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THE ISOMORPHISMS AND THE CENTER OF WEAK QUANTUM

ALGEBRAS ωslq(2)

HONG WANG AND SHILIN YANG

Abstract. The aim of this paper is to describe the centre as well as the structure of ωslq(2) by

applying the deformation of Harish-Chandra homomorphism.

Introduction

Throughout, the basic field is the complex number field C. All algebras, modules and
vector spaces are over C unless otherwise specified. Let q be a parameter which is not a

root of unity.
F. Li and S. Duplij [9] constructed a quantum algebra ωslq(2). By definition, the

quantum algebra ωslq(2) is generated by the four variables E,F,K,K with the relations:

KK = KK = J (1)

JK = K,KJ = K (2)

KE = q2EK, KE = q−2EK (3)

KF = q−2FK, KF = q2FK (4)

EF − FE =
K −K

q − q−1
(5)

This is an interesting example of weak Hopf algebras in the sense of [7]. In the paper
[9], the authors gave a detail description of the structure theory of ωslq(2), such as its

basis, group-like elements, regular quasi-R matrix and so on.
As a continuation of the paper [9], we will study the isomorphisms among these

weak quantum algebras and their centre. Several people have considered the problems

of Hopf algebra automorphisms. For example, [1, 4, 11]. In [3] the isomorphisms among
quantum algebras Ur,s(sln) with different parameters r, s were investigated. However,
nobody has considered the same problem for the weak quantum algebra ωslp(2). By

applying the idea of [3] and some known facts, we can yield the group of automorphisms
of weak Hopf algebra ωslq(2). It is shown that ϕ : ωslq(2) → ωslp(2) is a weak Hopf
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algebra isomorphism if and only if p = ± q. If this is the case, we will determine all such

isomorphisms. Let Uq(sl2) be the quantum group corresponding to three dimensional

semisimple Lie algebra sl2. As is known, one of many beautiful results for Uq(sl2) is that

the centre of Uq(sl2) can be described by the Harish-Chandra homomorphism (see [6]).

Similar to the case of Uq(sl2), we would like to study the centre of ωslq(2) and give the

analogous statements by applying the modification of Harish-Chandra homomorphism.

Let Y = {EiF j(1 − J) | i ≥ 0, j ≥ 0},

Cq = EFJ +
q−1K + qK

(q − q−1)2
= FEJ +

qK + q−1K

(q − q−1)2
,

and

P [K, K] =




∑

i≥0

aiK
i +
∑

j>0

bjK
j

∣∣∣∣ J = KK = KK, K = KJ, JK = J



 ,

where we set K0 = K
0

= J , ai, bj ∈ C (i ≥ 0, j > 0). Let Zq be a polynomial algebra

generated by the element Cq and J . It is shown that the centre of ωslq(2) is Zq ⊕ Y and

the restriction of the Harish-Chandra homomorphism to Zq is an isomorphism onto the

sub-algebra of P [K, K] generated by qK + q−1K.

This paper is organized as follows. Some basic facts and concepts are reviewed in

Section 1. Then we attempt to get the isomorphism theorem for ωslq(2) in Section 2.

Finally we devote to get the statements about the centre of ωslq(2) in the last section.

1. Preliminaries

There are at least two generalizations of a Hopf algebra, which are called weak Hopf

algebras. One of them was introduced and studied in [7, 8]. In this sense the weak Hopf

algebra (H,µ, η,∆, ε) is just both bialgebra and there exists a so-called weak antipode

T ∈ Homk(H,H) of H such that T ∗ I ∗ T = T , I ∗ T ∗ I = I, where I is an identity

map of H . Another definition of a weak Hopf algebra was introduced in [2]. The earlier

proposals of face algebras [5], generalized Kac algebras [12] are weak Hopf algebras in

this sense. However, the above two definitions of weak Hopf algebras are not included in

each other.

One knows that the quantum algebra ωslq(2) is a weak Hopf algebra in the sense

of [7]. The comultiplication ∆, the counit ε and the weak antipode T are given by the

following formulas

∆(E) = 1 ⊗ E + E ⊗K, ∆(F ) = F ⊗ 1 +K ⊗ F,

∆(K) = K ⊗K, ∆(K) = K ⊗K,

ε(E) = ε(F ) = 0, ε(K) = ε(K) = 1,

T (E) = −EK, T (F ) = −KF, T (K) = K, T (K) = K.
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It is noticed that J 6= 0. If J = 1, ωslq(2) is isomorphic to Uq(sl2). Recall that the
quantum algebra Uq(sl2), is generated by E′ , F ′ ,K ′ ,K ′−1 with the relations:

K ′−1K ′ = K ′K ′−1
= 1,

K ′E′K ′−1
= q2E′ ,K ′F ′K ′−1

= q−2F ′,

E′F ′ − F ′E′ =
K ′ −K ′−1

q − q−1
.

