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AN INVERSE SPECTRAL PROBLEM FOR NON-SELFADJOINT

STURM-LIOUVILLE OPERATORS WITH NONSEPARATED

BOUNDARY CONDITIONS

V. YURKO

Abstract. Non-selfadjoint Sturm-Liouville operators on a finite interval with nonsepa-

rated boundary conditions are studied. We establish properties of the spectral character-

istics and investigate an inverse problem of recovering the operators from their spectral

data. For this inverse problem we prove a uniqueness theorem and provide a procedure

for constructing the solution.

1. Introduction

Consider the boundary value problem L = L(q,h,α,β,T ) of the form

− y ′′+q(x)y = λy, x ∈ [0,T ], (1)

y(0) = αy(T ), y ′(0)−h y(0) =βy ′(T ), (2)

where q(x) ∈ L(0,T ) is a complex-valued function, α,β,h are complex numbers, and α+β 6=
0, αβ 6= 0. We study a nonlinear inverse problem of recovering L from its spectral data. For this

inverse problem we prove a uniqueness theorem and provide a procedure for constructing

the solution. Similar results are valid for another type of nonseparated boundary conditions:

y ′(0)−h y(0)+αy(T ) = y ′(T )+H y(T )−βy(0) = 0.

Inverse spectral problems often appear in mathematics as well as in applications [1, 2,

3, 4]. For selfadjoint Sturm-Liouville operators with separated boundary conditions, inverse

spectral problems have been studied fairly completely (see the monographs [1, 2, 3, 4] and the

references therein). Inverse problems for nonseparated boundary conditions in the selfad-

joint case were investigated in [5]-[13] and other works. Non-selfadjoint case is more difficult

for studying. Inverse problems for non-selfadjoint Sturm-Liouville operators with separated

boundary conditions were investigated in [4, 14, 15]. In [16] the structure of the spectrum

for the non-selfadjoint periodic case is investigated. Inverse problems for non-selfadjoint
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boundary value problem L have not been studied yet. We note that the inverse problem, con-

sidered here, appears in the inverse problem theory for differential operators on spatial net-

works with cycles (see [17, 18, 19, 20, 21]) which have many applications in natural sciences

and engineering.

Some words about the structure of the paper. In section 2 properties of the spectrum are

established. The Weyl-type function and the corresponding Weyl sequence are introduced

and investigated in section 3. Section 4 is devoted to the solution of the inverse spectral prob-

lem for L. The main result is formulated in theorem 3. In section 5 we study the periodic

boundary value problem which is a particular case of L. For convenience of readers, we for-

mulate there the results from [8] (published in 1981 only in Russian) where necessary and

sufficient conditions for the solvability of the inverse problem were obtained for the selfad-

joint periodic case.

2. Properties of the spetrum

Let C (x,λ), S(x,λ) and ϕ(x,λ) be solutions of equation (1) under the initial conditions

C (0,λ) = S ′(0,λ) =ϕ(0,λ) = 1, C ′(0,λ) = S(0,λ)= 0, ϕ′(0,λ) =h.

Clearly, ϕ(x,λ) = C (x,λ)+hS(x,λ). Let λ = ρ2, τ = Imρ, q1(x) = 1
2

∫x
0 q(t )d t , q1 = q1(T ). It is

known (see, for example [3]) that for |ρ|→∞,

C (x,λ) = cosρx +q1(x)
sinρx

ρ
+o

(e |τ|x

ρ

)

, C ′(x,λ) =−ρ sinρx +q1(x)cosρx +o(e |τ|x),

S(x,λ) =
sinρx

ρ
−q1(x)

cosρx

ρ2
+o

(e |τ|x

ρ2

)

, S ′(x,λ) = cosρx +q1(x)
sinρx

ρ
+o

(e |τ|x

ρ

)

.

