Available online at http://journals.math.tku.edu.tw/

A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE AND FIXED SECOND COEFFICIENTS

S. SIVASUBRAMANIAN, N. MAGESH AND MASLINA DARUS

Abstract. In this paper we introduce and study a subclass $\mathcal{M}_P(\alpha, \lambda, c)$ of meromorphic univalent functions. We obtain coefficient estimates, extreme points, growth and distortion bounds, radii of meromorphically starlikeness and meromorphically convexity for the class $\mathcal{M}_P(\alpha, \lambda, c)$ by fixing the second coefficient. Further, it is shown that the class $\mathcal{M}_P(\alpha, \lambda, c)$ is closed under convex linear combination.

1. Introduction

Let $\boldsymbol{\Sigma}$ denote the class of functions of the form

$$f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n$$
(1.1)

which are analytic in the punctured open unit disk

$$\mathbb{U}^* := \{ z : z \in \mathbb{C}, 0 < |z| < 1 \} =: \mathbb{U} \setminus \{ 0 \}.$$

Let $\Sigma_{\mathscr{S}}$, $\Sigma^*(\alpha)$ and $\Sigma_K(\alpha)$, $(0 \le \alpha < 1)$ denote the subclasses of Σ that are meromorphically univalent functions, meromorphically starlike functions of order α and meromophically convex functions of order α respectively. Analytically, $f \in \Sigma^*(\alpha)$ if and only if, f is of the form (1.1) and satisfies

$$-\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ z \in \mathbb{U},$$

similarly, $f \in \Sigma_K(\alpha)$, if and only if, f is of the form (1.1) and satisfies

$$-\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathbb{U},$$

Corresponding author: S. Sivasubramanian.

²⁰¹⁰ Mathematics Subject Classification. 30C80, 30C45.

Key words and phrases. Meromorphic functions, meromorphically starlike functions, meromorphically convex functions.

and similar other classes of meromorphically univalent functions have been extensively studied by Altintas et al. [1], Aouf [2, 3], Ganigi and Uralegaddi [6], Kulkarni and Joshi [9], Mogra et al. [11], Uralegadi [12], Uralegaddi and Ganigi [13] and Uralegaddi and Somanatha [14] and others.

Let Σ_P be the class of functions of the form

$$f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n, \ a_n \ge 0,$$
(1.2)

that are analytic and univalent in \mathbb{U}^* . For functions $f \in \Sigma$ given by (1.1) and $g \in \Sigma$ given by

$$g(z) = z^{-1} + \sum_{n=1}^{\infty} b_n z^n,$$
(1.3)

we define the Hadamard product (or convolution) of f(z) and g(z) by

$$(f * g)(z) := z^{-1} + \sum_{n=1}^{\infty} a_n b_n z^n =: (g * f)(z).$$
(1.4)

Now, in the following definition, we define a subclass $\mathcal{M}_P(\alpha, \lambda)$ for functions in the class Σ_P .

Definition 1.1. For $0 \le \alpha < 1$ and $0 \le \lambda \le 1$, let $\mathcal{M}(\alpha, \lambda)$ denote a subclass of Σ consisting of functions of the form (1.1) satisfying the condition that

$$\Re\left(\frac{zf'(z)}{(\lambda-1)f(z)+\lambda zf'(z)}\right) > \alpha, \ z \in \mathbb{U}^*.$$
(1.5)

Furthermore, we say that a function $f \in \mathcal{M}_P(\alpha, \lambda)$, whenever f(z) is of the form (1.2). For the class $\mathcal{M}_P(\alpha, \lambda)$, the following characterization was given by Kavitha et al., [8].

