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A NOT ON |N , pn ;δ|k SUMMABILITY FACTORS OF INFINITE SERIES

POORVI SINHA AND HIRDESH KUMAR

Abstract. In this paper a general theorem on |N , pn ;δ|k summability factors which generalizes a theorem of Bor [4]

on for |N , pn |k summability factors of infinite series.

1. Definition and notion

Let
∑

an be a given infinte series with partial sums (sn). Let (pn) be a sequence of positive

numbers such that

Pn =

n
∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

un =
1

Pn

n
∑

v=0

pv sv

defines the sequence (un ) of the (N , pn ) means of the sequence (sn), generated by the se-

quence of coefficient (pn) [6].

The series
∑

an is said to be summable |N , pn |k , k ≥ 1 if [1]

∞
∑

n=1

(Pn

pn

)k−1
|un −un−1|

k
<∞,

and it is said to be summable |N , pn ;δ|k , k ≥ 1 and δ≥ 0, if [2]

∞
∑

n=1

(Pn

pn

)δk+k−1
|un −un−1|

k
<∞, (1.1)

In the special case when δ = 0 (resp. pn = 1 for all values of n) |N , pn ;δ|k summability is

the same as |N , pn |k (resp. |C ,1;δ|k ) summability.

Leindler [7] has generalized the notion of |C ,α;δ|k summability replacing the function nδ

by a positive non-decreasing function δ(n). (1 < n <∞).
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Leindler [7] A series
∑

an is summable |C ,α;δ(n)|k if the series

∞
∑

n=1

δ(n)k n(k−1)
|σα

n −σα
n−1|

k

converges, where σα
n is the nth Cesáro mean of order α of

∑

an .

With δ(n) = nδ, it follows that above definition reduces to that of Flett [5].

The equation (1.1) will be

∞
∑

n=0

δ
(Pn

pn

)k(Pn

pn

)k−1
|un −un−1|

k
<∞. (1.2)

2. Quite recently Bor [3] proved the following theorem for |N , pn |k summability factors of

infinite series.

Theorem A. Let (pn) be a sequence of positive numbers such that

Pn =O(npn ) as n →∞. (2.1)

Let (Xn ) be a positive non-decreasing sequence and suppose that there exists sequences

(λn) and (βn) such that

|∆λn | ≤βn ; (2.2)

βn → 0 as n →∞; (2.3)

∞
∑

n=1

n|∆β|Xn <∞; (2.4)

|λn |Xn =O(1) as n →∞. (2.5)

If
m
∑

n=1

pn

Pn
|tn |

k
=O(Xm) as m →∞ (2.6)

where

tn =
1

n+1

n
∑

v=1

v av , (2.7)

then the series
∑

anλn is summable |N , pn |k , k ≥ 1.

The aim of this paper is to generalize Theorem A for |N , pn ;δ|k summability. Now, we shall

prove the following theorem.

3. Theorem



A NOTE ON |N ,pn ;δ|k SUMMABILITY FACTORS OF INFINITE SERIES 195

Let (Xn) be a positive non-decreasing sequence and the sequence (λn) and (βn) be such

that condition (2.2)−(2.5) of Theorem A are satisfied. If (pn) is a sequence such that condition

(1.1) of Theorem A is satisfied and

∞
∑

n=v+1

δ
(Pn

pn

)k( pn

Pn

) 1

Pn−1
= O

{

δ
(Pv

pv

)k 1

Pv

}

, (3.1)

m
∑

n=1

δ
(Pn

pn

)k( pn

Pn

)

|tn |
k
= O(Xm) as m →∞, (3.2)

where (tn) is as in (2.7), then the series
∑

anλn is summable |N , pn ;δ|k for k ≥ 1, and 0 ≤ δ<
1
k .

Remark. It may be noted that, if we take δ= 0 in this theorem, then we get Theorem A. In

this case condition (3.2) reduces to condition (2.6) and condition (3.1) reduces to

∞
∑

n=v+1

pn

Pn Pn−1
=O

( 1

Pv

)

,

which always holds.

We need the following lemma for the proof of our theorem.

Lemma. ([6]) If the condition (2.2)−(2.5) on (Xn ), (βn) and (λn) are satisfied, then

nβn Xn =O(1) as m →∞, (3.3)

∞
∑

n=1

βn Xn <∞. (3.4)

4. Proof of the theorem

Let (Tn) be the sequence of (N , pn ) means of the series
∑

anλn . Then by definition, we

have

Tn =
1

Pn

n
∑

v=0

pv

v
∑

i=0

aiλi =
1

Pn

n
∑

v=0

(Pn −Pv−1)avλv .

Then, for n ≥ 1, we have

Tn −Tn−1 =
pn

PnPn−1

n
∑

v=1

Pv−1avλv =
pn

Pn Pn−1

n
∑

v=1

Pv−1λv

v
v av .