Uq(sl2) is of Hopf algebra structure, the comulitplication and antipode are

∆(E′) = 1 ⊗ E′ + E′ ⊗K ′, ∆(F ′) = F ′ ⊗ 1 +K ′−1
⊗ F ′,

∆(K ′) = K ′ ⊗K ′, ∆(K ′) = K ′ ⊗K ′,

ε(E′) = ε(F ′) = 0, ε(K ′) = ε(K ′−1
) = 1,

S(E′) = −E′K ′−1
, S(F ) = −K ′−1

F, S(K ′) = K ′−1
, S(K ′−1

) = K ′.

Accordingly, we always assume that J 6= 0 and J 6= 1.
Let W = ωslq(2)J and Y = ωslq(2)(1 − J).

Lemma 1.1. ([9, Theorem 4]) As ideals of ωslq(2) we have ωslq(2) = W ⊕ Y .

Moreover, W ∼= Uq(sl2) as Hopf algebras. The basis of W is

{EiF jK l, EiF jK
m
, EiF jJ | i ≥ 0, j ≥ 0, l > 0, m > 0}

and the basis of Y is

{EiF j(1 − J) | i ≥ 0, j ≥ 0}.

Proof. We skecth the proof as follows.
It is easy to see that J is a central idempotent. Therefore, ωslq(2)J as well as

ωslq(2)(1 − J) are ideals of ωslq(2). Hence,

ωslq(2) = ωslq(2)J ⊕ ωslq(2)(1 − J)

as ideals. One can see that W is of the basis

{EiF jK l, EiF jK
m
, EiF jJ | i ≥ 0, j ≥ 0, l > 0, m > 0}

and Y has the basis {EiF j(1 − J) | i ≥ 0, j ≥ 0}. In fact, W is a Hopf algebra (the
identity of W is J), the co-multiplication ∆ is

∆(EJ) = J ⊗ EJ + EJ ⊗K,

∆(FJ) = FJ ⊗ J +K ⊗ FJ,

∆(K) = K ⊗K, ∆(K) = K ⊗K.

The counit ε is
ε(EJ) = ε(FJ) = 0, ε(K) = ε(K) = 1
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and the antipode is

T (EJ) = −EK, T (FJ) = −KF, T (K) = K, T (K) = K.

Now let ρ be the algebra morphism from Uq(sl2) to W subjecting to

ρ(E′) = EJ, ρ(F ′) = FJ, ρ(K ′) = K, ρ(K ′−1) = K.

It is straightforward to see that ρ is a Hopf algebra isomorphism.

Let [m] = qm−q−m

q−q−1 for m ≥ 0 and

[m]! = [1][2] · · · [m], [0]! = 1,
[ n

t

]
=

[n]!

[t]![n− t]!
.

We have

EFm = FmE + [m]Fm−1 q
−(m−1)K − qm−1K

q − q−1
.

Let V be a ωslq(2)-module and 0 6= v ∈ V . If Kv = λv and Kv = λv for λ, λ ∈ C,

we can conclude that if λ 6= 0, λ = λ−1 and if λ = 0, λ = 0. We fix such a number λ

which is corresponding to λ. We denote by V λ the subspace of all vectors v in V such

that Kv = λv. The scalar λ is called a weight of V if V λ 6= 0. An element v 6= 0 of V is

said to be a highest weight vector of weight λ if Ev = 0 and Kv = λv. A ωslq(2)-module

is said to be a highest weight module of highest weight λ if it is generated by a highest

weight vector of λ.

Given a λ ∈ C, we consider an infinite-dimensional vector space V (λ) with basis

{vi}i∈N. For p ≥ 0, we set

Kvp = λq−2pvp, Kvp = λq2pvp, (6)

Evp =
q−(p−1)λ− qp−1λ

q − q−1
vp−1, (7)

Fvp−1 = [p]vp, Ev0 = 0. (8)

Lemma 1.2. Relations (6)-(8) define a ωslq(2)-modules structure on V (λ). The

element v0 generates V (λ) as a ωslq(2)-module and is a highest weight vector of weight

λ such that V (λ) is the highest weight module.

