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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF

NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

GENGPING WEI

Abstract. This paper is concerned with the nonlinear neutral delay differential equation

with positive and negative coefficients

[x(t)−c(t)x(t −τ)]′+p(t) f (x(t −δ))−q(t) f (x(t −σ)) = 0, t ≥ t0,

where τ ∈ (0,∞), δ and σ ∈ [0,∞), c(t) ∈ C ([t0,∞),R), p(t) and q(t) ∈ C ([t0,∞), [0,∞)),

f ∈ C (R,R). Sufficient conditions are obtained under which every solution of the above

equation is bounded and tends to a constant as t →∞. Our results extend and improve

some known results.

1. Introduction

Consider the following nonlinear neutral delay differential equation with positive and

negative coefficients

[x(t )−c(t )x(t −τ)]′+p(t ) f (x(t −δ))−q(t ) f (x(t −σ)) = 0, t ≥ t0, (1)

where τ ∈ (0,∞), δ and σ ∈ [0,∞), c(t ) ∈ C 1([t0,∞),R), p(t ) and q(t ) ∈ C ([t0,∞), [0,∞)), f ∈
C (R ,R). We note that when f (x) ≡ x, equation (1) reduces to the linear differential equation

[x(t )−c(t )x(t −τ)]′+p(t )x(t −δ)−q(t )x(t −σ) = 0, t ≥ t0. (2)

The asymptotic behavior of solutions of linear equation (2) and its special cases, i.e.,

c(t )≡ 0 or q(t )≡ 0 or c(t )≡ 0 and q(t )≡ 0, has been studied by several authors, see, for exam-

ple, [1]−[7]. In [1], the authors studied the asymptotic behavior of equation (2) with c(t ) ≡ 0

and q(t )≡ 0, i.e.,

x ′(t )+p(t )x(t −δ) = 0, t ≥ t0. (3)
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and obtained that if p(t )∈C ([t0,∞), (0,∞)) and δ≥ 0 are such that
∫∞

t0

p(s)d s = ∞ (4)

and

limsup
t→∞

∫t

t−δ
p(s +δ)d s < 1, (5)

then every solution of Eq.(3) tends to zero as t →∞. In [2, 3], it is proved by constructing an

effective Liapunov functional that if p(t )∈C ([t0,∞), (0,∞)) and δ≥ 0 then

limsup
t→∞

∫t+δ

t−δ
p(s +δ)d s < 2 (6)

together with (4) implies that every solution of Eq.(3) tends to zero as t →∞. While in [4, 5],

by employing a non-Liapunov approach, the authors studied the stability of equation (3) and

obtained another result, which states that if p(t )∈C ([t0,∞), (0,∞)) and δ≥ 0, then

limsup
t→∞

∫t

t−δ
p(s)d s <

3

2
(7)

together with (4) implies that every solution of Eq.(3) tends to zero as t →∞. Obviously condi-

tions (6) and (7) are weaker than condition (5); also note that it is shown in [9] that conditions

(6) and (7) are independent. Recently, the asymptotic behavior of some special cases of non-

linear equation (1), i.e., c(t ) ≡ 0 or q(t ) ≡ 0 or c(t ) ≡ 0 and q(t ) ≡ 0, is considered under some

strong restriction on f in [8]-[11]. The purpose of this paper is to consider the more general

Eq.(1) and to derive sufficient conditions under which every solution of Eq.(1) is bounded and

tends to a constant as t →∞. As special cases mentioned above, our results relax the restric-

tion on f in [9, 11]; in the linear cases of f (x) ≡ x, our results include the results in [3] and

improve the related results in [1, 6].

Let ρ = max{τ,δ,σ}. By a solution of Eq.(1) we mean a function x(t ) which is defined

for t ≥ t0 −ρ and satisfies Eq.(1) for t ≥ t0. It is easy to see that for any given t0 and initial

conditions of the form x(t0 + s) =ϕ(s), s ∈ [−ρ,0], Eq.(1) has an unique solution x(t ) which is

defined for t ≥ t0 −ρ and satisfies the above initial conditions.

