests much lower levels of external forcing.

Simple mathematical models have been proposed and mathematically analyzed ([7], [2]).

One of the major target ecosystems of these models is a lake ecosystem; phosphorus is a

growth limiting factor for phytoplankton. The increase of phosphorus loading from land to

lake (i.e., external P loading) gradually enhances the phytoplankton production and biomass.

The organic matter produced by phytoplankton is finally decomposed by microbes into car-

bon dioxide (CO2) and inorganic phosphorus, which in turn consumed again by the phyto-

plankton for primary production. However, at the same time, microbial decomposition of

organic matter consumes dissolved oxygen in water and sediment, which induces the release

of iron- and aluminum-bounded phosphorus from the lake sediment into lake water (i.e.,

internal P loading, [8]). This acts as a positive feedback between internal P loading and phy-

toplankton growth, leading to the multiple stable states that can be realized with the identical

external P loading and thus discontinuous shifts of equilibrium phytoplankton biomass and

the hysteresis structure emerges along the continuous shifts in external P loading.

These mathematical models are very simple and mathematically tractable ([7], [2]). How-

ever, it is difficult to extrapolate from such simple models the occurrence likelihood of regime

shift in natural environments, since models are generally neglect many complex features in

nature (but see [5]). Implication of high risk of regime shifts (e.g. [1]) by simple mathematical

models needs caution. There are two major problems in case for lake models. First, tempo-

rally dynamic features in ecology and physico-chemical environments are not considered in

mathematical modeling. Many systems would have more diverse attractors e.g. multiple pe-

riodic solutions (seasonal patterns of phytoplankton bloom). Second, spatial dimension has

less-explored (but see [5]); primary production at surface later (epilimnion), decomposition

of organic matter and deletion of oxygen in deeper layers (hypolimnion) generally occur at

the different depth of lake but usually non-spatial differential equations are used to describe

phosphorus-phytoplankton dynamics. These two aspects are important not only from the-

oretical point view but also from rising risk of lake ecosystems under warming. Deep lake is

highly dynamic in terms of water circulation and seasonality in plankton food chain. Lake

water warming is changing the strength, depth, and seasonality of vertical water mixing. It

is argued weaker and shorter vertical mixing in winter season under warming results in sev-

erer oxygen depletion in hypolimnion and sediment of lakes, which is more likely to induce

internal P loading and regime shift.

In this study, we construct a realistic but mathematically tractable model of interac-

tion between phytoplankton and phosphorus, which incorporates (1) 1-dimensional vertical
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structure of lake ecosystem and (2) seasonal periodic cycle of water mixing. We aim to un-

derstand the impact of changes in seasonality in various types of lakes on the occurrence of

multiple attractors (periodic solution) and hysteresis structure.

2. Model

Seasonally changing model

We construct a model to describe phosphorus-phytoplankton dynamics. To study the

seasonal change of phosphorus and phytoplankton concentrations, we assume that 1 year

consists of 365 days which are divided into only summer and winter. Here we denote the

period of summer by Ts. Then the period of winter is given by Tw = 365−Ts.

In order to simplify our model, we assume the horizontal homogeneity, which means

that two state variables depend only on time and depth. Since vertical water mixing does not

occur in summer, phosphorus and phytoplankton concentrations have spatial gradients. A

lake consists of a epilimnion, a hypolimnion, and a bottom sediment, which depths are rep-

resented by Ze, Zh, and Zb, respectively. We study the dynamics of two state variables in each

water column. The total depth of the lake is given by Z = Ze + Zh + Zb. The epilimnion is

strongly influenced by wind and well-mixed. Thickness of the bottom sediment is narrower

than the epilimnion and hypolimnion. Hence phosphorus and phytoplankton concentra-

tions in the epilimnion and bottom sediment are assumed to be spatially constant. Since a

whole lake is well-mixed by convection in winter, the two state variables do not have spatial

gradients.