The function ∆(λ) = αϕ(T,λ)+βS ′(T,λ)− (1+αβ) is entire in λ of order 1/2, and the set of

its zeros Λ = {λn }n≥0 (counting with multiplicities) coincides with the eigenvalues of L. The

function ∆(λ) is called the characteristic function for L. For |ρ|→∞,

∆(λ) = (α+β)
(

cosρT −γ+γ1
sinρT

ρ
+o

(e |τ|T

ρ

))

, (3)

where γ = αβ+1
α+β and γ1 = q1 + hα

α+β . Let {λ0
n }n≥0 be the eigenvalues of L0 = L(0,0,α,β,T ) with

q(x) = 0, h = 0. Then the characteristic function of L0 has the form

∆
0(λ) = (α+β)(cosρT −γ) =

α+β

2

(

e iρT +e−iρT −2γ
)

. (4)

Let z = e iρT , and let z1,2 = γ±
√

γ2 −1 be the roots of the equation z2 − 2γz + 1 = 0. Then

λ0
n = (ρ0

n)2, {ρ0
n} = {ρ0

n,1}∪ {ρ0
n,2},

ρ0
n, j =

2nπ

T
−

i

T
ln z j , j = 1,2.
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We agree that if z = |z|e iξ, ξ ∈ [0,2π) then ln z = ln |z|+ iξ,
p

z = |z|1/2e iξ/2.

Examples. (1) Let γ= 1. Then z1 = z2 = 1, ln z j = 0,

∆
0(λ) = (α+β)(cosρT −1), ρ0

n,1 =
2nπ

T
, n ≥ 0, ρ0

n,2 =
2nπ

T
, n ≥ 1.

(2) Let γ=−1. Then z1 = z2 =−1, ln z j =πi , ρ0
n,1 = ρ0

n,2 =
(2n +1)π

T
, n ≥ 0.

(3) If γ 6= ±1, then all eigenvalues {λ0
n}n≥0 are simple. Let, for example, γ= 1/2. Then

ρ0
n,1 =

1

T

(π

3
+2nπ

)

, n ≥ 0, ρ0
n,2 =

1

T

(

−
π

3
+2nπ

)

, n ≥ 1.

If γ= 0, then z1,2 =±i , ln z1 =πi /2, ln z2 = 3πi /2, ρ0
n = (n +1/2) πT , n ≥ 0.

Using (3), by the known method (see [22]) one gets λn = ρ2
n , {ρn} = {ρn,1}∪ {ρn,2},

ρn, j = ρ0
n, j +εn, j , εn, j = o(1), n →∞. (5)

More precisely (see [23]),

εn, j =
γ1

2πn
+o

( 1

n

)

, if γ 6= ±1,

εn, j =
1

2πn

(

γ1 + (−1) j h/2
)

+o
( 1

n

)

, if γ=±1, α=β,

εn, j = o
( 1
p

n

)

, if γ=±1, α 6=β.

Theorem 1. (i) Let γ 6= 1 (i.e. ∆0(0) 6= 0). Then

∆(λ)= (α+β−1−αβ)
∞
∏

n=0

λn −λ

λ0
n

, λ0
n 6= 0. (6)

(ii) Let γ= 1 (i.e. ∆0(0) = 0). Then

∆(λ)=−
(α+β)T 2

2
(λ−λ0)

∞
∏

n=1

λn −λ

λ0
n

, λ0
2n =λ0

2n−1 =
(2πn

T

)2
. (7)

Proof. It follows from (4) that

∆̇
0(λ) =−(α+β)T

sinρT

2ρ
, ∆̇

0(λ) :=
d

dλ
∆

0(λ) =
1

2ρ

d

dρ
∆

0(λ),

and consequently, ∆0(0) =α+β−1−αβ, ∆̇0(0) =−(α+β)T 2/2 6= 0. Using Hadamard’s factor-

ization theorem we get

∆
0(λ) = A0

∞
∏

n=0

λ0
n −λ

λ0
n

, A0 =α+β−1−αβ, λ0
n 6= 0, if γ 6= 1,
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∆
0(λ) = B 0λ

∞
∏

n=1

λ0
n −λ

λ0
n

, B 0 =−
(α+β)T 2

2
, λ0

2n =λ0
2n−1 =

(2πn

T

)2
, if γ= 1.

