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GROWTH ESTIMATES ON CERTAIN INTEGRAL INEQUALITIES IN
TWO VARIABLES INVOLVING ITERATED INTEGRALS

B. G. PACHPATTE

Abstract. The aim of the present paper is to establish growth estimates on some new integral
inequalities in two independent variables involving iterated double integrals, which can be used
to study the qualitative behavior of solutions of certain partial integrodifferential and integral

equations. Applications are also given to illustrate the usefulness of one of our results.

1. Introduction

Inequalities which provide explicit growth estimates on the unknown functions have
played a fundamental role in the theory of differential, integral and finite difference
equations. A detailed account on such inequalities and some of their applictions can be
found in [1-4, 7, 8] and the references given therein. In [2] Bykov and Salpagarov (see also

[1, 3, 4]) have established the explicit upper bounds on the following integral inequalities
involving iterated integrals

<c+/kt5 ds—|— ( h(t,s, o) (U)da>ds,

<c+/b ds+/ (/k )ds
(o))

under some suitable conditions on the functions involved therein. In the qualitative anal-
ysis of some general classes of partial integrodifferential and integral equations the bounds
provided by the earlier inequalities in the literature are inadequate and it is necessary to
seek some new inequalities in order to achieve a diversity of desired goals. Motiviated by
the above inequalities, in this paper we establish some new integral inequalities involving
functions of two independent variables, which can be used as ready tools in the analysis
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of certain classes of partial integrodifferential and integral equations. Some applications
of one of our results are also given.

2. Statement of Results

In what follows, R denotes the set of real numbers and Ry = [0,00), I = [0,q],
J = [0, 8] are given subsets of R. We denote by A =1 x J, D = {(z,y,s,t) € A?2:0 <
s<r<a,0<t<y<p}, E={(z,y,5t07)cA:0<0<s<z<a0<7<t<
y < B} and C(A, B) the class of continuous functions from the set A to the set B. The
partial derivatives of a function z(z,y) z, y € R with respect to z, y and zy are denoted
by zz(z,y), zy(z,y) and zzy(x,y) respectively.

Our main results are established in the following theorems.

Theorem 1. Let u € C(A, Ry), k(z,y,s,t), ka(2z,y,s,t), ky(z,y,5,1), kxoy(z,9,s,t)
€ C(DaRJr)’ h(Z,y,S,t,U,T), hx(zay737t70a7—)) hy(zay737t70a7—)) ha:y(zayasat70a7—) €
C(E,Ry) and ¢ > 0 be a constant.

(a1) If

z Y
u(z,y) <c +/ / k(z,y, s, t)u(s,t)dtds
o Jo

T Yy s t
+/ / (/ / h(x,y,s,t,o,r)u(a,r)drda) dtds, (2.1)
o Jo 0o Jo
for (z,y) € A, then

u(z,y) < cexp (/Ox /Oy[A(m,n) + B(m,n)]dndm) ) (2.2)

for (z,y) € A, where
x
A(x,y)=k¢(x,y,:v,y)+/ ko (2, y, & y)dE
0

Yy xT Y
+/ ky(x,y,w,n)dnJr/ / kuy(,y, &, n)dnd, (2.3)

B(z,y) / / (x,y,x, y,UTdea—i—/ (/ / hz(z,y, s, y,aT)dea)
+/ (/ / hy(z,y,z,t,0, T)deU) dt
0 o Jo
x y s t
+/ / (/ / hmy(ac,y,s,t,a,T)dea) dtds. (2.4)
o Jo 0 Jo

(ag) Let g(u) be continuously differentialbe function defined for u > 0, g(u) > 0 for
u>0 and ¢g'(u) >0 for u>0. If

wa et [ [ bes0gtuts. s
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+/Ox /Oy (/0 /Ot h(x,y,s,t,o,T)g(u(a,T))dea) dtds (2.5)

fOT’(l‘,y)EA, thenfOTOngxl;Ogygyl;x’ 1’161, Y, ylGJ’

u(z,y) < G71 |:G(c) + /Oz /Oy[A(m,n) + B(m,n)]dndm] : (2.6)
where A(z,y), B(z,y) are given by (2.3), (2.4),
G(r)/T%, r >0, (2.7)

ro > 0 is arbitrary, G=1 is the inverse of G and x1 € I, y; € J are chosen so that
z oy
G(c) +/ / [A(m,n) + B(m,n)]dndm € Dom(G™'),
o Jo

for all (z,y) € A such that 0 <z <x1,0<y <y.