As is customary, a solution of (1) or (2) is said to be nonoscillatory if it is eventually posi-

tive or eventually negative. Otherwise, it will be called oscillatory. For the general background

on functional differential equations, one can refer to [12, 13].

2. Main results

In connection with the nonlinear function f , we assume that

(H) There are constants L > 0 and M > 0 such that

x f (x) > 0, for x ∈ R , x 6= 0 and L = inf{
f (x)

x
||x| > 0}, M = sup{

f (x)

x
||x| > 0}.
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Theorem 1. Let (H) hold. Assume that

δ≥σ; (8)

p∗(t ) = p(t )−q(t +σ−δ) > 0 f or t ≥ t1 = t0 +δ−σ; (9)

limsup
t→∞

[|c(t )|+M

∫t−σ

t−δ
q(s +σ)d s]=µ< 1; (10)

limsup
t→∞

[

µ(1+
p∗(t +τ+δ)

L2p∗(t +δ)
)+

∫t+δ

t−δ
p∗(s +δ)d s +

q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s

]

<
2

M
. (11)

Then every solution of (1) is bounded.

Proof. Let x(t ) be any solution of (1). We shall prove that x(t ) is bounded. For this purpose,

we rewrite (1) in the form

[x(t )−c(t )x(t −τ)−
∫t−σ

t−δ
q(s +σ) f (x(s))d s −

∫t

t−δ
p∗(s +δ) f (x(s))d s]′

+p∗(t +δ) f (x(t )) = 0, t ≥ t1. (12)

From (10) and (11), we can select an ε> 0 sufficiently small such that µ+ε< 1 and

limsup
t→∞

[

(µ+ε)(1+
p∗(t +τ+δ)

L2p∗(t +δ)
)+

∫t+δ

t−δ
p∗(s +δ)d s

q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s

]

<
2

M
; (13)

also, we can select sufficiently large t∗ > t0 such that

|c(t )|+M

∫t−σ

t−δ
q(s +σ)d s ≤µ+ε, f or t ≥ t∗; (14)

noting (H) and (14), we have

|c(t )|x2(t −τ) ≤
µ+ε

L2
f 2(x(t −τ)), t ≥ t∗. (15)

Now we introduce three functionals as

V1(t ) =
[

x(t )−c(t )x(t −τ)−
∫t−σ

t−δ
q(s +σ) f (x(s))d s −

∫t

t−δ
p∗(s +δ) f (x(s))d s

]2

, t ≥ t1, (16)

V2(t ) =
∫t

t−δ
p∗(s +2δ)

∫t

s
p∗(u +δ) f 2(x(u))dud s, t ≥ t1, (17)

V3(t ) =
∫t

t−δ
p∗(s+2δ)

∫t

s
q(u+σ) f 2(x(u))dud s+

µ+ε

L2

∫t

t−τ
p∗(s+τ+δ) f 2(x(s))d s, t ≥ t1. (18)

In what follows, for the sake of convenience, when we write a functional inequality with-

out specifying its domain of validity, we mean that it holds for all sufficiently large t .

Calculating
dV1(t )

dt ,
dV2(t )

dt and
dV3(t )

dt along the solution of (1), we have

dV1(t )

d t
= −p∗(t +δ)

[

2x(t ) f (x(t ))−2c(t )x(t −τ) f (x(t ))
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−
∫t−σ

t−δ
q(s +σ)(2 f (x(t )) f (x(s)))d s −

∫t

t−δ
p∗(s +δ)(2 f (x(t )) f (x(s)))d s

]

≤ −p∗(t +δ)
[

2x(t ) f (x(t ))−|c(t )|x2(t −τ)−|c(t )| f 2(x(t ))

− f 2(x(t ))

