THE ISOMORPHISMS AND THE CENTER OF WEAK QUANTUM ALGEBRAS $\boldsymbol{\omega} s l_{q}(2)$

HONG WANG AND SHILIN YANG

Abstract

The aim of this paper is to describe the centre as well as the structure of $\omega s l_{q}(2)$ by applying the deformation of Harish-Chandra homomorphism.

Introduction

Throughout, the basic field is the complex number field \mathbb{C}. All algebras, modules and vector spaces are over \mathbb{C} unless otherwise specified. Let q be a parameter which is not a root of unity.
F. Li and S. Duplij [9] constructed a quantum algebra $\omega s l_{q}(2)$. By definition, the quantum algebra $\omega s l_{q}(2)$ is generated by the four variables E, F, K, \bar{K} with the relations:

$$
\begin{align*}
& K \bar{K}=\bar{K} K=J \tag{1}\\
& J K=K, \bar{K} J=\bar{K} \tag{2}\\
& K E=q^{2} E K, \bar{K} E=q^{-2} E \bar{K} \tag{3}\\
& K F=q^{-2} F K, \bar{K} F=q^{2} F \bar{K} \tag{4}\\
& E F-F E=\frac{K-\bar{K}}{q-q^{-1}} \tag{5}
\end{align*}
$$

This is an interesting example of weak Hopf algebras in the sense of [7]. In the paper [9], the authors gave a detail description of the structure theory of $\omega s l_{q}(2)$, such as its basis, group-like elements, regular quasi-R matrix and so on.

As a continuation of the paper [9], we will study the isomorphisms among these weak quantum algebras and their centre. Several people have considered the problems of Hopf algebra automorphisms. For example, [1, 4, 11]. In [3] the isomorphisms among quantum algebras $U_{r, s}\left(s l_{n}\right)$ with different parameters r, s were investigated. However, nobody has considered the same problem for the weak quantum algebra $\omega s l_{p}(2)$. By applying the idea of [3] and some known facts, we can yield the group of automorphisms of weak Hopf algebra $\omega s l_{q}(2)$. It is shown that $\varphi: \omega s l_{q}(2) \rightarrow \omega s l_{p}(2)$ is a weak Hopf

[^0]algebra isomorphism if and only if $p= \pm q$. If this is the case, we will determine all such isomorphisms. Let $U_{q}\left(s l_{2}\right)$ be the quantum group corresponding to three dimensional semisimple Lie algebra $s l_{2}$. As is known, one of many beautiful results for $U_{q}\left(s l_{2}\right)$ is that the centre of $U_{q}\left(s l_{2}\right)$ can be described by the Harish-Chandra homomorphism (see [6]). Similar to the case of $U_{q}\left(s l_{2}\right)$, we would like to study the centre of $\omega s l_{q}(2)$ and give the analogous statements by applying the modification of Harish-Chandra homomorphism. Let $Y=\left\{E^{i} F^{j}(1-J) \mid i \geq 0, j \geq 0\right\}$,
$$
C_{q}=E F J+\frac{q^{-1} K+q \bar{K}}{\left(q-q^{-1}\right)^{2}}=F E J+\frac{q K+q^{-1} \bar{K}}{\left(q-q^{-1}\right)^{2}}
$$
and
$$
P[K, \bar{K}]=\left\{\sum_{i \geq 0} a_{i} K^{i}+\sum_{j>0} b_{j} \bar{K}^{j} \mid J=K \bar{K}=\bar{K} K, K=K J, J \bar{K}=J\right\}
$$
where we set $K^{0}=\bar{K}^{0}=J, a_{i}, b_{j} \in \mathbb{C}(i \geq 0, j>0)$. Let Z_{q} be a polynomial algebra generated by the element C_{q} and J. It is shown that the centre of $\omega s l_{q}(2)$ is $Z_{q} \oplus Y$ and the restriction of the Harish-Chandra homomorphism to Z_{q} is an isomorphism onto the sub-algebra of $P[K, \bar{K}]$ generated by $q K+q^{-1} \bar{K}$.

This paper is organized as follows. Some basic facts and concepts are reviewed in Section 1. Then we attempt to get the isomorphism theorem for $\omega s l_{q}(2)$ in Section 2. Finally we devote to get the statements about the centre of $\omega s l_{q}(2)$ in the last section.

1. Preliminaries

There are at least two generalizations of a Hopf algebra, which are called weak Hopf algebras. One of them was introduced and studied in [7, 8]. In this sense the weak Hopf algebra $(H, \mu, \eta, \Delta, \varepsilon)$ is just both bialgebra and there exists a so-called weak antipode $T \in \operatorname{Hom}_{k}(H, H)$ of H such that $T * I * T=T, I * T * I=I$, where I is an identity map of H. Another definition of a weak Hopf algebra was introduced in [2]. The earlier proposals of face algebras [5], generalized Kac algebras [12] are weak Hopf algebras in this sense. However, the above two definitions of weak Hopf algebras are not included in each other.