Theorem 2. Let U(I’,y), a(:c,y) € C(AaRJr)) k(x,y,s,t) € C(DaRJr)’ h(:c,y,s,t,
o,7) € C(E,Ry) and ¢ > 0 be a constant.
(b1) If

u(z,y) <c+ /Ol‘ /Oy a(s,t)u(s,t)dtds + /Ox /Oy (/OS /Ot k(s t,0,7)u(o, T)deU) dtds
+/O$ /Oy (/Os /Ot (/00 /OT h(s,t, 0, T,m,n)u(m,n)dndm) drda) dtds, (2.8)

for (xz,y) € A, then
Ty
X dtd. .
e < con ([ [ Qo aas). (2.9

Ty
Q(a,y) = a(z,y) + / /O k(. y, 0,7)drdo

Ty o pT
+/ / (/ / h(z,y, o, T,m,n)dndm) drdo. (2.10)
o Jo o Jo

(b2) Let g(u) be as in Theorem 1, part (ag). If

for (z,y) € A, where

u(z,y) < e+ /OJC /Oy a(s,t)g(u(s,t))dtds

+/Ox /Oy (/0 /Otk(s,t,o,T)g(u(o,T))deo) dtds
+/Ox/0y </0/0t </00/0 h(s, 1,0, T,m,n)g(u(m,n))dndm) deJ> dtds, (2.11)
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for (x,y) € A, then for 0 < ax <9, 0 <y <yo;x, z2 €1, y, y2 € J,

u(z,y) <G 1 [G(c) +/Ox /Oy Q(s,t)dtds} , (2.12)

where Q(z,y) is given by (2.10), G, G~* are as in Theorem 1, part (az) and w3 € I,
ys € J are chosen so that

T oy
G(c) +/ / Q(s,t)dtds € Dom(G™1),
o Jo
for all (x,y) € A such that 0 < x < x9, 0 <y < yo.

Theorem 3. Let u(z,y) € C(A,Ry) and ¢ > 0 be a constant.
(Cl) Let k(l‘,y, S, t)’ @(l‘,y, S, t) € C(Da RJr)) h(:c,y, s, t, 0, 7_) € C(Ea R+) be nonde-
creasing in (z,y) € A for fived (s,t) € A, (s,t,0,7) € A% and suppose that

z oy
u(z,y) <e —|—/ / k(x,y, s, t)u(s,t)dtds
o Jo

x y s t
+/ / (/ / h(z,y,s,t,o,7)u(o, T)deJ> dtds
o Jo o Jo

a
+/ / e(z,y, s, t)u(s, t)dtds, (2.13)
o Jo

for (z,y) € A. If

a B
p(x,y)Z/ / e(z,y,s,1)
o Jo
s t m rn
xexp</ / [k(s,t,m,n)Jr/ / h(s,t,m,n,J,T)dea]dndm)dtds<1,
0o Jo o Jo

(2.14)
for (x,y) € A, then

¢ Ty m rn
u(z,y S*@(p(// {k:ﬂ,y,m,n +/ / hx,y,m,n,a,7d7da]dndm>,
@) 1—p(z,y) o Jo ( ) o Jo ( )
(2.15)

for (z,y) € A.
(co) Let a(x,y), blx,y) € C(ARy), k(x,y,s,t) € C(D,Ry), h(z,y,s,t,0,7) €
C(E,Ry) and suppose that

u(z,y) <c+ /01’ /Oy a(s,t)u(s,t)dtds + /Or /Oy </OS /Ot k(s,t,o,m)u(o, T)deO’) dtds
-l-/oz /Oy (/05 /Ot (/OU /OT h(s,t, 0, T,m,n)u(m,n)dndm) dea) dtds

a B
+/O /0 b(s,t)u(s,t)dtds, (2.16)
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for (z,y) € A. If

g /Oa /Oﬁ b(s, ) exp (/O /Ot Q(g,n)dndg) dtds < 1, (2.17)

where Q(x,y) is given by (2.10), then

u(w,y) < 1 ‘ ~oxp </0 /OyQ(s,t)dtds> : (2.18)

for (z,y) € A.