Let for definiteness, γ 6= 1, ∆(0) 6= 0 (other cases are treated similarly). Then, by Hadamard’s

factorization theorem,

∆(λ) = A
∞
∏

n=0

λn −λ

λn
,

where A 6= 0 is a constant. Therefore,

∆(λ)

∆0(λ)
=

A

A0

∞
∏

n=0

λ0
n

λn

∞
∏

n=0

λ−λn

λ−λ0
n

=
A

A0

∞
∏

n=0

λ0
n

λn

∞
∏

n=0

(

1−
λn −λ0

n

λ−λ0
n

)

.

By virtue of (3)−(5),

lim
λ→−∞

∆(λ)

∆0(λ)
= 1, lim

λ→−∞

∞
∏

n=0

(

1−
λn −λ0

n

λ−λ0
n

)

= 1.

This yields

A = A0
∞
∏

n=0

λn

λ0
n

,

and we arrive at (6). Relation (7) is proved similarly.

3. The Weyl sequence

Denote d (λ) := S(T,λ). Zeros V = {νn}n≥1 of d (λ) (counting with multiplicities) coincide

with the eigenvalues of the boundary value problem L0 for equation (1) with Dirichlet bound-

ary conditions y(0) = y(T ) = 0. The function d (λ) is called the characteristic function for L0.

Let Gδ := {ρ : |ρ− (nπ)/T | ≥ δ ∀n}. Then (see [1], [3])

p
νn =

nπ

T
+

q1

nπ
+o

( 1

n

)

, n →∞, (8)

d (λ) =
T 3

π2

∞
∏

n=1

νn −λ

n2
, (9)

|d (λ)| ≥ C |ρ|−1e |τ|T , ρ ∈Gδ, |ρ| ≥ ρ∗. (10)

LetΦ(x,λ) be the solution of equation (1) under the conditionsΦ(0,λ) = 1, Φ(T,λ) = 0. Denote

M (λ) :=Φ
′(0,λ). The function M (λ) is called the Weyl function for L0. Clearly,

M (λ) = −
d1(λ)

d (λ)
, (11)

Φ(x,λ) = C (x,λ)+M (λ)S(x,λ), (12)

where d1(λ) := C (T,λ). Relation (12) is used for solving inverse spectral problems for the

boundary value problem L0 by the method of spectral mappings [4, 14, 15]. Since d1(λ) =
O(e |τ|T ), it follows from (10)-(11) that

|M (λ)| ≤C |ρ|, ρ ∈Gδ, |ρ| >ρ∗. (13)
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For |ρ|→∞, one has

d1(λ) = cosρT +q1
sinρT

ρ
+o

(e |τ|T

ρ

)

, d (λ) =
sinρT

ρ
−q1

cosρT

ρ2
+o

(e |τ|T

ρ

)

,

ḋ (λ) =
1

2ρ

(T cosρT

ρ
+

(q1T −1)sinρT

ρ
+o

(e |τ|T

ρ

))

, ḋ (λ) :=
d

dλ
d (λ).

In particular, this yields

M (λ) = iρ+o(1), |ρ|→∞, argρ ∈ [δ,π−δ], (14)

Let mn be the multiplicity of νn (νn = νn+1 = . . .= νn+mn−1). Denote

S := {n ≥ 2 : νn−1 6=νn}∪ {1}, I := {n ∈ S : mn > 1}.

It follows from (8) that I is a finite set, i.e. mn = 1 for sufficiently large n (n > n∗). Fix n ∈ S.

Using (11) we obtain that in a neighborhood of the point λ = νn the function M (λ) has the

representation

M (λ) =
mn−1
∑

ν=0

Mn+ν
(λ−νn)ν+1

+M∗
n (λ), (15)

where M∗
n (λ) is regular in λ= νn , and the coefficients Mn+ν, ν= 0,mn −1 are calculated from

d (ν)
1 (νn) and d (ν+mn)(νn) for ν= 0,mn −1. More precisely,

Mn+mn−1−ν = −
1

d 0
0n

(

d 1
νn +

ν−1
∑

k=0

Mn+mn−1−kd 0
ν−k ,n

)

, ν= 0,mn −1,

d 1
νn :=

1

ν!
d (ν)

1 (νn), d 0
νn :=

1

(ν+mn)!
d (ν+mn)(νn), ν= 0,mn −1.

