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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

GENGPING WEI

Abstract. This paper is concerned with the nonlinear neutral delay differential equation
with positive and negative coefficients

[x(6) —c(O)x(t =)'+ p(O) f(x(£ =) — () f (x(t = 0)) =0, 1= 1y,

where 7 € (0,00), 6 and ¢ € [0,00), c(t) € C([fp,00),R), p(t) and q(t) € C([tp,00),[0,00)),
f € C(R,R). Sufficient conditions are obtained under which every solution of the above
equation is bounded and tends to a constant as ¢t — co. Our results extend and improve
some known results.

1. Introduction

Consider the following nonlinear neutral delay differential equation with positive and
negative coefficients

[x(8) = c()x(t =)'+ p() f(x(t =) — q(O) f(x(t —0)) =0, t =1y, 1)

where 7 € (0,00), § and o € [0,00), c() € C'([£y,00), R), p(1) and g(t) € C([ty,0),[0,00)), f €
C(R, R). We note that when f(x) = x, equation (1) reduces to the linear differential equation

[x(5) —c(Ox(t—1)]" + p(O)x(t-6)—q()x(t—0) =0, t= fo. 2)

The asymptotic behavior of solutions of linear equation (2) and its special cases, i.e.,
c(t)=0or q(f) =0or c(t) =0and g(¢) =0, has been studied by several authors, see, for exam-
ple, [1]-[7]. In [1], the authors studied the asymptotic behavior of equation (2) with ¢(#) =0
and q(t) =0, i.e,

() +p)x(t-6)=0, t= 1. 3)
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and obtained that if p(#) € C([#p,0), (0,00)) and § = 0 are such that

(e 0]

p(s)ds = oo 4)

Ty

and ,

limsup p(s+6)ds<1, 5)

t—oo Jt-06
then every solution of Eq.(3) tends to zero as t — oco. In [2, 3], it is proved by constructing an
effective Liapunov functional that if p(#) € C([#p,0), (0,00)) and § = 0 then

t+6
limsup p(s+6)ds<2 (6)

t—o00 t—6
together with (4) implies that every solution of Eq.(3) tends to zero as t — co. While in [4, 5],
by employing a non-Liapunov approach, the authors studied the stability of equation (3) and
obtained another result, which states that if p(z) € C([ty,00), (0,00)) and § = 0, then

t

3
limsup p(s)ds < 5 (7)

t—oo Jt-6

together with (4) implies that every solution of Eq.(3) tends to zero as t — co. Obviously condi-
tions (6) and (7) are weaker than condition (5); also note that it is shown in [9] that conditions
(6) and (7) are independent. Recently, the asymptotic behavior of some special cases of non-
linear equation (1), i.e., c(#) =0 or g(t) =0 or ¢(¢) =0 and g(t) =0, is considered under some
strong restriction on f in [8]-[11]. The purpose of this paper is to consider the more general
Eq.(1) and to derive sufficient conditions under which every solution of Eq.(1) is bounded and
tends to a constant as t — oco. As special cases mentioned above, our results relax the restric-
tion on f in [9, 11]; in the linear cases of f(x) = x, our results include the results in [3] and
improve the related results in [1, 6].

Let p = max{r,6,0}. By a solution of Eq.(1) we mean a function x(¢) which is defined
for t = ty — p and satisfies Eq.(1) for ¢ = #,. It is easy to see that for any given t, and initial
conditions of the form x(ty + s) = ¢(s), s € [—p,0], Eq.(1) has an unique solution x(¢) which is
defined for ¢ = fy — p and satisfies the above initial conditions.

As is customary, a solution of (1) or (2) is said to be nonoscillatory if it is eventually posi-
tive or eventually negative. Otherwise, it will be called oscillatory. For the general background
on functional differential equations, one can refer to [12, 13].