Proof. Let l = λλ. It is noticed that λ 6= 0 if and only if λ 6= 0. Also if λ 6= 0 then

l = 1 and if λ = 0, then l = 0. Therefore, either λ 6= 0 or λ = 0, we have λ2λ = λ and
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λλ
2

= λ. Immediate computations yield

KKvp = KKvp = lvp, KKKvp = Kvp, KKKvp = Kvp,

KEvp = q2EKvp, KEvp = q−2EKvp,

KFvp = q−2FKvp, KFvp = q2FKvp,

[E,F ] vp = ([p+ 1]
q−pλ− qpλ

q − q−1
− [p]

q−(p−1)λ− qp−1λ

q − q−1
)vp

=
q−2pλ− q2pλ

q − q−1
vp =

K −K

q − q−1
vp.

This shows that the relations (6)-(8) define a ωslq(2)-module structure on V (λ). On the

other hand, we have Kv0 = λv0 and Ev0 = 0, which means that v0 is a highest weight

vector of weight λ. Finally, (8) implies that vp = 1
[p]!F

pv0 for all p, which proves that

V (λ) is generated by v0.

The highest weight ωslq(2)-module V (λ) is called the Verma module of highest weight
λ. We will apply the Verma module V (λ) to give a description of the centre of ωslq(2).

2. Isomorphisms Among Weak Quantum Algebras

We now investigate the isomorphisms among weak quantum algebras.
Let Up(sl2) be the algebra generated by E′, F ′,K ′,K ′−1 and the relations as that of

Uq(sl2) where q is replaced by p. It is also a Hopf algebra with the same comultiplications

as Uq(sl2).
The following lemma gives a condition that Up(sl2) ∼= Uq(sl2) as Hopf algebras.

Lemma 2.1. Up(sl2) ∼= Uq(sl2) as Hopf algebras if and only if p = ± q± 1.

Proof. For convenience, we replace the generators E′, F ′,K ′,K ′−1
of Uq(sl2) by

E,F,K,K−1. The abuse notations are used in the proof.
Let φ : Up(sl2) → Uq(sl2) be a bialgebra isomorphism, then we have

∆(φ(E′)) = (φ⊗ φ)(∆(E′)) = 1 ⊗ φ(E′) + φ(E′) ⊗ φ(K ′). (9)

Note that φ(K ′) is necessarily a group-like element. Therefore, φ(E′) is a skew-primitive

element in Uq(sl2).
By Theorem 5.4.1, Lemma 5.5.5, the subsequent comments in [10], and [4, Theorem

A], we can assume that

φ(K ′) = K, φ(E′) = aE + bFK + c(1 −K).

Then (9) automatically holds. Applying φ to the equation K ′E′ = p2E′K ′, we yield that

K(aE + bFK + c(1 −K)) = p2(aE + bFK + c(1 −K))K.
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Consequently, we get

0 = a(q2 − p2) = b(p2 − q−2) = c(1 − p2).

It follows that c = 0 since p is not a root of unity.
If a 6= 0, then p2 = q2 and b = 0. In this case, we get that φ(E) = aE and p = ±q.

If this is the case, we get that φ(F ) = ±a−1F, K → K, K−1 → K−1.
If b 6= 0, then p2 = q−2 and a = 0. In this case, we get that φ(E) = bFK and

p = ±q−1. Similarly, φ(F ) = ± b−1K−1E.
Conversely, if p = ±q, it is obvious that ψ : Up(sl2) ∼= Uq(sl2) defined by

ψ(E′) = E, ψ(F ′) = ±F, ψ(K ′) = K, ψ(K ′−1) = K−1

is a Hopf algebra isomorphism.
If p = ±q−1, then ψ : Up(sl2) ∼= Uq(sl2) defined by

ψ(E′) = FK, ψ(F ′) = ±K−1E, ψ(K ′) = K, ψ(K ′−1) = K−1

is a Hopf algebra isomorphism.

Let ωslp(2) be the algebra generated by E,F,K,K−1 and the relations as that of
ωslq(2) where q is replaced by p. It is a weak algebra with the same comultiplications as
ωslq(2).

Lemma 2.2. Let x ∈ Y and b 6= 0. If ∆(x) = b(1 − J) ⊗ EJ + 1 ⊗ x+ x⊗K, then

x = bE(1 − J).