One knows that the quantum algebra $\omega s l_{q}(2)$ is a weak Hopf algebra in the sense of [7]. The comultiplication Δ, the counit ε and the weak antipode T are given by the following formulas

$$
\begin{aligned}
& \Delta(E)=1 \otimes E+E \otimes K, \Delta(F)=F \otimes 1+\bar{K} \otimes F \\
& \Delta(K)=K \otimes K, \Delta(\bar{K})=\bar{K} \otimes \bar{K} \\
& \varepsilon(E)=\varepsilon(F)=0, \varepsilon(K)=\varepsilon(\bar{K})=1 \\
& T(E)=-E \bar{K}, T(F)=-K F, T(K)=\bar{K}, T(\bar{K})=K
\end{aligned}
$$

It is noticed that $J \neq 0$. If $J=1, \omega s l_{q}(2)$ is isomorphic to $U_{q}\left(s l_{2}\right)$. Recall that the quantum algebra $U_{q}\left(s l_{2}\right)$, is generated by $E^{\prime}, F^{\prime}, K^{\prime}, K^{\prime-1}$ with the relations:

$$
\begin{aligned}
& K^{\prime-1} K^{\prime}=K^{\prime} K^{\prime-1}=1 \\
& K^{\prime} E^{\prime} K^{\prime-1}=q^{2} E^{\prime}, K^{\prime} F^{\prime} K^{\prime-1}=q^{-2} F^{\prime} \\
& E^{\prime} F^{\prime}-F^{\prime} E^{\prime}=\frac{K^{\prime}-K^{\prime-1}}{q-q^{-1}}
\end{aligned}
$$

$U_{q}\left(s l_{2}\right)$ is of Hopf algebra structure, the comulitplication and antipode are

$$
\begin{aligned}
& \Delta\left(E^{\prime}\right)=1 \otimes E^{\prime}+E^{\prime} \otimes K^{\prime}, \Delta\left(F^{\prime}\right)=F^{\prime} \otimes 1+K^{\prime-1} \otimes F^{\prime} \\
& \Delta\left(K^{\prime}\right)=K^{\prime} \otimes K^{\prime}, \Delta\left(K^{\prime}\right)=K^{\prime} \otimes K^{\prime} \\
& \varepsilon\left(E^{\prime}\right)=\varepsilon\left(F^{\prime}\right)=0, \varepsilon\left(K^{\prime}\right)=\varepsilon\left(K^{\prime-1}\right)=1 \\
& S\left(E^{\prime}\right)=-E^{\prime} K^{\prime-1}, S(F)=-K^{\prime-1} F, S\left(K^{\prime}\right)=K^{\prime-1}, S\left(K^{\prime-1}\right)=K^{\prime}
\end{aligned}
$$

Accordingly, we always assume that $J \neq 0$ and $J \neq 1$.
Let $W=\omega s l_{q}(2) J$ and $Y=\omega s l_{q}(2)(1-J)$.
Lemma 1.1. ([9, Theorem 4]) As ideals of $\omega s l_{q}(2)$ we have $\omega s l_{q}(2)=W \oplus Y$. Moreover, $W \cong U_{q}\left(s l_{2}\right)$ as Hopf algebras. The basis of W is

$$
\left\{E^{i} F^{j} K^{l}, E^{i} F^{j} \bar{K}^{m}, E^{i} F^{j} J \mid i \geq 0, j \geq 0, l>0, m>0\right\}
$$

and the basis of Y is

$$
\left\{E^{i} F^{j}(1-J) \mid i \geq 0, j \geq 0\right\}
$$

Proof. We skecth the proof as follows.
It is easy to see that J is a central idempotent. Therefore, $\omega s l_{q}(2) J$ as well as $\omega s l_{q}(2)(1-J)$ are ideals of $\omega s l_{q}(2)$. Hence,

$$
\omega s l_{q}(2)=\omega s l_{q}(2) J \oplus \omega s l_{q}(2)(1-J)
$$

as ideals. One can see that W is of the basis

$$
\left\{E^{i} F^{j} K^{l}, E^{i} F^{j} \bar{K}^{m}, E^{i} F^{j} J \mid i \geq 0, j \geq 0, l>0, m>0\right\}
$$

and Y has the basis $\left\{E^{i} F^{j}(1-J) \mid i \geq 0, j \geq 0\right\}$. In fact, W is a Hopf algebra (the identity of W is J), the co-multiplication Δ is

$$
\begin{aligned}
\Delta(E J) & =J \otimes E J+E J \otimes K \\
\Delta(F J) & =F J \otimes J+\bar{K} \otimes F J \\
\Delta(K) & =K \otimes K, \Delta(\bar{K})=\bar{K} \otimes \bar{K}
\end{aligned}
$$

The counit ε is

$$
\varepsilon(E J)=\varepsilon(F J)=0, \varepsilon(K)=\varepsilon(\bar{K})=1
$$

and the antipode is

$$
T(E J)=-E \bar{K}, T(F J)=-K F, T(K)=\bar{K}, T(\bar{K})=K
$$

Now let ρ be the algebra morphism from $U_{q}\left(s l_{2}\right)$ to W subjecting to

$$
\rho\left(E^{\prime}\right)=E J, \rho\left(F^{\prime}\right)=F J, \rho\left(K^{\prime}\right)=K, \rho\left(K^{\prime-1}\right)=\bar{K}
$$