2. Main results

In connection with the nonlinear function f, we assume that
(H) There are constants L >0 and M > 0 such that

fx) fx

xf(x)>0, forxeR, x;éOandL:inf{Tllxl > 0}, Mzsup{Tllxl > 0}.
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Theorem 1. Let (H) hold. Assume that

0 =o0;

p ) =pt)—q(t+0-6)>0 for t=t1=1ty+6—0;

-0

limsupllc(t)|+ M qgs+o)dsl=u<1,

t—o00 t—0
. pr(t+1+0) f”5 . qit+o) [t 2
limsu Q+—=—)+ (s+d)ds+—— (s+2dds| < —.
pvetl L FTI I AP prc+0) Jis” M

Then every solution of (1) is bounded.

23

(8)
9)

(10)

(11

Proof. Let x(t) be any solution of (1). We shall prove that x(t) is bounded. For this purpose,

we rewrite (1) in the form

t-o
[x(t)—c(t)x(t—r)—f qs+o)f(x(s)ds—- f p*(s+06)f(x(s)ds]
+p (t+0)f(x(1) =0, t=1.

From (10) and (11), we can select an ¢ > 0 sufficiently small such that + & < 1 and

) pr(t+1+06) f”ﬁ qt+o) [t
1 1+ = Sds———= 28)d
lrtrigp (u+e)(1+ sz*(t+5))+ " “(s+0) D (+0) p*(s+26)ds

also, we can select sufficiently large ¢* > £y such that

t-o

lc(B)]+M q(s+o)ds<u+e, for t=t";
t—6
noting (H) and (14), we have
le(8)|x (¢~ T)<—f (x(t-1)), t=t".

Now we introduce three functionals as

t—o t 2
Vi) = x(t)—c(t)x(t—r)—f qs+o)f(x(s)ds— p*(s+0)f(x(s)ds| , t=1,
-6 t—6
t t
Vo(t) = p*(s+25)f pr(u+8) fA(x(w)duds, t=t,
t_
t
V3(t) = p (s+25)f qu+o)f (x(u))duds+u£_ p*(s+T+6)f2(x(s))ds, t=>1.
t—0 -7

(12)

< 2. (13)
M?

(14)

(15)

(16)

17

(18)

In what follows, for the sake of convenience, when we write a functional inequality with-

out specifying its domain of validity, we mean that it holds for all sufficiently large ¢.

avi(t) dVa(t) and st(t)

Calculating ==, =& along the solution of (1), we have

an@ _
dr

p*(t+8) [2x(8) f(x(1) = 2c(D)x(t = 1) f (x(2))
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-0 t
—/ 5 q(s+U)(2f(x(t))f(x(s)))ds—f 6p*(s+5)(2f(x(t))f(x(s)))ds
- t_
—p*(t+8) [2x(D) f(x() = lc()|x* (£ — 1) = (D] f2(x(1)
t—o -0
—fz(x(t))f q(s+a)ds—f q(s+0) f2(x(s)ds
t—0 t—0

t t
— F2x(0) p*(s+8)ds— p*(s+5)f2(x(s))ds], (19)
t—0 t—0
t T
d‘;zt(t) = —p*(t+5)f p*(s+5)f2(x(s))ds+p*(t+5)f2(x(t))/ p*(s+28)ds, (20)
t—0 t—0
and -
Z =q(t+o)f (x(t))f p*(s+28)ds—p (t+5)f q(s+0)f (x(s))ds
+
+'“7p (t+7+8)f> (x(t))—?p (t+8) f(x(t—1)
t -0
< q(t+0)f2(x(t)) p*(s+25)ds— p*(t+5) q(s+0) f2(x(s)ds
-0
”2 p (t+r+6)f ) i = p (t+5)f (x(f—1)). 1)