In particular, if mn = 1 (i.e. n ∈ S \ I ), then

Mn =−
d1(νn)

ḋ(νn)
. (16)

The sequence {Mn}n≥1 is called the Weyl sequence, and the data D := {νn , Mn}n≥1 are called

the spectral data. One has

ḋ (νn) =
(−1)n T

2νn

(

1+o
( 1

n

))

, d1(νn) = (−1)n
(

1+o
( 1

n

))

, n →∞. (17)

Using (8), (16) and (17) we get

Mn =−
2n2π2

T 3

(

1+o
( 1

n

))

, n →∞. (18)

Take θ> 0 such that d (±iθ) 6= 0. For n ∈ S, we denote

bν,n :=
1

ν!

( z

z2 +θ2

)(ν)

|z=νn

, ν= 0,mn −1.
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Let us consider the function

N (λ) :=
∑

n∈S

mn−1
∑

ν=0

(

1

(λ+νn)ν+1
+bν,n

)

Mn+ν. (19)

By virtue of (8) and (18),

(

1

λ−νn
+

νn

ν2
n +θ2

)

Mn =
(

θ2 +λνn

(λ−νn)(ν2
n +θ2)

)

Mn =O

(

1

n2

)

, n →∞,

and consequently, the series in (19) converges absolutely and uniformly in λ on compacts

without {νn}.

Theorem 2. The specification of the spectral data D uniquely determines the Weyl function by

the formula

M (λ) = N (λ)+a, (20)

where N (λ) is defined by (19), and

a = lim
λ→−∞

(−N (λ)+ iρ). (21)

Proof. Consider the functions

JN (λ) :=
1

2πi

∫

ΓN

(

1

λ− z
+

z

z2 +θ2

)

M (z)d z, (22)

where ΓN = {z : |z| = π2

T 2 (N +1/2)2}. By virtue of (13),

(

1

λ− z
+

z

z2 +θ2

)

M (z) =O

(

1

z3/2

)

.

Therefore, the integral in (22) converges absolutely and uniformly in λ on compacts without

ΓN , and

lim
N→∞

JN (λ) = 0. (23)

On the other hand one can calculate JN (λ), using the residue theorem. This yelds

JN (λ) = −M (λ)+
∑

n∈S, νn∈i ntΓN

Res
z=νn

(

1

λ− z
+

z

z2 +θ2

)

M (z)+a,

a = Res
z=iθ

z

z2 +θ2
M (z)+ Res

z=−iθ

z

z2 +θ2
M (z).

By virtue of (15), one has

Res
z=νn

M (z)

λ− z
=

mn−1
∑

ν=0

Mn+ν
(λ−νn)ν+1

, Res
z=νn

zM (z)

z2 +θ2
=

mn−1
∑

ν=0

bν,n Mn+ν.
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Taking (23) and (14) into account we arrive at (20) and (21).

4. Inverse problems

In this section we formulate and study an inverse problem of recovering L from its spec-

tral data. The main result is Theorem 3, where an algorithm for the solution of the inverse

problem is provided, and the uniqueness of the solution is proved. Denote

D(λ) =αϕ(T,λ)+βS ′(T,λ), Q(λ)=αϕ(T,λ)−βS ′(T,λ).

Then

ϕ(T,λ) =
1

2α

(

D(λ)+Q(λ)
)

, S ′(T,λ) =
1

2β

(

D(λ)−Q(λ)
)

.

