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ON SOME OSTROWSKI TYPE INEQUALITIES VIA
MONTGOMERY IDENTITY AND TAYLOR’S FORMULA

A. AGLIC ALJINOVIC AND J. PECARIC

Abstract. A new extension of the weighted Montgomery identity is given, by using Taylor’s
formula, and used to obtain some Ostrowski type inequalities and the estimations of the difference

of two integral means.

1. Introduction

Let f : [a,b] — R be differentiable on [a,b], and f’ : [a,b] — R integrable on |a, b].
Then the Montgomery identity holds [5]

b b
f(x):ﬁ/ f(t)dt+/ Pa,t) £ (1) dt

where P (xz,t) is the Peano kernel, defined by

t—a

) a<t<uz,

b—a

P(z,t) = -
—_ r <t<b.

b—a

Now, let’s suppose w : [a, b] — [0, 00) is some probability density function, i.e. integrable
function satisfying f:w (t)dt = 1, and W (t) = fatw (x)dx for t € [a,b], W (t) = 0 for
t < aand W(t) =1 for ¢ > b. The following identity (given by Pecari¢ in [6]) is the
weighted generalization of Montgomery identity

b b
f () = / w(t) f (t)dt + / Py (a.t) /() dt (1.1)

where the weighted Peano kernel is

W (t), a<t<u,
Py (z,t) = (1.2)
W) -1, x<t<b.
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200 A. AGLIC ALJINOVIC AND J. PECARIC

In this paper we will extend the weighted Montgomery identity (1.2) using the Taylor’s
formula (Section 2.), and obtain some new Ostrowski type inequalities (Section 3.), as
well as some generalizations of the estimations of the difference of two weighted integral
means (Section 4).

2. An Extension of Montgomery Identity via Taylor’s Formula

Theorem 1. Let f : I — R be such that "~V is absolutely continuous for some
n>2, 1 CR an open interval, a,b € I, a <b. If w: [a,b] — [0,00) is some probability
density function. Then the following identity hold

n—2 f(iJrl) (:L'

b b .
f(:c):/ w(t) f(t)dt - )/ w(s) (s —x) " ds

— (i+1)!
b
+ﬁ/a T (x,5) £ (s)ds (2.1)
where .
/ w (u) (u— )" du, a<s<u,
Twn(x,8) = ¢

b
f/w(u)(ufs)nfldu, r<s<b.

Proof. If we apply Taylor’s formula with f’ (¢), (n > 2) we have

f’(t)fzf(ZH) (t— )’ /f”> )ds.

pr (n—2)!

By putting these two formulae in the weighted Montgomery identity (1.1) we obtain

b n2(z1)
<Wb/wUﬂW+ZLL—/waW@ﬁ

+/ (z,1) </ £ (s n—)2) d)dt.

[oetmims [ oot ([ors)s
o ([ e

:*i+1é w(s) (s — ) ds

Now,
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and similarly

/:(t—:c)i(vv(t)—1)dt=—/:(t—x)i </tbw(s)ds> dt
:—/:w(s) (/:(t—x)idt)ds

L /bw(s) (s—xz)*d
=— - s.
i+1),

Further, we have

201

[ro(f o a)a 1o [ v a)s

and
[ woe-sra- [ </:w<u>du) (t—5)" 2 dt
Stunlarly
[ -y ([ 1o 2as) a
- [0 (/:’(1 _W@))(t_s)n—m) s
and

/Sb(1W(t))(ts)”2dt/sb (/tbw(u)du> (t—s)""2dt
_ /Sbw(u) (/u (t — s)"? dt) du = /Sbw(u) (unj)fldu.