Proof. Let x =
∑

s,t ξ(s, t)E
sF t(1 − J). By the assumption, we have

∆(x) =
∑

s,t

ξ(s, t)EsF t(1 − J) ⊗K +
∑

s,t

ξ(s, t)1 ⊗ EsF t(1 − J) + b(1 − J) ⊗ EJ.

On the other hand, if j > 0, then KjJ = Kj and K
j
J = K

j
. One easily sees that

∆(x) =



∑

s,t,i,j

ξ(s, t)qi(s−i)qj(t−j)

[
s

i

][
t

j

]
EiF t−jK

j
⊗ Es−iKiF j




−



∑

s,t,i,j

ξ(s, t)qi(s−i)qj(t−j)

[
s

i

][
t

j

]
EiF t−jK

j
J ⊗ Es−iKiF jJ




=



∑

s,t,j 6=0

ξ(s, t)qj(t−j)

[
t

j

]
F t−jK

j
⊗ EsF j(1 − J)




+




∑

s,t,i6=0

ξ(s, t)qi(s−i)

[
s

i

]
EiF t(1 − J) ⊗ Es−iKi





+

(
∑

s,t

ξ(s, t)F t ⊗ Es

)
−

(
∑

s,t

ξ(s, t)F tJ ⊗ EsJ

)
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Comparing the above two equality for ∆(x), all t = 0 and s = 1. Hence we can assume
that x = aE(1 − J) and we get

∆(x) = a(1 − J) ⊗ E(1 − J) + 1 ⊗ x+ x⊗K.

It follows that a = b and x = bE(1 − J).

The same argument shows that there is no element x ∈ Y such that ∆(x) = x⊗K +
1 ⊗ x+ b(1 − J) ⊗ FK and x ∈ Y where b 6= 0.

The main result of this section is as follows.

Theorem 2.3. ωslq(2) ∼= ωslp(2) as weak Hopf algebras if and only if p = ± q.

Proof. Let γ : ωslq(2) ∼= ωslp(2) be a weak Hopf algebra isomorphism. One knows
that γ sends group-likes to group-likes, now it is easy to see that γ(J) = J .

According to Lemma 1.1, ωslq(2) = W ⊕Y , W ∼= Uq(sl2) as Hopf algebras; ωslp(2) =
W ′ ⊕ Y ′, W ′ ∼= Up(sl2) as Hopf algebras, where Y , Y ′ are spanned respectively by the
same set {EiF j(1 − J) | i ≥ 0, j ≥ 0} as an ideal of ωslq(2) and ωslp(2).

Let injq : W → ωslq(2) be the inclusion defined by

J → J, EJ → EJ, FJ → FJ, K → K, K → K,

and then extend it by linearity. It is easy to see that injq is a weak Hopf algebra
injection. Indeed, injq is an algebra homomorphism. For the relation (3),

injq(K)injq(EJ) = KEJ = q2EJK = q2injq(EJ)injq(K).

The rest of (3) and the relations (4) are similar. For the relation (5),

injq(EJ)injq(FJ) − injq(FJ)injq(EJ) = (EF − FE)J =
injq(K) − injq(K)

q − q−1
.

The map injq is also a coalgebra map. Indeed,

∆(injq(EJ)) = ∆(EJ) = J ⊗ EJ + EJ ⊗K

and

(injq ⊗ injq)∆(EJ) = (injq ⊗ injq)(J ⊗ EJ + EJ ⊗K) = J ⊗ EJ + EJ ⊗K.

∆(injq(EJ)) = (injq ⊗ injq)∆(EJ).

Similarly, we have ∆(injq(X)) = (injq ⊗ injq)∆(X) where X = FJ, K, K or J . It is
easy to see that W ′ = im(γ ◦ injq) since γ(J) = J . This implies that if γ : ωslq(2) →
ωslp(2) is a weak Hopf algebra isomorphism, then Up(sl2) ∼= Uq(sl2) as Hopf algebras.
By Lemma 2.1, p = ± q± 1. However, if p = ±q−1, we must have

γ(EJ) = b(FJ)K, γ(FJ) = ±b−1K(EJ), γ(K) = K, γ(K) = K
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for some b 6= 0. If there is a way to extend it to ωslq(2) such that γ is a weak Hopf
algebra isomorphism, we assume that γ(E(1 − J)) = x, then 0 6= x ∈ Y and γ(E) =
γ(EJ +E(1− J)) = b(FJ)K + x. Since γ is a weak Hopf algebra isomorphism, we have

∆(b(FJK) + x) = (b(FJ)K + x) ⊗K + 1 ⊗ (b(FJ)K + x).