Theorem 1.1. Let $f \in \Sigma_P$ be given by (1.2). Then $f \in \mathcal{M}_P(\alpha, \lambda)$ if and only if

$$\sum_{n=1}^{\infty} [n + \alpha - \alpha \lambda (1+n)] \ a_n \le (1-\alpha).$$
(1.6)

For a function defined by (1.2) and in the class $\mathcal{M}_P(\alpha, \lambda)$, Theorem 1.1, immediately yields

$$a_1 \le \frac{(1-\alpha)}{1+\alpha(1-2\lambda)}.\tag{1.7}$$

Hence we may take

$$a_1 = \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}, \quad c \ (0 < c < 1).$$
(1.8)

Motivated by the works of Aouf and Darwish [4], Aouf and Joshi [5], Ghanim and Darus [7], Magesh et al. [10] and Uralegaddi [12], we now introduce the following class of functions and use the similar techniques to prove our results.

Let $\mathcal{M}_P(\alpha, \lambda, c)$ be the subclass of $\mathcal{M}_P(\alpha, \lambda)$ consisting of functions of the form

$$f(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} [n+\alpha - \alpha\lambda(1+n)]a_n z^n$$
(1.9)

where 0 < c < 1.

The main object of this paper is to obtain coefficient estimates, extreme points, growth and distortion bounds, radii of meromorphically starlikeness and meromorphically convexity for the class $\mathcal{M}_P(\alpha, \lambda, c)$ by fixing the second coefficient. Further, it is shown that the class $\mathcal{M}_P(\alpha, \lambda, c)$ is closed under convex linear combination.

2. Main results

In our first theorem, we now find out the coefficient inequality for the class $\mathcal{M}_P(\alpha, \lambda, c)$.

Theorem 2.1. Let the function f(z) defined by (1.9). Then $f \in \mathcal{M}_P(\alpha, \lambda, c)$ if and only if,

$$\sum_{n=2}^{\infty} [n+\alpha - \alpha\lambda(1+n)]a_n \le (1-\alpha)(1-c).$$
(2.1)

The result is sharp.

Proof. By putting

$$a_1 = \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}, \quad 0 < c < 1,$$
(2.2)

in (1.6), the result is easily derived. The result is sharp for the function

$$f(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}z^n, \quad n \ge 2.$$
 (2.3)

Corollary 2.2. If the function f defined by (1.9) is in the class $\mathcal{M}_P(\alpha, \lambda, c)$, then

$$a_n \le \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}, \quad n \ge 2.$$

$$(2.4)$$

The result is sharp for the function f(z) given by (2.3).

Next we obtain growth and distortion properties for the class $\mathcal{M}_P(\alpha, \lambda, c)$.

Theorem 2.3. If the function f(z) defined by (1.9) is in the class $\mathcal{M}_P(\alpha, \lambda, c)$ for 0 < |z| = r < 1, then we have

$$\frac{1}{r} - \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}r - \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}r^2 \le |f(z)|$$

$$\leq \frac{1}{r} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}r + \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}r^2.$$

The result is sharp for the function f(z) given by

$$f(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}z^{2}.$$

Proof. Since $f \in \mathcal{M}_P(\alpha, \lambda, c)$, Theorem 2.1 yields,

$$a_n \le \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}, \quad n \ge 2.$$

$$(2.5)$$

Thus, for 0 < |z| = r < 1

$$\begin{split} |f(z)| &\leq \frac{1}{|z|} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} |z| + \sum_{n=2}^{\infty} a_n |z|^n \\ &\leq \frac{1}{r} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} r + r^2 \sum_{n=2}^{\infty} a_n \leq \frac{1}{r} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} r + \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)} r^2 \end{split}$$

and

$$\begin{split} |f(z)| &\geq \frac{1}{|z|} - \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} |z| - \sum_{n=2}^{\infty} a_n |z|^n \\ &\geq \frac{1}{r} - \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} r - r^2 \sum_{n=2}^{\infty} a_n \geq \frac{1}{r} - \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} r - \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)} r^2. \end{split}$$

Thus the proof of the theorem is complete.