3. Proofs of Theorems 1-3

(a1) We frist assume that ¢ > 0 and define a function z(z,y) by the right hand
side of (2.1). Then z(z,y) > 0, u(z,y) < z(z,y), 2(0,y) = 2(z,0) = ¢ and z(z,y) is
nondecreasing in both the variables (x,y) € A. Tt is easy to observe that (see [7, p.328])

Zey(2,y) < [A(2,y) + B(w,y)|2(2, y), (3.1)

where A(x,y), B(z,y) are given by (2.3), (2.4). Now by following the proof of Theorem
4.2.1 given in [7], from (3.1) we get

z(x,y) < cexp (/Ol /Oy[A(m,n) + B(m, n)]dndm) , (3.2)

for (z,y) € A. Using (3.2) in u(x,y) < z(z,y), we get the required inequality in (2.2).
If ¢ > 0 we carry out the above procedure with ¢ + € instead of ¢, where ¢ > 0 is an
arbitrary small constant, and subsequently pass to the limit as € — 0 to obtain (2.2).
(ag) We note that since ¢’(u) > 0 on R, the function g(u) is monotone increasing on
(0,00). Assume that ¢ > 0 and define a function z(z,y) by the right hand side of (2.5).
Then z(z,y) > 0, u(z,y) < z(z,y), 2(0,y) = 2(z,0) = c and z(z,y) is nondecreasing in
both the variables (z,y) € A. It is easy to see that

zay(2,y) < [A(2,y) + B2, y)lg(2(2, ), (3.3)

where A(z,y), B(z,y) are given by (2.3), (2.4). The remaining proof can be completed
by following the proof of Theorem 5.2.1 given in [7]. The proof of the case when ¢ > 0
follows as mentioned in the proof of (aq).

(b1) Let ¢ > 0 and define a function z(z,y) by the right hand side of (2.8). Then
z(z,y) > 0, u(z,y) < z(x,y), 2(0,y) = z(2,0) = ¢ and z(z,y) is nondecreasing in both
the variables (x,y) € A and

2ay(@,y) = ala,y)ule,y) + / ' / " k(e,y,0,7)ul(0, 7)drdo

T py o T
+/ / (/ / h(ac,y,a,r,m,n)u(m,n)dndm) drdo
o Jo o Jo
Y)

< Q(z,y)z(z, (3-4)
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where Q(z,y) is given by (2.10). Following the proof of Theorem 4.2.1 given in [7], from

(3.4) we get
(z,y) < cexp </0 /Oy Q(s, t)dtds> . (3.5)

Using (3.5) in u(x,y) < z(z,y) we get the desired inequality in (2.9). The case when
¢ > 0 follows as noted in the proof of (a;).

(b2) The proof can be completed by following the proof of (b;) and closely looking
at the proof of Theorem 5.2.1 given in [7]. Here we leave the details to the reader.

(c1) Frist assume that ¢ > 0 and fix any arbitrary (X,Y) € A. Then for 0 <z < X,
0 <y <Y we have

T ry
U(x,y)§c+/ / k(X,Y,s, t)u(s,t)dtds
0 0

x y s t
+/ / (/ / hX,Y,s,t, 0, 7)u(o, T)deO’) dtds
o Jo o Jo
a rf
+/ / e(X,Y, s, t)u(s, t)dtds. (3.6)
o Jo

Let
a B
d= c+/ / e(X,Y, s, t)u(s,t)dtds, (3.7)
o Jo

then (3.6) can be restated as

oy
u(z,y) < d+/ / k(X,Y, s, t)u(s,t)dtds
o Jo

x y s t
+/ / (/ / hX,Y,s,t, o 7)u(o, T)dea) dtds, (3.8)
o Jo 0o Jo

for 0 <z < X, 0 <y <Y. Define a function z(z,y) by the right hand side of (3.8).
Then z(z,y) > 0, u(x,y) < z(z,y), 2(0,y) = 2(z,0) = d, z(z,y) is nondecreasing in both
the variables z, y lyingin 0 <2< X,0<y <Y and

¢ ry
zxy(x,y)=k(X,Y,w,y)U($,y)+/O /O WX, Y, 2y, 0,7)u(o, 7)drdo
@ ry
< [k:(X,Y,x,y)—l—/ / h(X,Y,x,y,o,T)dea] z(z,y). (3.9)
o Jo

Now by following the proof of Theorem 4.2.1 given in [7], from (3.9) we get

Ty m  rn
z(z,y) < dexp </ / {k(X, Y, m,n) +/ / hX,Y,m,n,o, T)deO’:| dndm> .
o Jo o Jo
(3.10)
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for 0<z<X,0<y<Y. Since (X,Y) € A is arbitrary, from (3.10), (3.7) with (X,Y)
replaced by (x,y) and u(z,y) < z(x,y) we have

T py m  pn
u(z,y) < dexp (/ / [k(:c,y,m,n) +/ / h(z,y,m,n,o, T)deO’:| dndm> ,
o Jo o Jo

(3.11)
for (z,y) € A, where

a B
d=c+ / / e(z,y, s, t)u(s, t)dtds, (3.12)
o Jo

for (z,y) € A. Using (3.11) in the integrand on the right hand side of (3.12) and in view
of (2.14) we have
c
d< — . 3.13
~ 1-p(a,y) (3.19)
Using (3.13) in (3.11), we get the required inequality in (2.15). The proof of the case
when ¢ > 0 follows as noted in the proof of (a;).