It is straightforward to see that ρ is a Hopf algebra isomorphism.
Let $[m]=\frac{q^{m}-q^{-m}}{q-q^{-1}}$ for $m \geq 0$ and

$$
[m]!=[1][2] \cdots[m],[0]!=1,\left[\begin{array}{l}
n \\
t
\end{array}\right]=\frac{[n]!}{[t]![n-t]!}
$$

We have

$$
E F^{m}=F^{m} E+[m] F^{m-1} \frac{q^{-(m-1)} K-q^{m-1} \bar{K}}{q-q^{-1}}
$$

Let V be a $\omega s l_{q}(2)$-module and $0 \neq v \in V$. If $K v=\lambda v$ and $\bar{K} v=\bar{\lambda} v$ for $\lambda, \bar{\lambda} \in \mathbb{C}$, we can conclude that if $\lambda \neq 0, \bar{\lambda}=\lambda^{-1}$ and if $\lambda=0, \bar{\lambda}=0$. We fix such a number $\bar{\lambda}$ which is corresponding to λ. We denote by V^{λ} the subspace of all vectors v in V such that $K v=\lambda v$. The scalar λ is called a weight of V if $V^{\lambda} \neq 0$. An element $v \neq 0$ of V is said to be a highest weight vector of weight λ if $E v=0$ and $K v=\lambda v$. A $\omega s l_{q}(2)$-module is said to be a highest weight module of highest weight λ if it is generated by a highest weight vector of λ.

Given a $\lambda \in \mathbb{C}$, we consider an infinite-dimensional vector space $V(\lambda)$ with basis $\left\{v_{i}\right\}_{i \in \mathbb{N}}$. For $p \geq 0$, we set

$$
\begin{align*}
& K v_{p}=\lambda q^{-2 p} v_{p}, \bar{K} v_{p}=\bar{\lambda} q^{2 p} v_{p} \tag{6}\\
& E v_{p}=\frac{q^{-(p-1)} \lambda-q^{p-1} \bar{\lambda}}{q-q^{-1}} v_{p-1}, \tag{7}\\
& F v_{p-1}=[p] v_{p}, E v_{0}=0 \tag{8}
\end{align*}
$$

Lemma 1.2. Relations (6)-(8) define a $\omega \operatorname{sl}_{q}(2)$-modules structure on $V(\lambda)$. The element v_{0} generates $V(\lambda)$ as a $\omega s l_{q}(2)$-module and is a highest weight vector of weight λ such that $V(\lambda)$ is the highest weight module.

Proof. Let $l=\lambda \bar{\lambda}$. It is noticed that $\lambda \neq 0$ if and only if $\bar{\lambda} \neq 0$. Also if $\lambda \neq 0$ then $l=1$ and if $\lambda=0$, then $l=0$. Therefore, either $\lambda \neq 0$ or $\lambda=0$, we have $\lambda^{2} \bar{\lambda}=\lambda$ and
$\lambda \bar{\lambda}^{2}=\bar{\lambda}$. Immediate computations yield

$$
\begin{aligned}
\bar{K} K v_{p} & =K \bar{K} v_{p}=l v_{p}, K \bar{K} K v_{p}=K v_{p}, \bar{K} K \bar{K} v_{p}=\bar{K} v_{p}, \\
K E v_{p} & =q^{2} E K v_{p}, \bar{K} E v_{p}=q^{-2} E \bar{K} v_{p}, \\
K F v_{p} & =q^{-2} F K v_{p}, \bar{K} F v_{p}=q^{2} F \bar{K} v_{p}, \\
{[E, F] v_{p} } & =\left([p+1] \frac{q^{-p} \lambda-q^{p} \bar{\lambda}}{q-q^{-1}}-[p] \frac{q^{-(p-1)} \lambda-q^{p-1} \bar{\lambda}}{q-q^{-1}}\right) v_{p} \\
& =\frac{q^{-2 p} \lambda-q^{2 p} \bar{\lambda}}{q-q^{-1}} v_{p}=\frac{K-\bar{K}}{q-q^{-1}} v_{p} .
\end{aligned}
$$

This shows that the relations (6)-(8) define a $\omega s l_{q}(2)$-module structure on $V(\lambda)$. On the other hand, we have $K v_{0}=\lambda v_{0}$ and $E v_{0}=0$, which means that v_{0} is a highest weight vector of weight λ. Finally, (8) implies that $v_{p}=\frac{1}{[p]!} F^{p} v_{0}$ for all p, which proves that $V(\lambda)$ is generated by v_{0}.

The highest weight $\omega s l_{q}(2)$-module $V(\lambda)$ is called the Verma module of highest weight λ. We will apply the Verma module $V(\lambda)$ to give a description of the centre of $\omega s l_{q}(2)$.

2. Isomorphisms Among Weak Quantum Algebras

We now investigate the isomorphisms among weak quantum algebras.
Let $U_{p}\left(s l_{2}\right)$ be the algebra generated by $E^{\prime}, F^{\prime}, K^{\prime}, K^{\prime-1}$ and the relations as that of $U_{q}\left(s l_{2}\right)$ where q is replaced by p. It is also a Hopf algebra with the same comultiplications as $U_{q}\left(s l_{2}\right)$.