Since ϕ(x,λ)S ′(x,λ)−ϕ′(x,λ)S(x,λ)≡ 1, it follows that

Q2(λ) =D2(λ)−4αβ(1+ϕ′(T,λ)S(T,λ)), (24)

and consequently,

Q̇(λ)Q(λ) = Ḋ(λ)D(λ)−2αβ(ϕ̇′(T,λ)S(T,λ)+ϕ′(T,λ)Ṡ(T,λ)). (25)

Let n ∈ S. Denote

ωn =















0, Q(νn) = 0,

+1, Q(νn) 6= 0, argQ(νn) ∈ [0,π),

−1, Q(νn) 6= 0, argQ(νn) ∈ [π,2π),

ωnν := d (ν)
1 (νn), ν = 0,mn −1, I0 = {n ∈ I : ωn = 0}, I1 = {n ∈ I : ωn 6= 0}. The sequence Ω =

{ωn}n∈S ∪ {ωnν}n∈I0, ν=1,mn−1 is called the Ω- sequence for L. We note that if I =; (i.e. mn = 1

for all n), then Ω= {ωn}n≥1. For example, I =;, if q(x),h,α,β are real, i.e. in the self-adjoint

case. Let α and β be known a priori and fixed. The inverse problem is formulated as follows.

Inverse problem 1. Given Λ,V and Ω, construct q(x),h and T.

Obviously, in general it is not possible to recover uniquely the coefficients α and β, but

it is possible to calculate γ. Note that Inverse problem 1 is a generalization of the classical

inverse problems in the selfadjoint case (see [5]-[13]).

The solution of Inverse problem 1 can be constructed as follows. Using (8) we calculate

T. By virtue of (6)-(7) and (9) we find d (λ) and ∆(λ). Then we calculate D(λ) =∆(λ)+ (1+αβ).

It follows from (24) that Q2(νn) = D2(νn)−4αβ, n ∈ S, and consequently,

Q(νn)=ωn

√

D2(νn)−4αβ, n ∈ S. (26)
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Since ϕ(T,νn) =C (T,νn), we construct

ωn0 =
1

2α

(

D(νn)+Q(νn)
)

, n ∈ S. (27)

Now we are going to calculate the Weyl sequence {Mn}n≥1.

Case 1. Let n ∈ S, n ∉ I (i.e. mn = 1). Taking (16) into account we get

Mn =
ωn0

ḋ (νn)
. (28)

Case 2. Let n ∈ I1 (i.e. mn > 1, ωn 6= 0). Then it follows from (25) that

(Q̇(λ)Q(λ))(ν−1)
|λ=νn

= (Ḋ(λ)D(λ))(ν−1)
|λ=νn

, ν= 1,mn −1. (29)

Using (29) we find Q (ν)(νn), ν= 1,mn −1. Since d1(λ) = 1
2α

(

D(λ)+Q(λ)
)

−hd (λ), we construct

ωnν, ν= 1,mn −1 by the formula

ωnν =
1

2α

(

D(ν)(νn)+Q (ν)(νn)
)

, ν= 1,mn −1. (30)

Case 3. Let n ∈ I0 (i.e. mn > 1, ωn = 0). Then ωnν, ν= 1,mn −1 are given a priori.

Thus, we have constructed the Weyl sequence {Mn}n≥1. It is also possible to construct

the Weyl function M (λ) by (20)-(21). Our calculations show that Inverse problem 1 is reduced

to the following inverse problem.

Inverse problem 2. Given D = {νn , Mn}n≥1, construct q(x).

This non-selfadjoint inverse problem was solved in [15]. For this inverse problem the

uniqueness theorem was proved and a constructive procedure for its solution was provided

in [15]. Moreover, necessary and sufficient conditions for the solvability of Inverse problem 2

were also established. We note that for the selfadjoint case Inverse problem 2 is equivalent to

the classical inverse Sturm-Liouville problem (see [1, 2, 3, 4]).

Thus, we have obtained a procedure for the solution on Inverse problem 1 and proved its

uniqueness, i.e. the following theorem holds.

Theorem 3. The specification of Λ, V and Ω uniquely determines q(x),h and T. The solution

of Inverse problem 1 can be found by the following algorithm.

Algorithm 1. Given Λ, V and Ω.

(1) Find T, using (8).

(2) Construct ∆(λ) and d (λ) by (6)-(7) and (9).

(3) Calculate D(λ) =∆(λ)+ (1+αβ).
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(4) Find Q(νn), n ∈ S, by (26).

(5) Calculate ωn0, n ∈ S, by (27).

(6) Construct Q (ν)(νn), n ∈ I1, ν= 1,mn −1 using (29).

(7) Find ωnν, n ∈ I1, ν= 1,mn −1, via (30).