(c2) Let ¢ > 0 and denote

a B
d :ch/O /0 b(s,t)u(s,t)dtds. (3.14)

Then (2.16) can be restated as

u(z,y) <d + /Ol‘ /Oy a(s,t)u(s,t)dtds + /01‘ /Oy (/Os /Ot k(s,t,o,7)u(o, T)deJ> dtds
+/Ol‘ /Oy (/0é /Ot (/OU /OT h(s,t,a, T,m,n)u(m,n)dndm) deO’) dtds.(3.15)

Define a function z(z,y) by the right hand side of (3.15). Then z(z,y) > 0, u(x,y)
z(z,y), 2(0,y) = z(x,0) = d', z(z,y) is nondecreasing in both the variables (z,y) €
and

>IN

Zay(2,y) = alz, y)u(r,y) + /01’ /Oy k(z,y,o,7)u(o, 7)drdo

T py o T
+/ / (/ / h(:c,y,J,T,m,n)u(m,n)dndm) drdo
o Jo o Jo
Y)-

< Q(z,y)z(z, (3.16)

The rest of the proof can be completed by following the proof of Theorem 4.2.1 given in
[7] and closely looking at the proof of (c1) given above.
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4. Applications

In this section, we present some applications of the inequality given in Theorem 3, part
(c1) to study certain properties of solutions of the Volterra-Fredholm integral equation
of the form

H2oy) = f(z.y) //ny,stz(st))dtds

+/ / (//H(:E,y,s,t,a,T,z(a,T))dea> dtds
o Jo o Jo

a B
+/ / L(z,y,s,t, z(s,t))dtds, (4.1)
o Jo

where z, f € C(A,R), F,L € C(D x R,R), H € C(E x R,R). Here we note that the
existence proofs for the solutions of equation (4.1) show either that the operator T defined
by the right hand side of (4.1) is a contraction (in which case one also has uniqueness) or
T is compact and continuous on a suitable subspace of the space of continuous functions
(see also [5, 6]).

The following theorem gives the explicit bound on the solution of equation (4.1).

Theorem 4. Suppose that the functions f, F, H, L satisfy the conditions

lf(z,y)] <c, (42)
|F(z,y,s,t,2)] < k(z,y,s,t)|z], (4.3)
|H(z,y,s,t,0,7,2)| < h(z,y,s,t,o,7)|z, (4.4)
|L(z,y,s,t,2)| <e(x,y,s,t)|z|, (4.5)

where ¢, k, h, e are as in Theorem 3, part (c1). Let p(x,y) be as in (2.14). If z(z,y) is
a solution of equation (4.1) on A, then

|2(z,

W) < c
~1—p(z,y)

con( [[ [ Jwamon [ [ btenm s aan) a5

for (z,y) € A.

Proof. The solution z(x,y) satisfies the equation (4.1). Using (4.2)—(4.5) in (4.1)
we have

z oy
o)l et [ [ hwys las Dldeds
0 0

x y s t
+/ / (/ / h(z,y, s, t,o,7)|z(0, T)|d7'd0) dtds
o Jo o Jo

a rB
+/O /O e(x,y, s, t)|z(s, t)|dtds. (4.7)
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Now an application of the inquality given in Theroem 3, part (c1) to (4.7) yields the
bound in (4.6).

The next result deals with the uniqueness of solutions of equation (4.1).

Theorem 5. Suppose that the functions F, H, L in (4.1) satisfy the conditions

|F(Iay757taz) - F(xayasataz)l S k(I,y,S,t)|Z - 2|7 (48)
|H(£L',y,8,t,0, 7—72) - H(:c,y, 57t707 T, 2)| S h(may757t70a T)|Z - Z|a (49)
|L(x,y, S,t,Z) - L(may737t72)| S e(l‘,y, S,t)|Z - 2|a (410)

where k, h, e are as in Theorem 3, part (c1). Let p(z,y) be as in (2.14). Then the
equation (4.1) has at most one solution on A.