The following lemma gives a condition that $U_{p}\left(s l_{2}\right) \cong U_{q}\left(s l_{2}\right)$ as Hopf algebras.
Lemma 2.1. $U_{p}\left(s l_{2}\right) \cong U_{q}\left(s l_{2}\right)$ as Hopf algebras if and only if $p= \pm q^{ \pm 1}$.
Proof. For convenience, we replace the generators $E^{\prime}, F^{\prime}, K^{\prime}, K^{\prime-1}$ of $U_{q}\left(s l_{2}\right)$ by E, F, K, K^{-1}. The abuse notations are used in the proof.

Let $\phi: U_{p}\left(s l_{2}\right) \rightarrow U_{q}\left(s l_{2}\right)$ be a bialgebra isomorphism, then we have

$$
\begin{equation*}
\Delta\left(\phi\left(E^{\prime}\right)\right)=(\phi \otimes \phi)\left(\Delta\left(E^{\prime}\right)\right)=1 \otimes \phi\left(E^{\prime}\right)+\phi\left(E^{\prime}\right) \otimes \phi\left(K^{\prime}\right) \tag{9}
\end{equation*}
$$

Note that $\phi\left(K^{\prime}\right)$ is necessarily a group-like element. Therefore, $\phi\left(E^{\prime}\right)$ is a skew-primitive element in $U_{q}\left(s l_{2}\right)$.

By Theorem 5.4.1, Lemma 5.5.5, the subsequent comments in [10], and [4, Theorem A], we can assume that

$$
\phi\left(K^{\prime}\right)=K, \phi\left(E^{\prime}\right)=a E+b F K+c(1-K)
$$

Then (9) automatically holds. Applying ϕ to the equation $K^{\prime} E^{\prime}=p^{2} E^{\prime} K^{\prime}$, we yield that

$$
K(a E+b F K+c(1-K))=p^{2}(a E+b F K+c(1-K)) K
$$

Consequently, we get

$$
0=a\left(q^{2}-p^{2}\right)=b\left(p^{2}-q^{-2}\right)=c\left(1-p^{2}\right)
$$

It follows that $c=0$ since p is not a root of unity.
If $a \neq 0$, then $p^{2}=q^{2}$ and $b=0$. In this case, we get that $\phi(E)=a E$ and $p= \pm q$. If this is the case, we get that $\phi(F)= \pm a^{-1} F, K \rightarrow K, K^{-1} \rightarrow K^{-1}$.

If $b \neq 0$, then $p^{2}=q^{-2}$ and $a=0$. In this case, we get that $\phi(E)=b F K$ and $p= \pm q^{-1}$. Similarly, $\phi(F)= \pm b^{-1} K^{-1} E$.

Conversely, if $p= \pm q$, it is obvious that $\psi: U_{p}\left(s l_{2}\right) \cong U_{q}\left(s l_{2}\right)$ defined by

$$
\psi\left(E^{\prime}\right)=E, \psi\left(F^{\prime}\right)= \pm F, \psi\left(K^{\prime}\right)=K, \psi\left(K^{\prime-1}\right)=K^{-1}
$$

is a Hopf algebra isomorphism.
If $p= \pm q^{-1}$, then $\psi: U_{p}\left(s l_{2}\right) \cong U_{q}\left(s l_{2}\right)$ defined by

$$
\psi\left(E^{\prime}\right)=F K, \psi\left(F^{\prime}\right)= \pm K^{-1} E, \psi\left(K^{\prime}\right)=K, \psi\left(K^{\prime-1}\right)=K^{-1}
$$

is a Hopf algebra isomorphism.
Let $\omega s l_{p}(2)$ be the algebra generated by E, F, K, K^{-1} and the relations as that of $\omega s l_{q}(2)$ where q is replaced by p. It is a weak algebra with the same comultiplications as $\omega s l_{q}(2)$.

Lemma 2.2. Let $x \in Y$ and $b \neq 0$. If $\Delta(x)=b(1-J) \otimes E J+1 \otimes x+x \otimes K$, then $x=b E(1-J)$.

Proof. Let $x=\sum_{s, t} \xi(s, t) E^{s} F^{t}(1-J)$. By the assumption, we have

$$
\Delta(x)=\sum_{s, t} \xi(s, t) E^{s} F^{t}(1-J) \otimes K+\sum_{s, t} \xi(s, t) 1 \otimes E^{s} F^{t}(1-J)+b(1-J) \otimes E J .
$$

On the other hand, if $j>0$, then $K^{j} J=K^{j}$ and $\bar{K}^{j} J=\bar{K}^{j}$. One easily sees that