Set V(1) = V1 (8) + Vo (£) + V3(2). By (19)—(21), (14) and (15), we get

v _ o | 1o | 1o
dt  dt dt dt
< —p*(t+8) [2x(0) f(x(1) = lc(B)|x* (£ — 1) = (D] f2(x(1)

t—o

-0
—f q(s+U)fz(x(s))ds—fz(x(t)) q(s+0)ds

t

t
- p (s+5)f (x(s)ds— f (x(1) p*(s+d)ds
t_

t_

t
+f p*(s+6) f2(x(s)ds— f(x(D) p*(s+26)ds
-0 t-0

g2 qit+o) (b ft_g 2

f (xm)p*(t+5) t_ﬁp (s+28)ds+ s qs+o)f(x(s)ds
+ (t+T+6 +

—gﬁfﬁuu»pgui&) B P at-)

I—o
<-p*(t+8)fi(x (t))[ —(IC(t)|+ft_6 q(s+o)ds)

fx(0)

t+0 ! i
_ . _qu +a)f ) _pAEpT(IHTHO)
f_ p (s+0)ds p +0) Jis” (s+20)ds =" p*(t+0)
. 2x(0) p_lirr+9)
< —p'(t+0)f(x “”[f((» e o)
t+0) . t+6 .
p*(t+6) t—6p (s+20)ds -6 prls+oyds

p*(t+1+0)

2
— * 2 -
s-p (t+0)f (x(t)){M [(L+e) 1+ 2p*(1+0)
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Z*((t;_og) :6 p*(s+206)ds+ /:6 p*(s+08)dsl}, (22)
which, together with (13), implies
toop*(t+5)f2(x(t))ds<oo, (23)
1
and, hence, for any r > 0 we have
lim t p*(s+8)f2(x(s)ds=0. (24)

[—ooJy—r

Noting (13), we have

t

t
0<Vo(p) < / p*(s+26) p*(u+0) f2(x(w)duds
-5 -6

t+6 t
:f p*(s+6)ds-f p*(u+6) f2(x(w)du
t t-06

t

<2 p*(u+6)f2(x(w)du (25)
M Ji—s

and
t t
0<Vs(t) :f (p*(s+25)f qu+0) fA(x(w)du)ds
1) s

(n+e) [*
L2 Ji—

t u
s/ (q(u+a)/ p*(s+28)ds) f2(x(w)du
t—6 t—6

+ p*(s+71+8)f2(x(s)ds

t

2 * 2
+Z\_4 t_Tp (s+0)f (x(s))ds

t u
sf (q(u+a)f p*(s+28)ds) f2(x(u)du
-6 u—>

t

+1\£/1 . pr(s+06) f2(x(s)ds
t

2 * 2 2 * 2
Sf_gl\_4p (u+o)f (x(u))du+M p(s+0)f(x(s)ds. (26)

-7
(25) and (26) together with (24) imply tlirn Va(t) = 0 and tlirn V3(t) = 0. On the other hand,
—00 —00
by (13) and (22), we see that V(¢) is eventually decreasing. In view of V(#) = 0, the limit
tlim V(t) = a exists and is finite, and thus, tlim V() = }im V1(t) = a; that s,
— 00 —00 —00

-0 ¢
tlim [x() —c(D)x(t—1) —f q(s+a)f(x(s))ds—/ p*(s+6)f(x(s))ds]2 =a. 27
—00 t—0 t—0

Let

t—o

t
S q(s+0)f(x(s))ds—f 5p*(s+5)f(x(s))d5;
t_

y()=x() —c()x(t—71) —f
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then
V(O +p (t+8)f(x(0)=0, t=1 (28)

and
lim y%(1) = a.
t—00
If a =0, then tlim y(t) = 0. If a > 0, noting that y(¢) is continuous, then y(t) is eventually
—00
positive or eventually negative. So,
lim y(z) = B;
t—00

that is,

t—o
tlim y(t) = tlim [x(t) —c(D)x(t—T1) —/ q(s+o)f(x(s)ds
—00 —00 -0

t

- 5p*(3+5)f(x(3))d31 =B, (29)

t_
where = v/a or f = —y/a. In view of (28), we have

t

S p*(s+0)f(x(s)ds=y(t—08)—y(1).

t_

So, .