Theorem 2.4. If the function f(z) defined by (1.9) is in the class $\mathcal{M}_P(\alpha, \lambda, c)$ for 0 < |z| = r < 1, then we have

$$\frac{1}{r^2} - \frac{(1-\alpha)c}{1+(1-\alpha)} - \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}r \le |f'(z)|$$
$$\le \frac{1}{r^2} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} + \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}r.$$

The result is sharp for the function f(z) given by

$$f(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}z^2.$$

Proof. In view of Theorem 2.1, it follows that

$$na_n \le \frac{2n(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}, \quad n \ge 2.$$
 (2.6)

Thus, for 0 < |z| = r < 1 and making use of (2.6), we obtain

$$|f'(z)| \le \left|\frac{-1}{z^2}\right| + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} + \sum_{n=2}^{\infty} na_n |z|^{n-1}, \ |z| = r$$

274

$$\leq \frac{1}{r^2} + \frac{(1-\alpha)c}{1+(1-\alpha)} + r \sum_{n=2}^{\infty} na_n$$

$$\leq \frac{1}{r^2} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} + \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}r$$

and

$$\begin{split} |f'(z)| &\geq \left|\frac{-1}{z^2}\right| - \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} - \sum_{n=2}^{\infty} na_n |z|^{n-1}, \ |z| = r\\ &\geq \frac{1}{r^2} - \frac{(1-\alpha)c}{1+(1-\alpha)} - r\sum_{n=2}^{\infty} na_n\\ &\geq \frac{1}{r^2} - \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)} - \frac{(1-\alpha)(1-c)}{2+\alpha(1-3\lambda)}r. \end{split}$$

Hence the result follows.

Next, we shall show that the class $\mathcal{M}_P(\alpha, \lambda, c)$ is closed under convex linear combination.

Theorem 2.5. If

$$f_1(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z$$
(2.7)

and

$$f_n(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}z^n, \quad n \ge 2.$$
 (2.8)

Then $f \in \mathcal{M}_P(\alpha, \lambda, c)$ if and only if it can expressed in the form

$$f(z) = \sum_{n=2}^{\infty} \mu_n f_n(z)$$
(2.9)

where $\mu_n \ge 0$ and $\sum_{n=2}^{\infty} \mu_n \le 1$.

Proof. From (2.7)(2.8)(2.9), we have

$$f(z) = \sum_{n=2}^{\infty} \mu_n f_n(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} \frac{(1-\alpha)(1-c)\mu_n}{[n+\alpha-\alpha\lambda(1+n)]}z^n.$$

Since

$$\sum_{n=2}^{\infty} \frac{(1-\alpha)(1-c)\mu_n}{[n+\alpha-\alpha\lambda(1+n)]} \frac{[n+\alpha-\alpha\lambda(1+n)]}{(1-\alpha)(1-c)}$$
$$= \sum_{n=2}^{\infty} \mu_n = 1 - \mu_1 \le 1$$

it follows from Theorem 1.1 that the function $f \in \mathcal{M}_P(\alpha, \lambda, c)$. Conversely, suppose that $f \in \mathcal{M}_P(\alpha, \lambda, c)$. Since

$$a_n \le \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}, \ n \ge 2.$$

Setting

$$\mu_n = \frac{[n+\alpha-\alpha\lambda(1+n)]}{(1-\alpha)(1-c)}a_n$$

and

$$\mu_1 = 1 - \sum_{n=2}^{\infty} \mu_n.$$

It follows that

$$f(z) = \sum_{n=2}^{\infty} \mu_n f_n(z).$$

Hence the proof complete.

Theorem 2.6. The class $\mathcal{M}_P(\alpha, \lambda, c)$ is closed under linear combination.

Proof. Suppose that the function f be given by (1.9), and let the function g be given by

$$g(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} |b_n|z^n, \ n \ge 2.$$

Assuming that *f* and *g* are in the class $\mathcal{M}_P(\alpha, \lambda, c)$, it is enough to prove that the function *H* defined by

$$h(z) = \mu f(z) + (1 - \mu)g(z), \quad 0 \le \lambda \le 1$$

is also in the class $\mathcal{M}_P(\alpha, \lambda, c)$. Since

$$h(z) = \frac{1}{z} + \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} |a_n\mu + (1-\mu)b_n|z^n,$$

we observe that

$$\sum_{n=2}^{\infty} [n + \alpha - \alpha \lambda (1+n)] |a_n \mu + (1-\mu) b_n| \le (1-\alpha)(1-c),$$

with the aid of Theorem 2.1. Thus $h \in \mathcal{M}_P(\alpha, \lambda, c)$.