$$
\begin{aligned}
\Delta(x)= & \left(\sum_{s, t, i, j} \xi(s, t) q^{i(s-i)} q^{j(t-j)}\left[\begin{array}{l}
s \\
i
\end{array}\right]\left[\begin{array}{l}
t \\
j
\end{array}\right] E^{i} F^{t-j} \bar{K}^{j} \otimes E^{s-i} K^{i} F^{j}\right) \\
& -\left(\sum_{s, t, i, j} \xi(s, t) q^{i(s-i)} q^{j(t-j)}\left[\begin{array}{c}
s \\
i
\end{array}\right]\left[\begin{array}{l}
t \\
j
\end{array}\right] E^{i} F^{t-j} \bar{K}^{j} J \otimes E^{s-i} K^{i} F^{j} J\right) \\
= & \left(\sum_{s, t, j \neq 0} \xi(s, t) q^{j(t-j)}\left[\begin{array}{c}
t \\
j
\end{array}\right] F^{t-j} \bar{K}^{j} \otimes E^{s} F^{j}(1-J)\right) \\
& +\left(\sum_{s, t, i \neq 0} \xi(s, t) q^{i(s-i)}\left[\begin{array}{c}
s \\
i
\end{array}\right] E^{i} F^{t}(1-J) \otimes E^{s-i} K^{i}\right) \\
& +\left(\sum_{s, t} \xi(s, t) F^{t} \otimes E^{s}\right)-\left(\sum_{s, t} \xi(s, t) F^{t} J \otimes E^{s} J\right)
\end{aligned}
$$

Comparing the above two equality for $\Delta(x)$, all $t=0$ and $s=1$. Hence we can assume that $x=a E(1-J)$ and we get

$$
\Delta(x)=a(1-J) \otimes E(1-J)+1 \otimes x+x \otimes K
$$

It follows that $a=b$ and $x=b E(1-J)$.
The same argument shows that there is no element $x \in Y$ such that $\Delta(x)=x \otimes K+$ $1 \otimes x+b(1-J) \otimes F K$ and $x \in Y$ where $b \neq 0$.

The main result of this section is as follows.

Theorem 2.3. $\omega s l_{q}(2) \cong \omega s l_{p}(2)$ as weak Hopf algebras if and only if $p= \pm q$.
Proof. Let $\gamma: \omega s l_{q}(2) \cong \omega s l_{p}(2)$ be a weak Hopf algebra isomorphism. One knows that γ sends group-likes to group-likes, now it is easy to see that $\gamma(J)=J$.

According to Lemma 1.1, $\omega s l_{q}(2)=W \oplus Y, W \cong U_{q}\left(s l_{2}\right)$ as Hopf algebras; $\omega s l_{p}(2)=$ $W^{\prime} \oplus Y^{\prime}, W^{\prime} \cong U_{p}\left(s l_{2}\right)$ as Hopf algebras, where Y, Y^{\prime} are spanned respectively by the same set $\left\{E^{i} F^{j}(1-J) \mid i \geq 0, j \geq 0\right\}$ as an ideal of $\omega s l_{q}(2)$ and $\omega s l_{p}(2)$.

Let $\operatorname{inj}_{q}: W \rightarrow \omega s l_{q}(2)$ be the inclusion defined by

$$
J \rightarrow J, E J \rightarrow E J, F J \rightarrow F J, K \rightarrow K, \bar{K} \rightarrow \bar{K}
$$

and then extend it by linearity. It is easy to see that inj_{q} is a weak Hopf algebra injection. Indeed, inj_{q} is an algebra homomorphism. For the relation (3),

$$
\operatorname{inj}_{q}(K) \operatorname{inj}_{q}(E J)=K E J=q^{2} E J K=q^{2} \operatorname{inj}_{q}(E J) \operatorname{inj}_{q}(K)
$$

The rest of (3) and the relations (4) are similar. For the relation (5),

$$
\operatorname{inj}_{q}(E J) \operatorname{inj}_{q}(F J)-\operatorname{inj}_{q}(F J) \operatorname{inj}_{q}(E J)=(E F-F E) J=\frac{\operatorname{inj}_{q}(K)-\operatorname{inj}_{q}(\bar{K})}{q-q^{-1}} .
$$

The map inj_{q} is also a coalgebra map. Indeed,

$$
\Delta\left(\operatorname{inj}_{q}(E J)\right)=\Delta(E J)=J \otimes E J+E J \otimes K
$$

and

$$
\begin{gathered}
\left(\operatorname{inj}_{q} \otimes \operatorname{inj}_{q}\right) \Delta(E J)=\left(\operatorname{inj}_{q} \otimes \operatorname{inj}_{q}\right)(J \otimes E J+E J \otimes K)=J \otimes E J+E J \otimes K . \\
\Delta\left(\operatorname{inj}_{q}(E J)\right)=\left(\operatorname{inj}_{q} \otimes \operatorname{inj}_{q}\right) \Delta(E J) .
\end{gathered}
$$

Similarly, we have $\Delta\left(\operatorname{inj}_{q}(X)\right)=\left(\operatorname{inj}_{q} \otimes \operatorname{inj}_{q}\right) \Delta(X)$ where $X=F J, K, \bar{K}$ or J. It is easy to see that $W^{\prime}=\operatorname{im}\left(\gamma \circ \operatorname{inj}_{q}\right)$ since $\gamma(J)=J$. This implies that if $\gamma: \omega s l_{q}(2) \rightarrow$ $\omega s l_{p}(2)$ is a weak Hopf algebra isomorphism, then $U_{p}\left(s l_{2}\right) \cong U_{q}\left(s l_{2}\right)$ as Hopf algebras. By Lemma 2.1, $p= \pm q^{ \pm 1}$. However, if $p= \pm q^{-1}$, we must have

$$
\gamma(E J)=b(F J) K, \gamma(F J)= \pm b^{-1} \bar{K}(E J), \gamma(K)=K, \gamma(\bar{K})=\bar{K}
$$