∫t−σ

t−δ
q(s +σ)d s −

∫t−σ

t−δ
q(s +σ) f 2(x(s))d s

− f 2(x(t ))

∫t

t−δ
p∗(s +δ)d s −

∫t

t−δ
p∗(s +δ) f 2(x(s))d s

]

, (19)

dV2(t )

d t
= −p∗(t +δ)

∫t

t−δ
p∗(s +δ) f 2(x(s))d s +p∗(t +δ) f 2(x(t ))

∫t

t−δ
p∗(s +2δ)d s, (20)

and
V3(t )

d t
= q(t +σ) f 2(x(t ))

∫t

t−δ
p∗(s +2δ)d s −p∗(t +δ)

∫t

t−δ
q(s +σ) f 2(x(s))d s

+
µ+ε

L2
p∗(t +τ+δ) f 2(x(t ))−

µ+ε

L2
p∗(t +δ) f 2(x(t −τ))

≤ q(t +σ) f 2(x(t ))

∫t

t−δ
p∗(s +2δ)d s −p∗(t +δ)

∫t−σ

t−δ
q(s +σ) f 2(x(s))d s

+
µ+ε

L2
p∗(t +τ+δ) f 2(x(t ))−

µ+ε

L2
p∗(t +δ) f 2(x(t −τ)). (21)

Set V (t )=V1(t )+V2(t )+V3(t ). By (19)−(21), (14) and (15), we get

V (t )

d t
=

V1(t )

d t
+

V2(t )

d t
+

V3(t )

d t

≤ −p∗(t +δ)
[

2x(t ) f (x(t ))−|c(t )|x2(t −τ)−|c(t )| f 2(x(t ))

−
∫t−σ

t−δ
q(s +σ) f 2(x(s))d s − f 2(x(t ))

∫t−σ

t−δ
q(s +σ)d s

−
∫t

t−δ
p∗(s +δ) f 2(x(s))d s − f 2(x(t ))

∫t

t−δ
p∗(s +δ)d s

+
∫t

t−δ
p∗(s +δ) f 2(x(s))d s − f 2(x(t ))

∫t

t−δ
p∗(s +2δ)d s

− f 2(x(t ))
q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s +

∫t−σ

t−δ
q(s +σ) f 2(x(s))d s

−
µ+ε

L2
f 2(x(t ))

p∗(t +τ+δ)

p∗(t +δ)
+
µ+ε

L2
f 2(x(t −τ))

]

≤ −p∗(t +δ) f 2(x(t ))

[

2x(t )

f (x(t ))
− (|c(t )|+

∫t−σ

t−δ
q(s +σ)d s)

−
∫t+δ

t−δ
p∗(s +δ)d s −

q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s −

µ+ε

L2

p∗(t +τ+δ)

p∗(t +δ)

]

≤ −p∗(t +δ) f 2(x(t ))

[

2x(t )

f (x(t ))
− (µ+ε)(1+

p∗(t +τ+δ)

L2p∗(t +δ)
)

−
q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s −

∫t+δ

t−δ
p∗(s +δ)d s

]

≤ −p∗(t +δ) f 2(x(t )){
2

M
− [(µ+ε)(1+

p∗(t +τ+δ)

L2p∗(t +δ)
)
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+
q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s +

∫t+δ

t−δ
p∗(s +δ)d s]}, (22)

which, together with (13), implies

∫∞

t1

p∗(t +δ) f 2(x(t ))d s <∞, (23)

and, hence, for any r > 0 we have

lim
t→∞

∫t

t−r
p∗(s +δ) f 2(x(s))d s = 0. (24)

Noting (13), we have

0 ≤V2(t ) ≤
∫t

t−δ
p∗(s +2δ)