We denote the k-th year phosphorus and phytoplankton concentrations in the epilimnion

and the hypolimnion, the bottom sediment in summer by (P e
k

, X e
k

), (P h
k

, X h
k

), and (P b
k

, X b
k

)

(k = 1,2, . . .). These variables are governed by the following system;

dP e
k

dt
=

l

Ze
−

α

Z
γ−1
e

P e
k +c1βe X e

k , 0 < t < Ts,

dX e
k

dt
= c2

α

Z
γ−1
e

P e
k −

(

βe +
se

Ze

)

X e
k , 0 < t < Ts,

(2.1)

∂P h
k

∂t
= c1βh X h

k , 0 < t <Ts, 0 < z < Zh,

∂X h
k

∂t
=−sh

∂X h
k

∂z
−βh X h

k , 0 < t <Ts, 0 < z < Zh,

(2.2)

dP b
k

dt
= c1βbX b

k +
1

Zb
f (uk ), 0 < t < Ts,

dX b
k

dt
=

sh

Zb
X h

k (Zh, t )−

(

βb +
sb

Zb

)

X b
k , 0 < t < Ts,

(2.3)
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Table 1: Parameter sets

Symbols Meaning Units Set I Set II

State variables

X e , X h , X b, X Chlorophyll concentration µg P L−1

Pe,Ph ,Pb,P Phosphorus concentration µg P L−1

Parameters

l P loading rate mg P m−2 d−1 0.0–1.0 0.0–10.0

α Phytoplankton growth rate d−1 1.0 1.0

γ Light attenuation intensity 1.0 2.0

c1 P excretion rate associated with grazing 1.0 1.0

c2 Converting rate associated with P consuming 1.0 1.0

βe,βh,βb,β Zooplankton grazing rate d−1 0.05 0.1

se, sh Phytoplankton sinking rate m d−1 5.0 1.0

sb Phytoplankton sinking rate m d−1 2.5 2.5

κ Decaying rate of oxygen (µg P)−1 L d−1 0.05 0.07

u0 Saturated oxygen concentration mg L−1 10.0 10.0

θ Threshold between oxic mg L−1 3.0 3.0

and anoxic conditions

Ze Depth of epilimnion m 10 10

Zh Depth of hypolimnion m 70 48

Zb Depth of bottom m 0.1 0.1

Z = Ze +Zh +Zb Total depth of lake m 80.1 58.1

R P recycling rate mg P m−2 d−1 10.5 9.6

Ts Period of summer d

Tw = 365−Ts Period of winter d

where f (u) is a step function defined by

f (u)=

{

R , u < θ,

0, u > θ.

Oxygen concentration denoted by uk is governed by











duk

dt
=−κuk X b

k , 0 < t < Ts,

uk (0) = u0.

(2.4)

Also we denote phosphorus and phytoplankton concentrations in winter by (Pk , Xk ), which

is governed by
dPk

dt
=

l

Z
−

α

Z γ−1
Pk +c1βXk , 0 < t <Tw,

dXk

dt
= c2

α

Z γ−1
Pk −

(

β+
sb

Z

)

Xk , 0 < t <Tw.

(2.5)

Phytoplankton sinks down from the top to the bottom with sinking rates se, sh, sb [m d−1]

and disappears due to grazing by zooplankton with grazing rates βe,βh,βb,β [d−1]. We as-
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sume that these two mechanisms of sinking and grazing affect the dynamics of two state vari-

ables commonly in all water columns throughout years. Since environmental conditions in

each column and season may be different, the parameters are given individually. P excre-

tion rate associated with grazing is represented by c1. Inputs of phosphorus include P load-

ing from the watershed in epilimnion and P recycling from the bottom sediment. As stated

in [5], we think of this P loading as a controllable variable denoted by l [mg P m−2 d−1] in

terms of restoration management. Hence the parameter l is a main parameter in this article.

If phosphorus is not supplied from the surface of the lake, phosphorus and phytoplankton

concentrations must decrease with time. Hence we assume a sufficient condition such as

0 ≤ c1 ≤ 1 and 0 ≤ c2 ≤ 1. The growth rate of phytoplankton is given by c2α/Z
γ−1
e and depends

on the depth of epilimnion Ze with converting rate c2 and light attenuation intensity γ, which

represents a degree of suspension in the lake.

Phosphorus recycling from the sediment is assumed to occur when dissolved oxygen in

the bottom sediment decreases sufficiently. A threshold between oxic and anoxic conditions

is given by θ [mg L−1]. An input of phosphorus recycling is assumed to be constant R [mg

P m−2 d−1] under the anoxic condition. This nonlinear effect is represented by a function

f (u). In [5], R is defined as a nonlinear function depending on phytoplankton density X and

temperature. The explicit form of R in [5] gives us an estimate of 0 ≤ R ≤ 14. In particular, we

have R = 9.88 for X = 40 and 20◦C.