Using Abel’s transformation, we get

Tn −Tn−1 =
n+1

nPn
pn tnλn −

pn

Pn Pn−1

n−1
∑

v=1

pv tvλv
v +1

v

+
pn

PnPn−1

n−1
∑

v=1

Pv∆λv tv
v +1

v
+

pn

PnPn−1

n−1
∑

v=1

Pv tvλv+1
1

v
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= Tn,1 +Tn,2 +Tn,3 +Tn,4, say.

Since

|T α
n,1 +T α

n,2 +T α
n,3 +T α

n,4|
k
≤ 4k

(

|T α
n,1|

k
+|T α

n,2|
k
+|T α

n,3|
k
+|T α

n,4|
k
)

to complete the proof of the theorem, it is sufficient to show that

∞
∑

n=1

δ
(Pn

pn

)k(Pn

pn

)k−1
|Tn,r |

k
<∞, for r = 1,2,3,4.

Since

λn =O
( 1

Xn

)

=O(1), by (2.5) we get that

m+1
∑

n=2

δ
(Pn

pn

)k(Pn

pn

)k−1
|Tn,1|

k
= O(1)

m
∑

n=1

|λn |
k−1

|λn |δ
(Pn

pn

)k( pn

Pn

)

|tn |
k

= O(1)
m
∑

n=1

|λn |δ
(Pn

pn

)k( pn

Pn

)

|tn |
k

= O(1)
m−1
∑

n=1

∆|λn |

n
∑

v=1

δ
(Pv

pv

)k( pv

Pv

)

|tv |
k

+O(1)|λm |

m
∑

n=1

δ
(Pn

pn

)k( pn

Pn

)

|tn |
k

= O(1)
m−1
∑

n=1

|∆λn |Xn +O(1)|λm |Xm

= O(1)
m−1
∑

n=1

βn Xn +O(1)|λm |Xm

= O(1) as m →∞, by (2.2), (3.2) and (3.4).

Now applying Hölder’s inequality with indices k and k ′, where
1

k
+

1

k ′
= 1, as in Tn,1, we

have that

m+1
∑

n=2

δ
(Pn

pn

)k(Pn

pn

)k−1
|Tn,2|

k
= O(1)

m+1
∑

n=2

δ
(Pn

pn

)k( pn

Pn

) 1

Pn−1

×

{n−1
∑

v=1

pv |tv |
k
|λv |

k
}{ 1

Pn−1

n−1
∑

v=1

pv

}k−1

= O(1)
m
∑

v=1

pv |λv |
k−1

|λv ||tv |
k

m+1
∑

n=v+1

δ
(Pn

pn

)k( pn

Pn

) 1

Pn−1

= O(1)
m
∑

v=1

|λv |δ
(Pv

pv

)k( pv

Pv

)

|tv |
k

= O(1) as m →∞,
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using the fact that Pv =O(v pv ), by (2.1) and nβn =O(
1

Xn
) =O(1), by (3.3), we have that

m+1
∑

n=2

δ
(Pn

pn

)k(Pn

pn

)k−1
|Tn,3|

k
= O(1)

m+1
∑

n=2

δ
(Pn

pn

)k( pn

Pn

) 1

Pn−1

×

{n−1
∑

v=1

(vβv )k pv |tv |
k
}{ 1

Pn−1

n−1
∑

v=1

pv

}k−1

= O(1)
m
∑

v=1

(vβv )(vβv )k−1pv |tv |
k

∞
∑

n=v+1

δ
(Pn

pn

)k
×

( pn

Pn Pn−1

)

= O(1)
m
∑

v=1

(vβv )δ
(Pv

pv

)k( pv

Pv

)

|tv |
k

= O(1)
m−1
∑

v=1

∆(vβv )
v
∑

i=1

δ
(Pi

pi

)k( pi

Pi

)

|ti |
k

+O(1)mβm

m
∑

v=1

δ
(Pv

pv

)k( pv

Pv

)

|tv |
k

= O(1)
m−1
∑

v=1

|∆(vβv )|Xv +O(1)mβm Xm

= O(1)
m−1
∑

v=1

v Xv |∆βv |+O(1)
m−1
∑

v=1

βv+1Xv +O(1)mβm Xm

= O(1) as m →∞,

by (2.2), (2.4), (3.1), (3.2), (3.3) and (3.4).

Finally, using the fact that Pv =O(v pv ), by (2.1), as in Tn,1 and Tn,2, we have that

m
∑

n=1

δ
(Pn

pn

)k(Pn

pn

)k−1
|Tn,4|

k
= O(1)

m
∑

v=1

|λv+1|δ
(Pv

pv

)k( pv

Pv

)

|tv |
k

= O(1) as m →∞.

Therefore, we get that

m
∑

n=1

δ
(Pn

pn

)k(Pn

pn

)k−1
|Tn,r |

k
=O(1) as m →∞, for r = 1,2,3,4.

This completes the proof of the theorem.

If we take pn = 1 for all values of n in this theorem, then we get a result concerning the

|C ,1;δ|k summability methods.
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