Proof. Let z(z,y) and Z(z,y) be two solutions of equation (4.1) on A. Using the
facts that z(x,y) and z(z,y) satisfy the equation (4.1) and the conditions (4.8)—(4.10)
we have

22, 4) — 2(z, )] < / ’ / Uy s 0)]2(s.1) — 2(s, 1) deds

x y s t
+/ / (/ / h(z,y,s,t,o,7)|z(0,7) — Z(o, T)|d7'd0) dtds
o Jo o Jo
a B
+/ / e(z,y,s,t)|z(s,t) — Z(s, t)|dtds. (4.11)
o Jo
Now a suitable application of Theorem 3, part (c1) (when ¢ = 0) to (4.11) yields

|z(z,y) — z2(z,y)| <O0.

Therefore z(x,y) = z(x,y), i.e. there is at most one solution to the equation (4.1) on A.

The next theorem deals with the continuous dependence of solutions of equation (4.1)
on the fucntions involved on the right hand side of equation (4.1).
Consider the equation (4.1) and the following equation

w(z,y) = F(,y) / / Fla,y, 5,1, w(s, 1))dtds

+/ / (//H(:E,y,s,t,a,T,w(a,T))dea> dtds
o Jo o Jo

« B B
+/ / L(z,y,s,t,w(s,t))dtds (4.12)
o Jo
where w, f € C(A,R), F, L€ C(D x R,R), H € C(E x R, R).

Theorem 6. Suppose that the functions F, H, L in equation (4.1) satisfy the condi-
tions (4.8), (4.9), (4.10) in Theorem 5 and further assume that

[f(x,y) = f(z,y)] < (4.13)
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/x /y |F(z,y,s,t,w(s,t)) — F(x,y,s,t,w(s,t))|dtds < e, (4.14)
o . ot 0 _
/ / (/ / |H(x,y,s,t,0,T,w(s,t)) — H(x,y,s,t,0, T,w(s,t))|d7'da> dtds < e,
o o (4.15)
/Oa /Oﬁ |L(z,y,s,t,w(s,t)) — L(x,y,s,t,w(s,t))|dtds < e, (4.16)

where € > 0 is an arbitrary small constant. Let p(x,y) be as in (2.14). Then the solution
of equation (4.1) depends continuously on the functions involved on the right hand side
of equation (4.1).

Proof. Let z(x,y) and w(x,y) be the solutions of equations (4.1) and (4.12) respec-
tively. Then we have

z2(2,y) — w(z,y)
= f(x, f(z,y) / / {F(x,y,s,t,2(s,t)) — F(x,y,s,t,w(s,t)) }dtds

+/O /0 {F(z,y,s,t,w(s,t)) — F(z,y,s,t,w(s,t))}dtds

T ry s ot
Jr/ / (/ / {H(z,y,s,t,0,7,2(0,7)) = H(2,y,5,t, 0,7, w(0, T))}dodT) dtds
0 0 0o Jo
T ry s rt )
+/ / (/ / {H(Iayasataa7 T,’UJ(O', T)) - H(%y,&t,a, T,w(a, T))}dO'dT) dtds
0 0 o Jo

a rf
[ [ st 2(5.0) = Lz sitoos,)hards
a rf
+/ / {L(x,y,s,t,w(s,t)) — L(z,y,s,t,w(s,t)) }dtds. (4.17)
Using (4.8)—(4.10) and (4.13)—(4.16) in (4.17) we get

|2(x,y) — w(z,y |<4e+/ / (x,y,s,t)|z(s,t) —w(s,t)|dtds

+/0 /o (/o /o h(m,y,s,t,a,7)|z(a,7‘)—w(a,r)|d7da) dtds

a rf
+/ / e(z,y,s,t)|z(s,t) — w(s,t)|dtds. (4.18)
o Jo
Now an application of Theorem 3, part (cq) to (4.18) yields
2(z,y) —w(z,y)|

§4[1_ exp(// [ xymn// my,anT)deo}dndm>]

(4.19)
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for (z,y) € A. On the compact set, the quantity in first square bracket in (4.19) is

bounded by some positive constant, say M. Therefore |z(z,y) —w(x,y)| < 4 € M on the

set, so the solution of equation (4.1) depends continuously on the functions involved on

the right hand side of equation (4.1). If ¢ — 0, then |z(z,y) — w(z,y)| — 0 on the set.
We next consider the following Volterra-Fredholm integral equations

H(2,y) = f(z,y) //ny,stz(st) J)dids

+/ / (//H(I';yaS,t,U,T,Z(O’,T),M)deO’) dtds
0 0 0 0

a B
+/ / L(z,y,s,t,z(s,t), p)dtds, (4.20)
o Jo
z oy
o) = fa) + [ [ P ta(.0), po)dtds
o Jo

T Y s pt
+/ / (/ / H(z,y,s,t,0, T,Z(J,T),uo)d7d0> dtds
0 0 0 0
a B
0 0

where z, f € C(A,R), F, L € C(D x R>,R), H € C(E x R%,R) and p, uo are real
parameters.