The dynamics of oxygen concentration in summer is assumed to be governed by the mass

action law and decay exponentially with a rate κX b
k

. On the other hand, we do not consider

either the dynamics of oxygen concentration or phosphorus recycling from the sediment in

winter because water is well-mixed vertically and oxygen is sufficiently supplied from the sur-

face of the lake. This also implies that the initial condition of oxygen concentration in summer

is given by u0 > θ independent of k .

The initial values of phosphorus and phytoplankton concentrations for the k-th year are

given by

P e
k (0) = P h

k (z,0) = P b
k (0) = Pk−1(Tw), X e

k (0) = X h
k (z,0) = X b

k (0) = Xk−1(Tw), (2.6)

Pk (0) =
1

Z

(

ZeP e
k (Ts)+

∫Zh

0
P h

k (z,Ts)dz +ZbP b
k (Ts)

)

,

Xk (0) =
1

Z

(

ZeX e
k (Ts)+

∫Zh

0
X h

k (z,Ts)dz +ZbX b
k (Ts)

)

,

(2.7)

where we denote P0(Tw) = P0 and X0(Tw) = X0 for P0 and X0 given initially.

The dynamics of phosphorus and phytoplankton concentrations begins with (2.1)−(2.4)

and (2.6) for k = 1. When the time achieves t = Ts, we calculate (P1(0), X1(0)) by (2.7). Next

we consider (2.5) for k = 1 and have (P1(Tw), X1(Tw)), which generates the initial values of



114 KOTA IKEDA AND TAKESHI MIKI

Figure 1: Bistability in the system (2.1)−(2.7). Figures (a) and (c) correspond to time series

of a solution in the system (2.1)−(2.7) for Ts = 251 and l = 0.4 with a random initial value

(P0, X0). Figures (b) and (d) also correspond to time series of a solution under almost the

same condition as in Figures (a) and (c). The difference between two conditions is only on

the initial values. We used the parameters of Set I in Table 1 in both cases. In the figures we

plot (P k (t −365(k −1)), X k (t −365(k −1))) in 365(k −1) < t < Ts +365(k −1) and (Pk (t −Ts −

365(k −1)), Xk (t −Ts −365(k −1))) in Ts +365(k −1) < t < 365k for k = 1,2, . . .. The numerical

results for 0 ≤ t ≤ 1825 are shown in the figures.

(P e
2 , X e

2 ), (P h
2 , X h

2 ), and (P b
2 , X b

2 ). Eventually, we have all solutions for k = 1,2, . . . by an inductive

argument. In order to study the total dynamics of the two state variables, we consider (P k (t −

365(k−1)), X k (t−365(k−1))), in 365(k−1) < t <Ts+365(k−1) and (Pk (t−Ts−365(k−1)), Xk (t−

Ts −365(k −1))) in Ts+365(k −1) < t < 365k for k = 1,2, . . ., where (P k , X k ) is a spatial average

of (P e
k

, X e
k

), (P h
k

, X h
k

), and (P b
k

, X b
k

), defined by

P k (t )=
1

Z

(

ZeP e
k (t )+

∫Zh

0
P h

k (z, t )dz +ZbP b
k (t )

)

,

X k (t )=
1

Z

(

Ze X e
k (t )+

∫Zh

0
X h

k (z, t )dz +ZbX b
k (t )

)

.

Here we show an example of the total dynamics generated by the system (2.1)−(2.7) (See Fig-

ure 1).

Reduction of model
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Our mathematical model (2.1)−(2.7) is mode realistic than those proposed in the previ-

ous studies [2] and [7] because it includes interaction between phytoplankton and phospho-

rus with influences of temporally dynamic features in ecology and physico-chemical environ-

ments, which incorporates 1-dimensional vertical structure of lake ecosystem and seasonal

periodic cycle of water mixing. As shown in Figure 1, the solution of the system (2.1)−(2.7)

changes periodically in time. Generally speaking, it is difficult to study periodic solutions in

ordinary differential equations analytically. Then we formally reduce the system (2.1)−(2.7)

to establish the existence and stability of periodic solutions analytically in a reduced system.

We first assume that the solutions P e
k

(t ), X e
k

(t ), X b
k

(t ) of (2.1) and (2.3) rapidly converge to

steady states. More precisely, we suppose that we can omit dP e
k

/dt , dX e
k

/dt , and dX b
k

/dt in

(2.1) and (2.3). From this assumption, we can set (P e
k

(t ), X e
k

(t )) = (P e
∗, X e

∗) for any 0 < t < Ts

(k = 1,2, . . .), which is a stationary solution of (2.1) given by

P e
∗ =

l Z
γ−2
e (βe Ze + se)

α(se +βe Ze(1−c1c2))
, X e

∗ =
c2l

se +βe Ze(1−c1c2)
.