for some $b \neq 0$. If there is a way to extend it to $\omega s l_{q}(2)$ such that γ is a weak Hopf algebra isomorphism, we assume that $\gamma(E(1-J))=x$, then $0 \neq x \in Y$ and $\gamma(E)=$ $\gamma(E J+E(1-J))=b(F J) K+x$. Since γ is a weak Hopf algebra isomorphism, we have

$$
\Delta(b(F J K)+x)=(b(F J) K+x) \otimes K+1 \otimes(b(F J) K+x) .
$$

Hence, $\Delta(x)=x \otimes K+1 \otimes x+b(1-J) \otimes F K$. It is impossible, so $p= \pm q$.
Conversely, if $p= \pm q$, we set

$$
\gamma(E)=E, \gamma(F)= \pm F, \gamma(K)=K, \gamma(\bar{K})=\bar{K}
$$

It is easy to see that γ is a weak Hopf algebra isomorphism.
The proof is completed.
Now we can determine all such isomorphisms. Indeed, if $\gamma: \omega s l_{q}(2) \cong \omega s l_{p}(2)$ is a isomorphism of weak Hopf algebra, then $p= \pm q$. Furthermore, $\gamma \circ \operatorname{inj}_{q}$ is an isomorphism of Hopf algebras between W and W^{\prime}, defined by

$$
J \rightarrow J, E J \rightarrow a E J, F J \rightarrow \pm a^{-1} F J, K \rightarrow K, \bar{K} \rightarrow \bar{K}
$$

by Lemma 2.1. The map γ restricted to W must be of this form. To get the map γ, we assume that $\gamma(E(1-J))=x$, it is easy to see that $\gamma(E)=a E J+x$ and $x \in Y$. Since γ is a weak Hopf algebra isomorphism, we then get that $\Delta(x)=1 \otimes x+x \otimes K+a(1-J) \otimes E J$. By Lemma 2.2, we have $x=a E(1-J)$. Similarly, we also have $\gamma(F(1-J))= \pm a^{-1} F(1-J)$. This implies that γ has to be $J \rightarrow J, E \rightarrow a E, F \rightarrow \pm a^{-1} F, K \rightarrow K, \bar{K} \rightarrow \bar{K}$ and extended linearity.

3. The Centre of $\omega s l_{q}(2)$

In [13], the authors introduce a new quantum algebra $U_{q}(f(H, K))$, which generalizes the quantum group $U_{q}\left(s l_{2}\right)$. Then they obtained statements about its centre by applying the Harish-Chandra homomorphism. In this section, we give the similar description about the centre of $\omega s l_{q}(2)$. Recall that

$$
P[K, \bar{K}]=\left\{a_{0} J+\sum_{i>0} a_{i} K^{i}+\sum_{j>0} b_{j} \bar{K}^{j} \mid J=K \bar{K}=\bar{K} K, K=K J, J \bar{K}=J\right\} .
$$

We set $K^{0}=J=\bar{K}^{0}$ for convenience.
Keeping all notations as the previous sections. Let Z_{q} denote the centre of W and Z_{ω} the centre of $\omega s l_{q}(2)$. To state our main result, several lemmas are needed as follows.

Lemma 3.1. $Y \subseteq Z_{\omega}$.
Proof. It is noticed that

$$
Y=\left\{E^{i} F^{j}(1-J) \mid i \geq 0, j \geq 0\right\}
$$

Since

$$
\begin{aligned}
E\left(E^{i} F^{j}(1-J)\right) & =E^{i}\left(F^{j} E+[j] F^{j-1} \frac{q^{-(j-1)} K-q^{j-1} \bar{K}}{q-q^{-1}}\right)(1-J) \\
& =E^{i} F^{j}(1-J) E, \\
F\left(E^{i} F^{j}(1-J)\right) & =\left(E^{i} F-[i] E^{i-1} \frac{q^{i-1} K-q^{-(i-1)} \bar{K}}{q-q^{-1}}\right) F^{j}(1-J) \\
& =E^{i} F^{j}(1-J) F, \\
K\left(E^{i} F^{j}(1-J)\right) & =q^{2 i-2 j} E^{i} F^{j}(1-J) K=0=E^{i} F^{j}(1-J) K, \\
\bar{K}\left(E^{i} F^{j}(1-J)\right) & =q^{2 i-2 j} E^{i} F^{j}(1-J) \bar{K}=0=E^{i} F^{j}(1-J) \bar{K} .
\end{aligned}
$$

The result follows.

Let

$$
\begin{equation*}
C_{q}=E F J+\frac{q^{-1} K+q \bar{K}}{\left(q-q^{-1}\right)^{2}}=F E J+\frac{q K+q^{-1} \bar{K}}{\left(q-q^{-1}\right)^{2}} . \tag{10}
\end{equation*}
$$

It is called the J-quantum Casimir element.
Let W^{K} be the sub-algebra of W consisting of all elements commuting with K. For any $x \in W^{K}$, then $x K=K x$ and $x J=J x=x$. It follows that

$$
\bar{K} J x=\bar{K} x J=J x \bar{K}=x J \bar{K}
$$

Hence $\bar{K} x=x \bar{K}$ and the elements of W^{K} commute with \bar{K}.
Let $I=W E \cap W^{K}$, it is a left ideal of W^{K}.
The following three lemmas are very similar to [6, Lemma VI.4.2-Lemma VI. 4.3] and their proofs are more or less the same.