The following theorem shows the dependency of solutions of equations (4.20) and
(4.21) on parameters.

Theorem 7. Suppose that

4.22
4.23
h(z,y, s t,0,7)|]z—z], (4.24

|F(x,y,s,t,z,pu) — F(x,y,s,t,2, 1) (4.22)
(4.23)
(4.24)
o (2, y,8,t,0,7) | — pol, (4.25)
(4.26)
(4.27)

k(z,y,s,t)|z — 2],
|F(z,y,s,t, 2, p1) — F(2,y, 8,1, 2, po)| < 71(2,9,8,1) |10 — ol

|H(z,y,s,t,0,7,2,1) — H(x,y,8,t,0,7,Z, 11
|H(x,y,8,t,0,7,2,p) — H(x,y,8,t,0,7,2, 1o
4.26

4.27

<
<r
<
<r
<e(z,y,s,t)z—z|,
<r

|
|
)|
)|
|L(z,y,s,t, 2, 1) — L(z,y,8,t,Z, 1|
)|

|L(2,y, 8,t, 2, 1) — L(x,y, 8, t, 2, f1o 3(z,y,5,t) | — pol,

where k, h, e are as in Theorem 3, part (c1) and r1, r3 € C(D,Ry), 1o € C(E,Ry) are
such that

Ty
/ / ri(x,y, s, t)dtds < kq, (4.28)
o Jo

x Yy s t
/ / (/ / ro(x,y,s,t,0, T)deU) dtds < ko, (4.29)
o Jo o Jo

a B
/ / r3(x,y, s, t)dtds < ks, (4.30)
o Jo
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where k1, ko, ks are positive constants. Let p(x,y) be given by (2.14). Let z1(x,y) and
zo(x,y) be the solutions of equations (4.20) and (4.21) respectively. Then

|Zl(may) - ZQ(I'ay”
< (B1 ko 4 ks)|u — pol

- p(z,y
Ty m  pn
X exp </ / {k(m,y,m,n) +/ / h(z,y,m,n,o, T)dea] dndm) , (4.31)
o Jo o Jo

for (z,y) € A.

Proof. Let z(z,y) = z1(z,y) — z2(x,y), (z,y) € A. Then
z gy
o) = [ [ st (st = oyt ) ) deds
o Jo
z gy
+/ / {F(:E,y,s,t,ZQ(s,t),u) 7F(l‘,y,S,t,ZQ(S,t),‘Lto)}dtdS
o Jo

Jr/oz/Oy(/OS/Ot{H(x,y,S,t,U,T,Z1(U,T),M)

—H(z,y,s,t,0,7,22(0,T) )}deO’) dtds

+/Ox/Oy(/OS/Ot{H(x’y,S,t,g,r,zQ(a,TLM)

_H(Ia Y, 8,t,0,7, ZQ(U, T), /.lo)}deO') dtds

a B
[ [ im0 = L st (o 0.0 s
/ / {L(x,y,s,t,22(s,t),u) — L(x,y, s,t, za(s,t), po) }dtds. (4.32)
Using (4.22)—(4.30) in (4.32) we get

z oy
(2 9)] < (K1 + ko + ks)| — po] + / / k(. 5, 5,8)| (s, )| dtds
0 0

T Y s t
+/ / </ / h(z,y,s,t,o,7)|2(0, T)|deJ> dtds
o Jo o Jo
a B
+/ / e(z,y, s,t)|z(s, t)|dtds. (4.33)
o Jo

Now a suitable application of Theorem 3, part (c1) to (4.33) yields (4.31), which shows
the dependency of solutions of equations (4.20) and (4.21) on parameters.
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In conclusion, we note that the results given in Theorems 1—3 can be generalized to

obtain explicit bounds on integral inequalities involving many iterated double integrals
and also to the functions with more than two independent variables. We leave the
formulation of such results to the reader to fill in where needed. Various other applications
of the inequalities given here is left to another work.

(1]
2]
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