Note that (P e
∗, X e

∗) is determined independently on k . Similarly, X b
k

(t ) can be explicitly given

by

X b
k (t )=

sh

βbZb + sb
X h

k (Zh, t ).

Since (2.5) is an autonomous linear differential system, the solution (Pk (t ), Xk (t )) of (2.5)

can be represented by

(Pk (t ), Xk (t )) = c0(l )+eλ1t c1(l ,Pk (0), Xk (0))+eλ2 t c2(l ,Pk (0), Xk (0)), (2.8)

where c0(l ), ci (l ,P, X ) (i = 1,2) are vectors linearly dependent on l ,P, X . The exponents λ1,λ2

are given by

λ1 =−
1

2

( α

Z γ−1
+β+

sb

Z
−ω

)

, λ2 =−
1

2

( α

Z γ−1
+β+

sb

Z
+ω

)

,

ω=

√

( α

Z γ−1

)2
+4c1c2

α

Z γ−1
β−2

α

Z γ−1

(

β+
sb

Z

)

+

(

β+
sb

Z

)2
.

It is obvious that λ2 < λ1 < 0 holds under the assumptions of 0 ≤ c1 ≤ 1 and 0 ≤ c2 ≤ 1. Since

eλ2t decays rapidly, we formally omit eλ2t c2(l ,Pk (0), Xk (0)) in (2.8) and assume that the solu-

tion (Pk (t ), Xk (t )) of (2.5) can be approximated by (Pk (t ), Xk (t )) = c0(l )+eλ1t c1(l ,Pk (0), Xk (0)).

Actually, we substitute all parameter values into λ1 and λ2 in Table 1, and then have (λ1,λ2)=

(−0.026,−1.1) for Set I and (λ1,λ2) = (−0.0048,−0.16) for Set II, respectively. Hence we can

compute
(

Pk (Tw)

Xk (Tw)

)

= vw +Mw

(

Pk (0)

Xk (0)

)

, (2.9)
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where vw = t (vw1, vw2) and Mw =

(

mw11 mw12

mw21 mw22

)

are defined by

(

vw1

vw2

)

=









l Z γ−2(βZ + sb)

α(sb +βZ (1−c1c2))

(

1+
λ2

ω
eλ1Tw

)

+
l

ω
eλ1Tw

c2l

sb +βZ (1−c1c2)

(

1+
λ2

ω
eλ1Tw

)









,

(

mw11 mw12

mw21 mw22

)

= eλ1Tw







1

2ω

(

β+
sb

Z
+ω−

α

Z γ−1

)

c1
β

ω

c2
α

ωZ γ−1

1

2ω

(

−β−
sb

Z
+ω+

α

Z γ−1

)






.

Under these assumptions, we can represent all the other solutions explicitly by an in-

ductive argument. In the following, we hypothesize an extra condition shTs > Zh. Then the

solutions X h
k+1

, X b
k+1

, uk+1 are represented as follows;

X h
k+1(z, t ) =







e−βht Xk (Tw), 0 ≤ t ≤ Ts, sht ≤ z ≤ Zh,

e
−

βh
sh

z
X e
∗, 0 ≤ t ≤ Ts, 0 ≤ z < sht ,

X b
k+1(t ) =



















sh

βbZb + sb
e−βht Xk (Tw), 0 ≤ t ≤

Zh

sh
,

sh

βbZb + sb
e
−

βh Zh
sh X e

∗,
Zh

sh
< t ≤ Ts,

uk+1(t ) =































u0 exp

(

−
(1−e−βht )shXk (Tw)κ

βh(βbZb + sb)

)

, 0 ≤ t ≤
Zh

sh
,

u0 exp



−
βhe

−
βh Zh

sh (sht −Zh)X e
∗+ (1−e

−
βh Zh

sh )shXk (Tw)

βh(βbZb + sb)
κ



 ,
Zh

sh
< t ≤ Ts.

Since uk+1(t ) decreases monotonically in time, f (uk+1(t )) jumps at the time of uk+1(t )=

θ if it happens. Based on the above representation of uk+1(t ), we define T1 = T1(x) and T2 =

T2(x) by

T1(x) =
1

βh
log

(

shxκ

shxκ−βh(βb Zb + sb) log
(u0

θ

)

)

,

T2(x) =

(

1−e
βh Zh

sh

)

shxκ+βh ZhX e
∗κ+βhe

βh Zh
sh (βb Zb + sb) log

(u0

θ

)

βhshX e
∗κ

.