Next we determine the radii of meromophically starlikeness of order δ and meromophically convexity of order δ for functions in the class $\mathcal{M}_P(\alpha, \lambda, c)$.

Theorem 2.7. Let the function f(z) defined by (1.9) be in the class $\mathcal{M}_P(\alpha, \lambda, c)$, then we have

(i) *f* is meromophically starlike of order $\delta(0 \le \delta < 1)$ in the disk $|z| < r_1(\alpha, \lambda, c, \delta)$ where $r_1(\alpha, \lambda, c, \delta)$ is the largest value for which

$$\frac{(3-\delta)(1-\alpha)c}{1+\alpha(1-2\lambda)}r^2 + \frac{(n+2-\delta)(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}r^{n+1} \le (1-\delta), \ n \ge 2.$$

(ii) *f* is meromophically convex of order $\delta(0 \le \delta < 1)$ in the disk $|z| < r_2(\alpha, \lambda, c, \delta)$ where $r_2(\alpha, \lambda, c, \delta)$ is the largest value for which

$$\frac{(3-\delta)(1-\alpha)c}{1+\alpha(1-2\lambda)}r^2 + \frac{n(n+2-\delta)(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}r^{n+1} \le (1-\delta), \ n \ge 2.$$

276

Each of these results is sharp for the function $f_n(z)$ given by (2.3).

Proof. It is enough to highlight that

$$\left| \frac{zf'(z)}{f(z)} + 1 \right| \le 1 - \delta, \ |z| < r_1.$$

Thus, we have

$$\left|\frac{zf'(z)}{f(z)} + 1\right| = \left|\frac{\frac{-1}{z} + \frac{(1-a)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} na_n z^n + \frac{1}{z} + \frac{(1-a)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} a_n z^n}{\frac{1}{z} + \frac{(1-a)c}{1+\alpha(1-2\lambda)}z + \sum_{n=2}^{\infty} a_n z^n}\right|.$$
 (2.10)

Hence (2.10) holds true if

$$\frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}r^2 + \sum_{n=2}^{\infty} (n+1)a_n r^{n+1} \\ \leq (1-\delta) \left[1 - \frac{(1-\alpha)c}{1+\alpha(1-2\lambda)}r^2 - \sum_{n=2}^{\infty} a_n r^{n+1} \right],$$
(2.11)

or,

$$\frac{(3-\delta)(1-\alpha)c}{1+\alpha(1-2\lambda)}r^2 + \sum_{n=2}^{\infty}(n+2-\delta)a_nr^{n+1} \le (1-\delta)$$
(2.12)

and it follows that from (2.1), we may take

$$a_n \le \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha\lambda(1+n)]}\mu_n, \ n\ge 2,$$
 (2.13)

where $\mu_n \ge 0$ and $\sum_{n=2}^{\infty} \mu_n \le 1$.

For each fixed *r*, we choose the positive integer $n_0 = n_0(r_0)$ for which

$$\frac{(n+2-\delta)}{[n+\alpha-\alpha\lambda(1+n)]}r^{n+1}$$

is maximal. Then it follows that

$$\sum_{n=2}^{\infty} (n+2-\delta)a_n r^{n+1} \le \frac{(n_0+2-\delta)(1-\alpha)(1-c)}{[n_0+\alpha-\alpha\lambda(1+n_0)]} r^{n_0+1}.$$
(2.14)