Hence, ∆(x) = x⊗K + 1 ⊗ x+ b(1 − J) ⊗ FK. It is impossible, so p = ±q.
Conversely, if p = ±q, we set

γ(E) = E, γ(F ) = ± F, γ(K) = K, γ(K) = K.

It is easy to see that γ is a weak Hopf algebra isomorphism.
The proof is completed.

Now we can determine all such isomorphisms. Indeed, if γ : ωslq(2) ∼= ωslp(2) is a
isomorphism of weak Hopf algebra, then p = ± q. Furthermore, γ◦injq is an isomorphism
of Hopf algebras between W and W ′, defined by

J → J,EJ → aEJ, FJ → ±a−1FJ,K → K, K → K

by Lemma 2.1. The map γ restricted to W must be of this form. To get the map γ, we
assume that γ(E(1−J)) = x, it is easy to see that γ(E) = aEJ+x and x ∈ Y . Since γ is a
weak Hopf algebra isomorphism, we then get that ∆(x) = 1⊗x+x⊗K+a(1−J)⊗EJ . By
Lemma 2.2, we have x = aE(1−J). Similarly, we also have γ(F (1−J)) = ±a−1F (1−J).
This implies that γ has to be J → J,E → aE, F → ±a−1F,K → K, K → K and
extended linearity.

3. The Centre of ωslq(2)

In [13], the authors introduce a new quantum algebra Uq(f(H,K)), which generalizes
the quantum group Uq(sl2). Then they obtained statements about its centre by applying
the Harish-Chandra homomorphism. In this section, we give the similar description
about the centre of ωslq(2). Recall that

P [K, K] =




a0J +
∑

i>0

aiK
i +
∑

j>0

bjK
j

∣∣∣∣ J = KK = KK, K = KJ, JK = J




 .

We set K0 = J = K
0

for convenience.
Keeping all notations as the previous sections. Let Zq denote the centre of W and

Zω the centre of ωslq(2). To state our main result, several lemmas are needed as follows.

Lemma 3.1. Y ⊆ Zω.

Proof. It is noticed that

Y = {EiF j(1 − J) | i ≥ 0, j ≥ 0}.
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Since

E(EiF j(1 − J)) = Ei(F jE + [j]F j−1 q
−(j−1)K − qj−1K

q − q−1
)(1 − J)

= EiF j(1 − J)E,

F (EiF j(1 − J)) = (EiF − [i]Ei−1 q
i−1K − q−(i−1)K

q − q−1
)F j(1 − J)

= EiF j(1 − J)F,

K(EiF j(1 − J)) = q2i−2jEiF j(1 − J)K = 0 = EiF j(1 − J)K,

K(EiF j(1 − J)) = q2i−2jEiF j(1 − J)K = 0 = EiF j(1 − J)K.

The result follows.

Let

Cq = EFJ +
q−1K + qK

(q − q−1)2
= FEJ +

qK + q−1K

(q − q−1)2
. (10)

It is called the J-quantum Casimir element.
Let WK be the sub-algebra of W consisting of all elements commuting with K. For

any x ∈WK , then xK = Kx and xJ = Jx = x. It follows that

KJx = KxJ = JxK = xJK.

Hence Kx = xK and the elements of WK commute with K.
Let I = WE ∩WK , it is a left ideal of WK .
The following three lemmas are very similar to [6, Lemma VI.4.2-Lemma VI. 4.3] and

their proofs are more or less the same.

Lemma 3.2. The element Cq ∈ Zω.

Lemma 3.3. Any element of W belongs to WK if and only if it is of the form∑
i≥0

F iPiE
i, where P0, P1, · · · are elements of P [K, K].

Lemma 3.4. We have I = FW ∩WK and W k = P [K, K] ⊕ I.

It results from I = FW ∩WK that I is a two-sided ideal and that the projection
ϕ from WK onto P [K, K] is a morphism of algebras. The map ϕ is called the Harish-
Chandra homomorphism. It permits one to express the action of the centre Zq of W on
a highest weight module.

The following lemmas are similar to [6, Lemma VI.4.4-Lemma VI. 4.7], but details
in the proofs have to be changed to suit for our cases. For completeness, we write them
down here.

Lemma 3.5. Let V be a highest weight ωslq(2)-module with highest weight λ. Then,

for any central element z of W and any v ∈ V , we have zv = ϕ(z)(λ, λ)v, where ϕ(z)
is element of P [K, K] and that ϕ(z)(λ, λ) is its value at λ, λ.
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Proof. Let v0 be a highest weight vector generating V and z is a central element of
W , the element z can be written in the form

z = ϕ(z) +
∑

i>0

F iPiE
i.