If Xk (Tw) satisfies T1(Xk (Tw)) < Zh/sh, we have uk+1(t )> θ for 0 < t < T1(Xk (Tw)) and uk+1(t )<

θ for T1(Xk (Tw)) < t < Ts so that f (uk+1(t )) = R for T1(Xk (Tw)) < t < Ts. Similarly, if Xk (Tw)

satisfies Zh/sh < T2(Xk (Tw)) < Ts, we have uk+1(t ) > θ for 0 < t < T2(Xk (Tw)) and uk+1(t ) < θ

for T2(Xk (Tw)) < t < Ts so that f (uk+1(t )) = R for T2(Xk (Tw)) < t < Ts.
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In order to describe the properties of T1(x) and T2(x), we introduce x0, x1, x2, xc defined

by

x0 =

βh

(

(Zh − shTs)X e
∗κ+e

βh Zh
sh (βbZb + sb) log

( u0

θ

)

)

(

e
βh Zh

sh −1

)

shκ

, x1 =
βh(βbZb + sb) log

( u0

θ

)

shκ
,

x2 =

βh

(

ZhX e
∗κ+e

βh Zh
sh (βbZb + sb) log

( u0

θ

)

)

(

e
βh Zh

sh −1

)

shκ

, xc =
βhe

βh Zh
sh (βbZb + sb) log

(u0

θ

)

(

e
βh Zh

sh −1

)

shκ

.

We note that x1 < xc < x2 and x0 < xc under the assumptions of shTs > Zh and u0 > θ. It is

easy to check all properties described in the next proposition. Hence we omit the details of

the proof.

Proposition 2.1. The function T1 is positive, monotonically decreasing and concave in x1 < x.

Similarly, T2 is positive and monotonically decreasing in x < x2. In addition, it holds that

lim
x→∞

T1(x) = 0, T2(x2)= 0, T1(xc ) = T2(xc ) =
Zh

sh
, T2(x0) =Ts.

By the same argument as X h
k+1

and X b
k+1

, we can explicitly define P h
k+1

(z, t ) and P b
k+1

(t )

though we do not describe their complicated forms here. As a result, we obtain

1

Zh

∫Zh

0
P h

k+1(z,Ts)d z = Pk (Tw)+c1

(

1−
sh

Zhβh

(

1−e
−

βh Zh
sh

))

Xk (Tw)

+c1

(

sh

Zh

(

Ts −
1

βh

)(

1−e
−

βh Zh
sh

)

+e
−

βh Zh
sh

)

X e
∗,

P b
1 (Ts) = Pk (Tw)+

R

Zb
T (Xk (Tw))

+c1
βb(shTs −Zh)

βbZb + sb
e
−

βh Zh
sh X e

∗+c1
βbsh

βh(βb Zb + sb)

(

1−e
−

βh Zh
sh

)

Xk (Tw),

where T (x) is defined by

T (x)=



















0, 0 ≤ x < max{0, x0},

Ts −T2(x), max{0, x0} ≤ x < xc ,

Ts −T1(x), xc ≤ x.

From Proposition 2.1, we see that T (x) is a nonnegative, monotonically increasing, continu-

ous function in 0 ≤ x, and smooth except for x =max{0, x0}, xc .
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Finally we compute the initial condition for (Pk+1(0), Xk+1(0)) by (2.7) such as

(

Pk+1(0)

Xk+1(0)

)

= vs +Ms

(

Pk (Tw)

Xk (Tw)

)

+
R

Z
T (Xk (Tw))

(

1

0

)

, (2.10)

where vs =
t (vs1, vs2) and Ms =

(

ms11 ms12

0 0

)

are defined by

(

vs1

vs2

)

=
1

Z









ZeP e
∗+c1

(

sh

(

Ts −
1

βh

(

1−e
−

βh Zh
sh

))

−
sb(shTs −Zh)

βbZb + sb
e
−

βh Zh
sh

)

X e
∗

(

Ze +
sh

βh

(

1−e
−

βh Zh
sh

)

+
Zbsh

βbZb + sb
e
−

βh Zh
sh

)

X e
∗









,

ms11 =
Zb +Zh

Z
, ms12 = c1





Zh

Z
−

(1−e
−

βh Zh
sh )sbsh

βhZ (βbZb + sb)



 .