Lemma 3.2. The element $C_{q} \in Z_{\omega}$.
Lemma 3.3. Any element of W belongs to W^{K} if and only if it is of the form $\sum_{i \geq 0} F^{i} P_{i} E^{i}$, where P_{0}, P_{1}, \cdots are elements of $P[K, \bar{K}]$.

Lemma 3.4. We have $I=F W \cap W^{K}$ and $W^{k}=P[K, \bar{K}] \oplus I$.
It results from $I=F W \cap W^{K}$ that I is a two-sided ideal and that the projection φ from W^{K} onto $P[K, \bar{K}]$ is a morphism of algebras. The map φ is called the HarishChandra homomorphism. It permits one to express the action of the centre Z_{q} of W on a highest weight module.

The following lemmas are similar to [6, Lemma VI.4.4-Lemma VI. 4.7], but details in the proofs have to be changed to suit for our cases. For completeness, we write them down here.

Lemma 3.5. Let V be a highest weight $\omega s l_{q}(2)$-module with highest weight λ. Then, for any central element z of W and any $\underline{v} \in V$, we have $z v=\varphi(z)(\lambda, \bar{\lambda}) v$, where $\varphi(z)$ is element of $P[K, \bar{K}]$ and that $\varphi(z)(\lambda, \bar{\lambda})$ is its value at $\lambda, \bar{\lambda}$.

Proof. Let v_{0} be a highest weight vector generating V and z is a central element of W, the element z can be written in the form

$$
z=\varphi(z)+\sum_{i>0} F^{i} P_{i} E^{i}
$$

Since $E v_{0}=0$ and $K v_{0}=\lambda v_{0}, \bar{K} v_{0}=\bar{\lambda} v_{0}$, we get $z v_{0}=\varphi(z)(\lambda, \bar{\lambda}) v_{0}$. If v is an arbitrary element of V, we have $v=x v_{0}$ for some $x \in \omega s l_{q}(2)$. It is noticed that $x=x_{1}+x_{2}$ where $x_{1} \in W$ and $x_{2} \in Y$. Since $Y W=W Y=0, z x_{2}=x_{2} z=0$ and $z x=x z$. Hence

$$
z v=z x v_{0}=x z v_{0}=\varphi(z)(\lambda, \bar{\lambda}) x v_{0}=\varphi(z)(\lambda, \bar{\lambda}) v
$$

The result follows.
We now consider the restriction of the Harish-Chandra homomorphism to Z_{q}.
Lemma 3.6. Let $z \in Z_{q}$ and if $\varphi(z)=0$, then $z=0$.
Proof. Let z be an element in the centre of W such that $\varphi(z)=0$. Assume z nonzero, it can be written as $z=\sum_{i=k}^{l} F^{i} P_{i} E^{i}$ where $0<k \leq l$ are integers and P_{k}, \cdots, P_{l} are non-zero elements of $P[K, \bar{K}]$. Consider the Verma module $V(\lambda)$ whose highest weight is neither a power of q or 0 (therefore, $\bar{\lambda}=\lambda^{-1}$). The relations (6)-(8) show that $E v_{p}=0$ if and only if $p=0$. We apply z to the vector v_{k} of $V(\lambda)$, on one hand, Lemma 3.6 implies that $z v_{k}=\varphi(z)(\lambda, \bar{\lambda})=0$, on the other hand, we get $z v_{k}=F^{k} P_{k} E^{k} v_{k}=c P_{k}(\lambda, \bar{\lambda}) v_{k}$ where c is a non-zero constant. It follows that $P_{k}(\lambda, \bar{\lambda})=0$. As a consequence, we have a non-zero polynomial with infinitely many roots. It is a contradiction.

For any element Q of $P[K, \bar{K}]$, denoted by \widetilde{Q} the polynomial defined by the change of variable $\widetilde{Q}(\lambda, \bar{\lambda})=Q\left(q^{-1} \lambda, q \bar{\lambda}\right)$.

Lemma 3.7. For any element z in Z_{q}, we have $\widetilde{\varphi}(z)(\lambda, \bar{\lambda})=\widetilde{\varphi}(z)(\bar{\lambda}, \lambda)$.
Proof. If $\lambda=0$, then $\bar{\lambda}=0$, the result is obvious. The following is under the assumption that $\lambda \neq 0$. Therefore, $\bar{\lambda}=\lambda^{-1}$. For any integer $n>0$ consider the Verma module $V\left(q^{n-1}\right)$. By the formula (7), we have

$$
E v_{n}=\frac{q^{-(n-1)} q^{n-1}-q^{n-1} q^{-(n-1)}}{q-q^{-1}} v_{n-1}=0
$$

Thus, v_{n} is a highest weight vector of weight $q^{n-1-2 n}=q^{-n-1}$. By Lemma 3.5, a central element z acts on the module generated by v_{n} as the multiplication by the scalar $\varphi(z)\left(q^{-n-1}, q^{n+1}\right)$, but since v_{n} is in $V\left(q^{n-1}\right)$, then

$$
z v_{n}=\varphi(z)\left(q^{n-1}, q^{-n+1}\right) v_{n}
$$

In other words, we have

$$
\widetilde{\varphi}(z)\left(q^{n}, q^{-n}\right)=\widetilde{\varphi}(z)\left(q^{-n}, q^{n}\right)
$$

The lemma follows.
Lemma 3.8. Any polynomial of $P[K, \bar{K}]$ satisfying the relation $Q(\lambda, \bar{\lambda})=Q(\bar{\lambda}, \lambda)$ is a polynomial in $k[K+\bar{K}]$.