Since Ev0 = 0 andKv0 = λv0, Kv0 = λv0, we get zv0 = ϕ(z)(λ, λ)v0. If v is an arbitrary
element of V , we have v = xv0 for some x ∈ ωslq(2). It is noticed that x = x1 +x2 where
x1 ∈ W and x2 ∈ Y . Since YW = WY = 0, zx2 = x2z = 0 and zx = xz. Hence

zv = zxv0 = xzv0 = ϕ(z)(λ, λ)xv0 = ϕ(z)(λ, λ)v.

The result follows.

We now consider the restriction of the Harish-Chandra homomorphism to Zq.

Lemma 3.6. Let z ∈ Zq and if ϕ(z) = 0, then z = 0.

Proof. Let z be an element in the centre of W such that ϕ(z) = 0. Assume z non-

zero, it can be written as z =
l∑

i=k

F iPiE
i where 0 < k ≤ l are integers and Pk, · · · , Pl are

non-zero elements of P [K, K]. Consider the Verma module V (λ) whose highest weight is
neither a power of q or 0 (therefore, λ = λ−1). The relations (6)-(8) show that Evp = 0 if
and only if p = 0. We apply z to the vector vk of V (λ), on one hand, Lemma 3.6 implies
that zvk = ϕ(z)(λ, λ) = 0, on the other hand, we get zvk = F kPkE

kvk = cPk(λ, λ)vk

where c is a non-zero constant. It follows that Pk(λ, λ) = 0. As a consequence, we have
a non-zero polynomial with infinitely many roots. It is a contradiction.

For any element Q of P [K,K], denoted by Q̃ the polynomial defined by the change
of variable Q̃(λ, λ) = Q(q−1λ, qλ).

Lemma 3.7. For any element z in Zq, we have ϕ̃(z)(λ, λ) = ϕ̃(z)(λ, λ).

Proof. If λ = 0, then λ = 0, the result is obvious. The following is under the
assumption that λ 6= 0. Therefore, λ = λ−1. For any integer n > 0 consider the Verma
module V (qn−1). By the formula (7), we have

Evn =
q−(n−1)qn−1 − qn−1q−(n−1)

q − q−1
vn−1 = 0.

Thus, vn is a highest weight vector of weight qn−1−2n = q−n−1. By Lemma 3.5, a
central element z acts on the module generated by vn as the multiplication by the scalar
ϕ(z)(q−n−1, qn+1), but since vn is in V (qn−1), then

zvn = ϕ(z)(qn−1, q−n+1)vn.

In other words, we have

ϕ̃(z)(qn, q−n) = ϕ̃(z)(q−n, qn).
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The lemma follows.

Lemma 3.8. Any polynomial of P [K,K] satisfying the relation Q(λ, λ) = Q(λ, λ) is

a polynomial in k[K +K].

Proof. We proceed by induction on the degree of the polynomial on K. If the degree
is 0, the statement holds trivially. Suppose that the lemma is proved for all degrees < n

and let Q be element of degree n for K such that Q(λ, λ) = Q(λ, λ).
Then we may write Q in the form

Q = c(Kn +K
n
) + (terms of degree < n).

Now
Kn +K

n
= (K +K)n + (terms of degree < n),

where we set (K +K)0 = J , J2 = J = KK. One concludes by applying the induction
hypothesis.

We are ready to prove our main theorem.

Theorem 3.9. When q is not a root of unity, the centre of ωslq(2) is Zq ⊕ Y ,

where Zq is a polynomial algebra generated by the element Cq and J . The restriction

of the Harish-Chandra homomorphism to Zq is an isomorphism onto the sub-algebra of

P [K, K] generated by qK + q−1K.

Proof. We have already known that the restriction of ϕ to the Zq is injective by
Lemma 3.6. We are left to determine its image. By Lemma 3.7 and Lemma 3.8, the
latter is contained in the sub-algebra of P [K, K] generated by qK + q−1K. Consider
the central element Cq defined by (10), we know that

ϕ(Cq) =
1

(q − q−1)2
(qK + q−1K), ϕ(KK) = KK,

which proves that the image of Zq is the whole sub-algebra and that Cq and J generate
Zq. The latter is a polynomial algebra generated by Cq and J . By Lemma 1.1, ωslq(2) =
W ⊕ Y . It follows that Zω = Zq ⊕ Y .
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