Combining (2.9) and (2.10), we have

(

Pk+1(Tw)

Xk+1(Tw)

)

= M

(

Pk (Tw)

Xk (Tw)

)

+v1 +
R

Z
T (Xk (Tw))v2, (2.11)

for all k ≥ 0, where M = MwMs, v1 = vw + Mwvs and v2 = t (mw11,mw21). Instead of solving

the system (2.1)−(2.7) directly, we treat the discrete dynamical system (2.11) with two state

variable {(Pk (Tw), Xk (Tw))}∞
k=0

.

3. Results

We first see that the system (2.1)−(2.7) can generate two kinds of periodic solutions for

the same parameters dependently on initial values, which means that our model has a hys-

teresis structure (Figure 1). The results seem to correspond to those obtained in [5]. However

it is difficult to prove the existence and stability of periodic solutions analytically in our model.

Instead of the continuous model (2.1)−(2.7), we consider a discrete model (2.11) and prove

the existence and stability of fixed points. First we consider the existence of a fixed point of

(2.11). If there exists a fixed point (P, X ) in (2.11), (P, X ) satisfies

(I −M )

(

P

X

)

= v1 +
R

Z
T (X )v2, (3.1)

where I is the identity matrix on R2. If I −M is invertible, we have

(

P

X

)

= (I −M )−1v1 +
R

Z
T (X )(I −M )−1v2.
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Figure 2: Graphs of T = (X − x∗)/rx and T = T (X ) in (3.2). In the figure, three fixed points

of (3.2) is realized by the intersection points of the two graphs. We set l = 0.3 and use the

parameters of Set I in Table 1 to generate this figure.

Here we denote

(

p∗

x∗

)

= (I −M )−1v1,

(

rp

rx

)

=
R

Z
(I −M )−1v2 =

R

Z

1

det(I −M )
v2.

Since the right-hand side of (3.1) does not have the variable P , it suffices to find a fixed point

of X = x∗+ rx T (X ), or equivalently,

1

rx
X −

x∗

rx
=T (X ) (3.2)

and then set P = p∗+ rp T (X ) for a fixed point X of (3.2) in order to prove the existence of a

fixed point of (2.11). Note that there is only one fixed point given by X = x∗ in the case of

rx = 0.

The stability of the fixed point (P, X ) is determined by the linearized eigenvalue problem

λ

(

φ

ψ

)

= M

(

φ

ψ

)

+
R

Z
T ′(X )ψv2 = Mw(Ms +

R

Z
T ′(X )J)

(

φ

ψ

)

, (3.3)

where J =

(

0 1

0 0

)

. Here we assume that the fixed point X is not equal to xc , x0 where T (X ) is not

differentiable. Since the (2,1) and (2,2) entries of both Ms and J are 0, the eigenvalue problem

above has 0 eigenvalue. The other eigenvalue λ can be explicitly given by

λ= tr(M )+mw21
R

Z
T ′(X ) = 1−det(I −M )+mw21

R

Z
T ′(X ). (3.4)

Since T ′(X ) is nonnegative for any X 6= x0, xc , the fixed point becomes unstable in the case of

det(I −M )< 0. Therefore the following lemma holds.
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Lemma 3.2. Suppose that there is a fixed point (P, X ) of (3.1) with nonnegative X 6= x0, xc . If

det(I −M ) is negative, (P, X ) must be unstable in (2.11).

From Lemma 3.2, the bistability in (2.11) may occur only in the case of det(I −M ) > 0. In

this case, rx is positive because of its explicit expression. Actually, if we apply the parameters

of Sets I and II in Table 1, we have det(I −M ) > 0. In addition, since the eigenvalue λ given in

(3.4) is rewritten as

λ= 1+mw21
R

Z

(

T ′(X )−
1

rx

)

, (3.5)

the stability of the fixed point of (3.2) can be determined by the difference between two slopes

of the line T = (X −x∗)/rx and T = T (X ) at an intersection point.

The equation (3.2) can posses a fixed point for each T (x) = 0,Ts −T1(x),Ts −T2(x). The

solution of (X − x∗)/rx = 0 is trivially given by X = x∗. In this case we denote the solution

by X 0(l ) = x∗ and emphasis the l -dependence of the solution. Here we note that x∗ is equal

to 0 at l = 0 and increases linearly as l increases under the assumptions of det(I − M ) > 0

and shTs > Zh. Similarly, x0 is positive at l = 0 and decreases linearly as l increases so that it

achieves 0 for some l . Hence there is some l0 > 0 such that x∗ = x0 at l = l0. Note that X 0(l )

is positive in 0 < l ≤ l0. Similarly, we denote the solution of (X − x∗)/rx = Ts −T2(X ) by X 2(l ).