∫t

t−δ
p∗(u +δ) f 2(x(u))dud s

=
∫t+δ

t
p∗(s +δ)d s ·

∫t

t−δ
p∗(u +δ) f 2(x(u))du

≤
2

M

∫t

t−δ
p∗(u +δ) f 2(x(u))du (25)

and

0 ≤V3(t ) =
∫t

t−δ
(p∗(s +2δ)

∫t

s
q(u +σ) f 2(x(u))du)d s

+
(µ+ε)

L2

∫t

t−τ
p∗(s +τ+δ) f 2(x(s))d s

≤
∫t

t−δ
(q(u +σ)

∫u

t−δ
p∗(s +2δ)d s) f 2(x(u))du

+
2

M

∫t

t−τ
p∗(s +δ) f 2(x(s))d s

≤
∫t

t−δ
(q(u +σ)

∫u

u−δ
p∗(s +2δ)d s) f 2(x(u))du

+
2

M

∫t

t−τ
p∗(s +δ) f 2(x(s))d s

≤
∫t

t−δ

2

M
p∗(u +δ) f 2(x(u))du +

2

M

∫t

t−τ
p∗(s +δ) f 2(x(s))d s. (26)

(25) and (26) together with (24) imply lim
t→∞

V2(t ) = 0 and lim
t→∞

V3(t ) = 0. On the other hand,

by (13) and (22), we see that V (t ) is eventually decreasing. In view of V (t ) ≥ 0, the limit

lim
t→∞

V (t )=α exists and is finite, and thus, lim
t→∞

V (t ) = lim
t→∞

V1(t ) =α; that is,

lim
t→∞

[x(t )−c(t )x(t −τ)−
∫t−σ

t−δ
q(s +σ) f (x(s))d s −

∫t

t−δ
p∗(s +δ) f (x(s))d s]2 =α. (27)

Let

y(t )= x(t )−c(t )x(t −τ)−
∫t−σ

t−δ
q(s +σ) f (x(s))d s −

∫t

t−δ
p∗(s +δ) f (x(s))d s,



26 GENGPING WEI

then

y ′(t )+p∗(t +δ) f (x(t )) = 0, t ≥ t1 (28)

and

lim
t→∞

y2(t )=α.

If α = 0, then lim
t→∞

y(t ) = 0. If α > 0, noting that y(t ) is continuous, then y(t ) is eventually

positive or eventually negative. So,

lim
t→∞

y(t )=β;

that is,

lim
t→∞

y(t ) = lim
t→∞

[x(t )−c(t )x(t −τ)−
∫t−σ

t−δ
q(s +σ) f (x(s))d s

−
∫t

t−δ
p∗(s +δ) f (x(s))d s] =β, (29)

where β=
p
α or β=−

p
α. In view of (28), we have

∫t

t−δ
p∗(s +δ) f (x(s))d s = y(t −δ)− y(t ).

So,

lim
t→∞

∫t

t−δ
p∗(s +δ) f (x(s))d s = 0. (30)

By (29) and (30), we have

lim
t→∞

[x(t )−c(t )x(t −τ)−
∫t−σ

t−δ
q(s +σ) f (x(s))d s] =β. (31)

Next, we shall show |x(t )| is bounded. In fact, if |x(t )| is unbounded, then there exists a se-

quence {rn} such that rn →∞, |x(rn)|→∞ as n →∞ and

|x(rn)| = sup
t0≤t≤rn

|x(t )|, (32)

Thus, noticing (14), (32), we have

|x(rn)−c(rn)x(rn −τ)−
∫rn−σ

rn−δ
q(s +σ) f (x(s))d s|

≥ |x(rn)|− |c(rn)||x(rn −τ)|−
∫rn−σ

rn−δ
q(s +σ)M |x(s)|d s

≥ |x(rn)|(1−|c(rn )|−M

∫rn−σ

rn−δ
q(s +σ)d s)

≥ |x(rn)|(1−µ−ε) →∞ as n →∞,

which contradicts (31). So |x(t )| is bounded. The proof of Theorem 1 is complete.