Then *f* is starlike of order δ in $0 < |z| < r_1(\alpha, \lambda, c, \delta)$ provided that

$$\frac{(3-\delta)(1-\alpha)c}{1+\alpha(1-2\lambda)}r^2 + \frac{(n_0+2-\delta)(1-\alpha)(1-c)}{[n_0+\alpha-\alpha\lambda(1+n_0)]}r^{n_0+1} \le (1-\delta).$$
(2.15)

We find the value $r_0 = r_0(k, c, \delta, n)$ and the corresponding integer $n_0(r_0)$ so that

$$\frac{(3-\delta)(1-\alpha)c}{1+\alpha(1-2\lambda)}r_0^2 + \frac{(n_0+2-\delta)(1-\alpha)(1-c)}{[n_0+\alpha-\alpha\lambda(1+n_0)]}r_0^{n_0+1} = (1-\delta).$$
(2.16)

It is the value for which the function f(z) is starlike in $0 < |z| < r_0$.

(ii) In a similar manner, we can prove our result providing the radius of meromorphically convexity of order δ ($0 \le \delta < 1$) for functions in the class $\mathcal{M}_P(\alpha, \lambda, c)$, so we skip the proof of (ii).

References

- [1] O. Altıntaş, H. Irmak and H. M. Srivastava, *A family of meromorphically univalent functions with positive coefficients*, Panamer. Math. J., **5** (1995), 75–81.
- M. K. Aouf, A certain subclass of meromorphically starlike functions with positive coefficients, Rend. Mat. Appl. (7) 9 (1989), 225–235.
- [3] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl. (7) 11 (1991), 209–219.
- [4] M. K. Aouf and H. E. Darwish, *Certain meromorphically starlike functions with positive and fixed second coefficients*, Turkish J. Math., **21** (1997), 311–316.
- [5] M. K. Aouf and S. B. Joshi, On certain subclasses of meromorphically starlike functions with positive coefficients, Soochow J. Math. 24 (1998), 79–90.
- [6] M. R. Ganigi and B. A. Uralegaddi, *New criteria for meromorphic univalent functions*, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 33(81) (1989), 9–13.
- [7] F. Ghanim and M. Darus, On class of hypergeometric meromorphic functions with fixed second positive coefficients, Gen. Math., 17 (2009), 13–28.
- [8] S. Kavitha, S. Sivasubramanian and K. Muthunagai, *A new subclass of meromorphic function with positive coefficients*, Bull. Math. Ana. Appl., **3** (2010), 109–121.
- [9] S. R. Kulkarni and Sou. S. S. Joshi, On a subclass of meromorphic univalent functions with positive coefficients, J. Indian Acad. Math. 24 (2002), 197–205.
- [10] N. Magesh, N. B. Gatti and S. Mayilvaganan, On certain class of meromorphic functions with positive and fixed second coefficients involving Liu-Srivastava linear operator, ISRN, Mathematics Analysis, Article ID 698307, 1–11, Vol. 2012.
- M. L. Mogra, T. R. Reddy and O. P. Juneja, *Meromorphic univalent functions with positive coefficients*, Bull. Austral. Math. Soc., **32** (1985), 161–176.
- [12] B. A. Uralegaddi, *Meromorphically starlike functions with positive and fixed second coefficients*, Kyungpook Math. J., **29** (1989), 64–68.
- [13] B. A. Uralegaddi and M. D. Ganigi, *A certain class of meromorphically starlike functions with positive coefficients*, Pure Appl. Math. Sci., **26** (1987), 75–81.
- B. A. Uralegaddi and C. Somanatha, *Certain differential operators for meromorphic functions*, Houston J. Math. 17 (1991), 279–284.

Department of Mathematics, University College of Engineering, (Anna University of Technology Chennai), Melpakkam -604 001, India.

E-mail: sivasaisastha@rediffmail.com

PG and Research Department of Mathematics, Government Arts College (Men), Krishnagiri - 635001, Tamilnadu, India.

E-mail: nmagi_2000@yahoo.co.in

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600.

E-mail: maslina@pkrisc.cc.ukm.my