limf pr(s+0)f(x(s)ds=0. (30)
-6

t—o00
By (29) and (30), we have

t—o

}Lrglo[x(t)—c(t)x(t—r)—f 5 q(s+o)f(x(s)ds] =p. 31

Next, we shall show |x(#)| is bounded. In fact, if |x(¢)| is unbounded, then there exists a se-
quence {r,} such that r;, — oo, |x(r;)| — co as n — oo and

|x(rp)l = sup [x(8)], (32)

h=<t=<ry

Thus, noticing (14), (32), we have
1%(r) = C(rp)X(rp —7) = f "6 q(s+0) f(x(s)ds]

2Ix(rn)I—IC(rn)le(rn—T)l—f s qs+o)M|x(s)lds

> 1x(rp) (L= le(ry)] —Mf "6 (s +0)ds)

> |x(rp)|(1—p—€) — ocoas n— oo,
which contradicts (31). So |x(t)| is bounded. The proof of Theorem 1 is complete.

Now we study asymptotic behavior of solutions of (1).
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Theorem 2. Let (H), (8) and (9) hold. Assume that c(t) = 0 or c(t) < 0 for sufficiently large t,

i.e., c(t) does not change sign for sufficiently large t, and

lim |[c(f)|=c< 1;
[—00

-0
lim q(s+o)ds=0;
1—=00Jr-§
. pr(t+1+06) ff+5 . qgit+o) [t
limsup [cl+ —)+ (s+0)ds+——— (s+20)ds
v 2p(t+0) Jis ¥ prt+0) Jis"
Then every solution of (1) tends to a constant as t — oo.
Proof. Let x(¢) be any solution of (1). (33) and (34) imply that
—o
limsupl|c()|+ M q(s+o)dsl=c<1.
t—o00 t—0

So, from the proof of Theorem 1 we know that |x(#)| is bounded and (31) holds.

condition (34), we obtain
-0 —o
0<| s q(s+0)f(x(s))ds|sf 5 qs+o)lf(x(s)lds
- -
—o
=M q(s+0o)lx(s)lds— 0 as t — oo,
t—6

which, together with (31), implies that
lim [x(#) — c(t)x(t—1)] = B.
t—o00

Next, we shall prove that
}im x(t) exists and is finite.
—00

If ¢ =0, clearly tlirn x(t) = B, which shows (37) holds. If 0 < c < 1, let
—00

limsup x(t) = wy, liminfx(¢) = wo,
t—00 [—o0

and let {u;} and {v;} be two sequences such that u; — co, v; — oo as i — oo, and

lim x(u;) = w, lim x(v;) = wo.
i—o0o i—o0

For sufficiently large t,, we consider the following two possible cases:

Case 1. —1 < ¢(t) <0 for t > 1, we have

B = lim [x(u;) —c(u)x(u; —7)] = w1 + ¢ lim x(u; — 7) =2 w1 + cwy,
1—00 1—00

and

(33)

(34)

< 2z (35)
Ve

Noticing

(36)

(37)
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B = lim [x(v;) —c(v))x(v;i —m)] = w2 + ¢ lim x(v; — T) < W, + cw;.
1—00 1—00

Thus, 0 < w; — w2 < c(w; —w2), so thatw, = wy = %, which shows (37) holds.
Case 2. 0 < ¢(t) < 1 for t > 1, we have

w1 = lim x(u;) = Im [e(u) — (i) x(u; = 7) + c(u) X (u; = 7)]
o =,113-:oclim x(u;j—1) < P+cw,
and o
wz = lim x(v;) = lim [x(v;) - c(vi)x(v; = 1) + (i) x(v; ~ 7))

=f+climx(v;—1) = B+ cwy,
1—00

B

Thus, w; < 7=; < w2, which together with w; = w; implies w; = w, = so that (37) holds.

B
1-¢’
The proof of Theorem 2 is complete.

By Theorem 2, we have the following asymptotic behavior result immediately.