Now we study asymptotic behavior of solutions of (1).
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Theorem 2. Let (H), (8) and (9) hold. Assume that c(t ) ≥ 0 or c(t ) ≤ 0 for sufficiently large t ,

i.e., c(t ) does not change sign for sufficiently large t , and

lim
t→∞

|c(t )| = c < 1; (33)

lim
t→∞

∫t−σ

t−δ
q(s +σ)d s = 0; (34)

limsup
t→∞

[

c(1+
p∗(t +τ+δ)

L2p∗(t +δ)
)+

∫t+δ

t−δ
p∗(s +δ)d s +

q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s

]

<
2

M
. (35)

Then every solution of (1) tends to a constant as t →∞.

Proof. Let x(t ) be any solution of (1). (33) and (34) imply that

limsup
t→∞

[|c(t )|+M

∫t−σ

t−δ
q(s +σ)d s]= c < 1.

So, from the proof of Theorem 1 we know that |x(t )| is bounded and (31) holds. Noticing

condition (34), we obtain

0 ≤ |
∫t−σ

t−δ
q(s +σ) f (x(s))d s| ≤

∫t−σ

t−δ
q(s +σ)| f (x(s))|d s

≤ M

∫t−σ

t−δ
q(s +σ)|x(s)|d s → 0 as t →∞,

which, together with (31), implies that

lim
t→∞

[x(t )−c(t )x(t −τ)] =β. (36)

Next, we shall prove that

lim
t→∞

x(t ) exists and is finite. (37)

If c = 0, clearly lim
t→∞

x(t ) =β, which shows (37) holds. If 0 < c < 1, let

limsup
t→∞

x(t )=ω1, liminf
t→∞

x(t )=ω2,

and let {ui } and {vi } be two sequences such that ui →∞, vi →∞ as i →∞, and

lim
i→∞

x(ui ) =ω1, lim
i→∞

x(vi ) =ω2.

For sufficiently large t2, we consider the following two possible cases:

Case 1. −1 < c(t )≤ 0 for t > t2, we have

β = lim
i→∞

[x(ui )−c(ui )x(ui −τ)] =ω1 +c lim
i→∞

x(ui −τ) ≥ω1 +cω2,

and
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β = lim
i→∞

[x(vi )−c(vi )x(vi −m)] =ω2 +c lim
i→∞

x(vi −τ) ≤ω2 +cω1.

Thus, 0 ≤ω1 −ω2 ≤ c(ω1 −ω2), so that ω1 =ω2 =
β

1+c
, which shows (37) holds.

Case 2. 0 ≤ c(t )< 1 for t > t2, we have

ω1 = lim
i→∞

x(ui ) = lim
i→∞

[x(ui )−c(ui )x(ui −τ)+c(ui )x(ui −τ)]

= β+c lim
i→∞

x(ui −τ) ≤β+cω1,

and

ω2 = lim
i→∞

x(vi ) = lim
i→∞

[x(vi )−c(vi )x(vi −τ)+c(vi )x(vi −τ)]

= β+c lim
i→∞

x(vi −τ) ≥β+cω2,

Thus, ω1 ≤ β
1−c

≤ ω2, which together with ω1 ≥ ω2 implies ω1 = ω2 = β
1−c

, so that (37) holds.

The proof of Theorem 2 is complete.

By Theorem 2, we have the following asymptotic behavior result immediately.

Theorem 3. The conditions of Theorem 1 imply that every oscillatory solution of (1) tends to

zero as t →∞.

Theorem 4. The conditions in Theorem 2 together with

∫∞

t0

p∗(t )d s =∞ (38)

imply that every solution of (1) tends to zero as t →∞.