Proof. We proceed by induction on the degree of the polynomial on K. If the degree is 0 , the statement holds trivially. Suppose that the lemma is proved for all degrees $<n$ and let Q be element of degree n for K such that $Q(\lambda, \bar{\lambda})=Q(\bar{\lambda}, \lambda)$.
Then we may write Q in the form

$$
Q=c\left(K^{n}+\bar{K}^{n}\right)+(\text { terms of degree }<n)
$$

Now

$$
K^{n}+\bar{K}^{n}=(K+\bar{K})^{n}+(\text { terms of degree }<n)
$$

where we set $(K+\bar{K})^{0}=J, J^{2}=J=K \bar{K}$. One concludes by applying the induction hypothesis.

We are ready to prove our main theorem.
Theorem 3.9. When q is not a root of unity, the centre of $\omega s l_{q}(2)$ is $Z_{q} \oplus Y$, where Z_{q} is a polynomial algebra generated by the element C_{q} and J. The restriction of the Harish-Chandra homomorphism to Z_{q} is an isomorphism onto the sub-algebra of $P[K, \bar{K}]$ generated by $q K+q^{-1} \bar{K}$.

Proof. We have already known that the restriction of φ to the Z_{q} is injective by Lemma 3.6. We are left to determine its image. By Lemma 3.7 and Lemma 3.8, the latter is contained in the sub-algebra of $P[K, \bar{K}]$ generated by $q K+q^{-1} \bar{K}$. Consider the central element C_{q} defined by (10), we know that

$$
\varphi\left(C_{q}\right)=\frac{1}{\left(q-q^{-1}\right)^{2}}\left(q K+q^{-1} \bar{K}\right), \varphi(K \bar{K})=K \bar{K}
$$

which proves that the image of Z_{q} is the whole sub-algebra and that C_{q} and J generate Z_{q}. The latter is a polynomial algebra generated by C_{q} and J. By Lemma 1.1, $\omega s l_{q}(2)=$ $W \oplus Y$. It follows that $Z_{\omega}=Z_{q} \oplus Y$.

References

[1] N. Andruskiewitsch and F. Dum, On the automorphisms of $U_{q}^{+}(\mathfrak{g})$, arXiv:math.QA/0301066 v.2.
[2] G. Böhm, F. Nill and K. Szlachányi, Weak Hopf algebras I. Integral theory and C^{*}-structure, J. Algebra 221(1999), 385-438.
[3] G. Benkart and S. Witherspoon, Two-parameter quantum groups and Drinfeld doubles, math.QA/0011064.
[4] W. Chin and I. M. Musson, The coradical filtration for quantized enveloping algebras, J. London Math. Soc. 53(1996), 50-62.
[5] T. Hayashi, An algebras related to the fusion rules of Wess-Zumino-Witten models, Lett. Math Phys. 22(1991), 291-296.
[6] C. Kassel, Quantum Groups, GTM 155, Springer-Verlag, 1995.
[7] F. Li, Weak Hopf algebras and some new solutions of Yang-Baxter equation, J. Algebra 208(1998), 72-100.
[8] F. Li, Solutions of Yang-Baxter equation in endomorphism semigroup and quasi-(co)braided almost bialgebras, Comm. in Algebra 28(2000), 2253-2270.
[9] F. Li, S. Duplij, Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation, Commun. Math. Phys. 225(2002), 191-217.
[10] S. Montegomery, Hopf Algebras and Their Actions on Rings, CBMS, Lecture in Math. 82, AMS, Providence, RI, 1993.
[11] E. Müller, The coradical filtration of $U_{q}(\mathfrak{g})$ at root of unity. Preprint.
[12] T. Yamanouchi, Duality for generalized Kac algebras and a characterization of finite groupoid algebras, J. Algebra 163(1994), 9-50.
[13] D. Wang, Q. Ji and S. Yang, Finite-dimensional representations of quantum group $U_{q}(f(K$, $H)$, Comm. in Algebra, 30(2002), 2191-2211.

College of Applied Sciences, Beijing University of Technology, Beijing, 100022, P. R. China. and China Civil Affairs College, 065201, P. R. China.

College of Applied Sciences, Beijing University of Technology, Beijing 100022, P. R. China.
E-mail: slyang@bjut.edu.cn

[^0]: Received September 20, 2004; revised March 31, 2005.
 2000 Mathematics Subject Classification. 16W30, 17B37.
 The author is partially supported by the National Science Foundation of China (Grant. 10271014) and the Fund of Elitist Development of Beijing City (Grant: 20042D0501518).