From the definition of T (x), X 2(l ) is a fixed point of (3.2) if it satisfies max{0, x0} ≤ X 2(l ) ≤ xc .

Since x∗ depends on l linearly and Ts −T2(xc ) = Zh/ss, there is l = lc such that (xc − x∗)/rx =

Zh/ss. Then we see X 2(lc ) = xc . Note that lc can be negative for some parameters. Finally, we

consider the case of T (x) = Ts −T1(x). Since T1(x) is a logarithmic function, there are lt and

xt > 0 such that (x −x∗)/rx is tangent to Ts −T2(x) at x = xt for l = lt . In other words, it holds

that
1

rx
(xt −x∗) = Ts −T1(xt ),

1

rx
=−T ′

1(xt )

for l = lt . Then the equation (X − x∗)/rx = Ts −T2(X ) has exactly two solutions for l > lt ,

denoted by X
low

1 (l ) and X
high

1 (l ) with X
low

1 (l ) < X
high

1 (l ), and no solution for l < lt . Under the

assumption, lt must be less than lc .

Due to the representation formula for the eigenvalue defined in (3.4) and the fact that the

fixed points of (3.2) is categorized into four types, we can detect bifurcation points in (2.11).

Therefore we have the following proposition.

Proposition 3.3. The number and stability of fixed points in (2.11) change only at l = l0, lc , lt .

Thanks to l0 > 0, lt < lc and Proposition 3.3, we can categorize the bifurcation diagrams

of (2.11) in a generic sense. The bifurcation diagrams of (2.11) are divided into eight types;

xt < xc ,0 < l0 < lc (Type I); xt < xc ,0 < lc < l0 (Type II); lt < 0, lc < 0 (Type III); xc < xt ,0 <

l0 < lt < lc (Type IV); xc < xt ,0 < lt < l0 < lc (Type V); xc < xt ,0 < lt < lc < l0 (Type VI);
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(a) Type I (b) Type II (c) Type III

Figure 3: Response types I–III of (2.11). The horizontal and vertical axes represent the bifurca-

tion parameter l and the fixed points of (3.2). The lines with square, disk, and triangle symbols

correspond to the fixed points X 0(l ), X 2(l ), and X
high
1 (l ), respectively. The solid (dashed) lines

mean that each fixed point is stable (unstable) in (2.11). The parameters of Set I in Table 1 are

used except for Ts. (a) Ts = 244; (b) Ts = 251; (c) Ts = 265.

xc < xt , lt < 0,0 < lc < l0 (Type VII); xc < xt , lt < 0,0 < l0 < lc (Type VIII) (see Figures 3−5).

Hereafter we refer to these as the response types of the lake.

Now we are in a position to show the bifurcation diagrams of (2.11) for the parameter l .

In Figure 3, no hysteresis structure appears in Type I (reversible) while it emerges in Type II for

lc < l < l0 (hysteretic) and Type III for l < l0 (irreversible). These three bifurcation diagrams

are similar to those in Fig.1 in [5]. We see that the number of fixed points of (3.2) is 1 or 3

except for the critical points l = l0, lc , lt . In three results shown in Figure 3, we only change Ts.

The difference of Ts between Types I and III is only 21 [d]. Hence we conclude that the period

of summer Ts strongly affects the hysteresis structure.

In Figures 4, 5, the fixed point X
low
1 appears, which is always unstable in all types. All

results in Figure 4 correspond to the hysteretic type. In three results shown in Figure 4, we

only change Ts. The difference of Ts between Types I and III is only 10 [d]. On the other hand,

two bifurcation diagrams in Figure 5 are categorized into an irreversible type. The bifurcation

diagrams in Figures 4, 5 do not appear in the model proposed in [5].

Next we study relationships between the response types and parameters. We write a re-

sponse type for each parameter in Figure 6. The presence of phosphorus recycling from the

sediment enhances the nonlinear effect in (2.11). Hence the response types II and III arise

as R becomes large. This nonlinear effect is reinforced by shortness of Tw. Similarly, the hy-

polimnion enhances the nonlinear effect. By setting R = 5 and Tw = 80, for example, the

response types are Types I and III in Figures (a) and (c), respectively.