(8) Calculate the Weyl sequence {Mn}n≥1 using (28) and the recurrent formula

Mn+mn−1−ν =−
1

d 0
0n

(

d 1
νn +

ν−1
∑

k=0

Mn+mn−1−kd 0
ν−k ,n

)

, n ∈ S, ν= 0,mn −1, d 1
νn :=

1

ν!
ωnν.

(9) Find the potential q(x) by solving Inverse problem 2 (see [15]).

(10) Calculate the coefficient h, using (3).

5. Periodic boundary conditions

In this section we study the periodic boundary value problem which is a particular case of

L. For convenience of readers, we formulate here the results from [8] (published in 1981 only

in Russian) where necessary and sufficient conditions for the solvability of the inverse prob-

lem were obtained for the selfadjoint periodic case. In [5] one can find another conditions for

the characterization of the periodic spectrum.

Let us consider the periodic boundary value problem L′ := L(q(x),0,1,1,π) with α= β=
1, h = 0, T =π, and real-valued potential q(x)∈ L2(0,π). Denote

p(λ) = 1−
1

2

(

C (π,λ)+S ′(π,λ)
)

.

The zeros Λ= {λn }n≥0 of p(λ) coincide with the eigenvalues of L′. It is known (see [1]) that λn

are real, and

λ2n−1 = (2n)2 +a +κ′
2n−1, λ2n = (2n)2 +a +κ′

2n , {κ′
n} ∈ l2, λn ≤λn+1, λn <λn+2, (31)

where a = 1
π

∫π
0 q(t )d t . Moreover, it follows form (7) that

p(λ) =
π2

2
(λ−λ0)

∞
∏

n=1

λn −λ

λ0
n

, λ0
2n−1 =λ0

2n = (2n)2. (32)

Denote s(λ) = p(λ)− 2. The zeros {µn}n≥1 of s(λ) coincide with the eigenvalues of the anti-

periodic boundary value problem L′′ := L(q(x),0,−1,−1,π). It is known that µn are real, λ0 <
µ1 ≤µ2 <λ1 ≤λ2 < . . . , and

µ2n−1 = (2n −1)2 +a +κ′′
2n−1, µ2n = (2n −1)2 +a +κ′′

2n , {κ′′
n} ∈ l2.

Moreover,

max
λ∈[λ2n ,λ2n+1]

p(λ) ≥ 2. (33)
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We will show that condition (33) is also sufficient for the solvability of the inverse problem. It

is known (see [1, 2, 3, 4]) that the zeros {νn}n≥1 of d (λ) := S(π,λ) are real, and

νn = n2 +a +κ0
n , {κ0

n} ∈ l2, ν2n ∈ [λ2n−1,λ2n], ν2n−1 ∈ [µ2n−1,µ2n]. (34)

Denote Q(λ) =C (π,λ)−S ′(π,λ), Ω′ = {ωn}n≥1, where ωn = signQ(νn), i.e. ωn = 0, if Q(νn) = 0,

and ωn =±1, if ±Q(νn) > 0. The sequence Ω
′ is called the sign sequence for q.

Now we will give the characterization of the spectrum of L′. We will say that a real se-

quence {λn }n≥0 ∈S if there exists L′ such that {λn }n≥0 is the spectrum of L′. Denote by J the

set of sequences {ωn }n≥1 such that ωn = 0 if p(νn)s(νn) = 0, and ωn =±1 if p(νn)s(νn) 6= 0.

Theorem 4. Let the real numbers {λn}n≥0 of the form (31) be given. For {λn }n≥0 ∈ S it is nec-

essary and sufficient that (33) holds, where p(λ) is constructed by (32). Moreover, if we addi-

tionally have real numbers {νn}n≥1 satisfying (34), where {µn}n≥1 are zeros of s(λ) = p(λ)−2,

and the sequence {ωn }n≥1 ∈ J , then there exists a unique real function q(x) ∈ L2(0,π) for which

{λn }n≥0 and {νn}n≥1 are the eigenvalues of L′ and L0, respectively, and {ωn }n≥1 is the sign se-

quence for q.
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