Proof. Condition (H) implies that for any ξ> 0 there is η> 0 such that

| f (x)| ≥ η, for |x| ≥ ξ. (39)

By theorem 3, we only have to prove that every nonoscillatory solution of (1) tends to zero as

t → ∞. Without loss of generality, let x(t ) be an eventually positive solution of (1), we shall

prove lim
t→∞

x(t ) = 0. As in the proof of Theorem 1, we can rewrite (1) in the form of (28). Inte-

grating from t0 to t on both sides of (28) produces

∫t

t0

p∗(s +δ) f (x(s))d s = y(t0)− y(t ).

By using (29) we have
∫∞

t0

p∗(s +δ) f (x(s))d s <∞,

which, together with (38) yields liminf
t→∞

f (x(t ))= 0. We claim that

liminf
t→∞

x(t )= 0. (40)
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Let {wi } be a integer sequence such that wi → ∞ as i →∞ and lim
i→∞

f (x(wi )) = 0. We must

have liminf
i→∞

x(wi ) = d = 0. In fact, if d > 0, then there is a subsequence {wi j
} of {wi } such

that x(wi j
) ≥ d/2 for sufficiently large j . By (39) we have f

(

x(wi j
)
)

≥ ζ for some ζ > 0 and

sufficiently large j , which yields a contradiction because of lim
j→∞

f (x(wi j
)) = 0. Therefore, (40)

holds. On the other hand, by Theorem 2, we have lim
t→∞

x(t ) exists. Therefore lim
t→∞

x(t )= 0. The

proof is complete.

As application of Theorems 2 and 4, taking f (x) ≡ x, for the linear equation (2) we have:

Corollary 1. Let c(t ) ≥ 0 or c(t ) ≤ 0 for sufficiently large t . Assume that (8), (9), (33) and (34)

hold and

limsup
t→∞

[

c(1+
p∗(t +τ+δ)

p∗(t +δ)
)+

∫t+δ

t−δ
p∗(s +δ)d s +

q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s

]

< 2.

Then every solution of equation (2) tends to a constant as t →∞. Furthermore, if (38) holds,

then every solution of equation (2) tends to zero as t →∞.

In Theorem 4, taking c(t )≡ c , q(t )≡ 0 and f (x) ≡ x, we have:

Corollary 2. Let |c | < 1. Assume that τ∈ (0,∞), δ ∈ [0,∞), p(t )∈C ([t0,∞), (0,∞)). Then

limsup
t→∞

{|c |(1+
p(t +τ+δ)

p(t +δ)
)+

∫t+δ

t−δ
p(s +δ)d s}< 2.

together with (4) implies that every solution of the equation

[x(t )−cx(t −τ)]′+p(t )x(t −δ) = 0, t ≥ t0

tends to zero as t →∞.

3. Example

Consider the difference equation

[x(t )−
t −1

2t
x(t −1)]′+

2

(t −1)α
[1+sin2 x(t −2)]x(t −2)−

1

tα
[1+sin2 x(t −1)]x(t −1) = 0,

where α > 0 is a real constant, f (x) =
(

1+sin2 x
)

x, p(t ) = 2/(t −1)α, q(t ) = 1/tα, c(t ) = t−1
2t

,

τ= 1, δ= 2, σ= 1. By simple estimation, we have

µ= lim
t→∞

|c(t )| =
1

2
< 1,

p∗(t )= p(t )−q(t +σ−δ) =
1

(t −1)α
,
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2|x| ≤
∣

∣(2+sin2 x)x
∣

∣≤ 3|x|, x2(1+sin2 x) > 0 (x 6= 0)

and

limsup
t→∞

[

µ(1+
p∗(t +τ+δ)

22p∗(t +δ)
)+

∫t+δ

t−δ
p∗(s +δ)d s +

q(t +σ)

p∗(t +δ)

∫t

t−δ
p∗(s +2δ)d s

]

=
5

8
<

2

3
.

If α > 0, we may conclude from Theorems 1 and 2 that every solution of this equation is

bounded and tends to a constant as t → ∞; and if 0 < α ≤ 1, from Theorem 4, every solu-

tion of this equation tends to zero as t →∞.
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