In the last part of this section, we state that a periodic solution of (2.11) can approximate

a solution of the system (2.1)−(2.7) by showing response types of (2.1)−(2.7) with the same
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(a) Type IV (b) Type V (c) Type VI

Figure 4: Response types IV–VI of (2.11). The horizontal and vertical axes represent the bi-

furcation parameter l and the fixed points of (3.2). The lines with cross marks correspond to

X
low

1 (l ). Other marks and two kinds of lines have the the same meanings as in Figure 3. The

parameters of Set II in Table 1 are used. The bottom three figures correspond to the dashed

circles in the top ones, respectively. (a) Ts = 95; (b) Ts = 100; (c) Ts = 105.

parameters as in Figure 3 via numerical simulations. For Ts = 244,251,265 [d] and l ∈ [0,1], we

have Xk (Tw) (k = 1, . . . ,21) with a random initial value (P0, X0). The mesh size of l is 0.01. We

carried out numerical simulations four times for each parameter with different initial values.

Calculating an average of Xk (Tw) over k = 12, . . . ,21 for each simulation result, we plot all four

averages in Figure 7 by putting square marks. In the case of Ts = 244, four averages have

almost the same value for each l , which means that the response type of the lake is reversible.

In the case of Ts = 251, large and small averages emerge for each l ∈ (0.16,0.42), which implies

a hysteresis structure occurs and the response type is hysteresis. Finally, in the case of Ts =

265, the response type is irreversible. Therefore we conclude that the increase of the period

of summer strongly influences the susceptibility of lakes to regime shits.

4. Conclusion

In this article we propose a model for phytoplankton and phosphorus dynamics with 1-

dimensional vertical structure of lake ecosystem and seasonal periodic cycle of water mixing
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(a) Type VII (b) Type VIII

Figure 5: Response types VII, VIII of (2.11). The horizontal and vertical axes represents the

bifurcation parameter l and the fixed points of (3.2). All marks and two kinds of lines have the

the same meanings as in Figures 3, 4. (a) The parameters defined in Set I are used except for

R ,Ts, Zh. We set R = 9.4,Ts = 152, Zh = 297; (b) α= 1.0,γ= 1.0,θ = 3.0,κ = 0.68, R = 4000,Ts =

118, se = sh = 0.27, sb = 7.9, Ze = 275, Zh = 30, Zb = 0.1, βe =βh =βb =β= 0.0081.

(a) (b) (c)

Figure 6: Relationships between the response types I–III defined in Figure 3 and (R , Tw). The

parameters given by Set I in Table 1 are used except for R , Zh,Tw. (a) Zh = 30 [m]; (b) Zh = 70

[m]; (c) Zh = 150 [m].

to understand the impact of changes in seasonality in various types of lakes on the occur-

rence of multiple attractors and hysteresis structure. The horizontal homogeneity is assumed

for simplicity. The vertical structure is represented by the epilimnion, the hypolimnion, and

the bottom sediment in summer. On the other hand, since convection induces water mixing

in the lake, two state variables are assumed to be independent of spatial variables in winter.

Through numerical simulations we see that our model can generate multiple periodic solu-

tions. Hence it is shown that there is a hysteresis structure in our model. This fact is almost

the same as pointed out in [5].

In order to make our model more mathematically tractable, we derive a reduced sys-
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(a) Ts = 244 (b) Ts = 251 (c) Ts = 265

Figure 7: Simulation results for (2.1)−(2.7) with the parameters of Set I. We carried out nu-

merical simulations until t = 7665 (the end of the 21th year) and averaged Xk (Tw) from k = 12

to k = 21. We have four results for each l and plot all results. The parameters of Set I are used,

and the mesh size of l is 0.01. The solid and dashed lines are the same as shown in Figure 3.

tem, which is essentially equivalent to a discrete model (2.11). Under a suitable condition on

parameters, this reduced model may approximate the system (2.1)−(2.7). In particular, re-

sponse types of lakes to eutrophication are almost the same in our original system (see Figure

7). Therefore it suffices to analyze the discrete model instead of the full system.

In the discrete model, we have the existence and stability of fixed points rigorously. Based

on those results, we can categorize response types of lakes to eutrophication into eight types.

As seen in Figures 3−5, the number of fixed points is either 1 or 3 except for bifurcation points.

Finally, we study the relationships among lake response types, seasonality, and P recycling

rate in various types of lakes. Figures 6 (a)−(c) show that the shorter period of winter sea-

son, larger P recycling rate and deeper hypolimnion strengthen the hysteresis structure. We

conclude that the occurrence likelihood of regime shift becomes higher by these factors.
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