Theorem 3. The conditions of Theorem 1 imply that every oscillatory solution of (1) tends to
zero as t — oo.

Theorem 4. The conditions in Theorem 2 together with

p*(t)ds=oo (38)

)

imply that every solution of (1) tends to zero as t — oco.
Proof. Condition (H) implies that for any ¢ > 0 there is 7 > 0 such that
If(x)|=n, for |x|=¢. (39)

By theorem 3, we only have to prove that every nonoscillatory solution of (1) tends to zero as
t — oo. Without loss of generality, let x(¢) be an eventually positive solution of (1), we shall
prove tlirglo x(t) = 0. As in the proof of Theorem 1, we can rewrite (1) in the form of (28). Inte-
grating from #, to ¢ on both sides of (28) produces

¢
p*(s+0)f(x(s)ds = y(ty) — y(1).
5}

By using (29) we have
p*(s+6)[f(x(s)ds < oo,

to

which, together with (38) yields li{n inf f(x(¢)) = 0. We claim that
— 00

litrn infx() =0. (40)
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Let {w;} be a integer sequence such that w; — oo as i — oo and lim f(x(w;)) = 0. We must
1—00
have liminfx(w;) = d = 0. In fact, if d > 0, then there is a subsequence {wi} of {w;} such
1—00

that x(w;,) = d/2 for sufficiently large j. By (39) we have f (x(w;;)) = { for some { > 0 and
sufficiently large j, which yields a contradiction because of lim f(x(w;;)) = 0. Therefore, (40)
J—oo

holds. On the other hand, by Theorem 2, we have }im x(t) exists. Therefore tlim x(t) =0. The
—00 —00

proof is complete.
As application of Theorems 2 and 4, taking f(x) = x, for the linear equation (2) we have:

Corollary 1. Let c(t) = 0 or c(t) < 0 for sufficiently large t. Assume that (8), (9), (33) and (34)
hold and

p*(t+r+6))+/f+5 qt+o) (* .
t

p (s+0)ds+

*(s+28)ds
) p*(t+0) z—ap ( )

limsup |c(1+
i p*(t+0)

Then every solution of equation (2) tends to a constant as t — oo. Furthermore, if (38) holds,

then every solution of equation (2) tends to zero as t — oo.

In Theorem 4, taking c(¢) = ¢, g(t) =0 and f(x) = x, we have:

Corollary 2. Let|c| < 1. Assume thatt € (0,00), § € [0,00), p(t) € C([ty,00), (0,00)). Then

limsup{lc|(1+

p(t+T+5))+f”5
t—o00 p(t+06)

p(s+6)ds}<2.
5

together with (4) implies that every solution of the equation
(x(D)—cx(t—1)' + p()x(t-6) =0, t= 1

tends to zero as t — oo.

3. Example

Consider the difference equation

r—1 / .2 1 2
[x(t)—z—tx(t—l)] + [1+sin x(t—2)]x(t—2)—t—a[1 +sin“x(t—1)]x(t—=1) =0,

(t—D*

where @ > 0 is a real constant, f(x) = (1+sin’x)x, p(¢) =2/(t - 1%, q(t) = 1/¢%, c(1) = tz;tl,

T=1,6=2,0=1. Bysimple estimation, we have

= li |(t)|—1<1
= Jim ool = 5 <1,
1

p ()=pH)—qlt+o-86)= G-
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2|x| < |2 +sin*x)x| =3lx], x*(1+sin®*x) >0 (x #0)
and 5 t+0 t
. pr(t+1+96) f . q(t+0o) . ] 5 2
limsu 1+ =)+ (s+0)ds+ ———— (s+20)ds| =—=-<-.
el M T 2z )i P pt+0) Ji-s” 8" 3

If a

> 0, we may conclude from Theorems 1 and 2 that every solution of this equation is

bounded and tends to a constant as t — oo; and if 0 < a < 1, from Theorem 4, every solu-

tion of this equation tends to zero as t — oo.

(10]

(11]

(12]

(13]
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