So the reminder in the weighted Taylor formula is

ﬁ{/jﬂn)@ </:w(u)(us)"1du) ds
+/:f(n> (s) <— /Sbw(u) (u—s)”ldu> ds]
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Remark 1. In the special case, if we take w (t) = 7=, ¢ € [a,b] the equality (2.1)
reduces to

fla) =5 i o /: f(t)ydt — :-l;:f(i-‘rl) (@) (b é)r;!(éa_a?)m
+(”—1 1) /ab T (@5) £ (5) ds (2:2)
where B n
T, (z.5) = @(G_s) , esss<e
g0 w<ssh

3. The Ostrowski Type Inequalities
In this section we generalize the results from [3] and [4].

Theorem 2. Suppose that all the assumptions of Theorem 1 hold. Additionally
assume that (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo, % + i =1, and

|f(”)|p on R-integrable function for some n > 2. Then we have
n—2 f(i+1)

b b .
‘f(x)—/ wifOdre X L8 [ e -0

i=0 (i +

< ﬁ (/ab |Twn (z,5)]7 ds) ' Hf(")

The constant ﬁ (f: |Twn (z,5)] ds) is sharp for 1 < p < oo and the best possible
forp=1.

(3.1)

p

Q=

Proof. We use the identity (2.1) and apply the Holder inequality to obtain

b n=2 e(i+1) (4
\f(ac)—/ w(t) fyae+ S L@

=0

b .
N / w(s) (s —x) T ds

f(”) b q
L (e

Let’s denote Cy (s) = ﬁTw,n (x,s). For the proof of the sharpness of the constant

b
ﬁ/ Twn(2,9) f(”) (s)ds

1
(f: |C1 (s)|* ds) * we will find a function f for which the equality in (3.1) is obtained.
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For 1 < p < oo take f to be such that

1

F (s) = sgn Ci(s) - [C1 (s)| 77

For p = oo take
F (s) = sgn Ci (s).

For p = 1 we shall prove that

/ Cy (s) f™ (s)ds

b
< max Gy (5) ( 7o (s)] ds> (3.2)

is the best possible inequality. Suppose that |C; (s)| attains its maximum at sg € [a, )]
First we assume that Cy (sg) > 0. For € small enough define f; (s) by

0, a<s< s,
1 ( )" <s<syg+e
={ —(s—s S s<s
fe (9) ol 8 T 80) 0= 8= 80t
1 _
— (s —s0)" ", s0+¢e<s<hbh.
n!
Then, for € small enough
b So-’r& 1 1 So-’r&
/ C1 (s) f™ (s)ds| = / Cy (s) —ds| = —/ Cy (s)ds
a S0 3 5 S0
Now, from inequality (3.2) we have
1 sote so+e 1
E/ Cy(s)ds < Cq (so)/ —ds = C1 (s0) .
S0 S0
Since,
1 so+e
HI% E Cl (S) ds = Cl (50)
e— s0

the statement follows. In case C (s9) < 0, we take

1

—(s—so—e)"", a<s<so,
n!
— 1
fe(s) = —Q(S—SO—&“)?}, 89 <8< 809+e¢,
0) SO+€§5Sba

and the rest of proof is the same as above.
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Corollary 1. Let f : I — R be such that I C R is a open interval, a,b € I, a < b and
(p,q) a pair of conjugate exponents, 1 < p < oo, and ‘f(") |p on R-integrable function for
some n > 2. Then we have

b—2)*? (o — 2)i*?
(t+2)!(b—a)

b n—2
|f<x> o [0 Y e !

f(n)

1
_ 1 (I _ a)qn+1 + (b _ x)qn+1 q
~nl(b—a) (ng+1) p
and the constant on the right hand side of the inequality is sharp. For p =1 we have

+2 ( i+2

b n—2 — a—2x
}f(x)—ﬁ/af(t)dt+iz=;f(i+1)(x)(b (i)+2)!(ba))

max {(z — a)", (b — )"} Hf(”)

<1
~ (b—a)n! 1
and the constant on the right hand side of the inequality is the best possible.

Proof. We apply the inequality (3.1) with w (t) = 72—, ¢ € [a,b] and use (2.2)

/ab|Tw’n (z,5)|7 ds = /az H qu

First
_(a_s)"q . 1 T . ) s — (x_a)nq-i-l
Soa | = | 6= ey

r

Similarly

r

—(b—9)"" 1 b e, (=)t
n(b—a) ds_n‘l(bfa)q/x(b s = e g £ 1)

So b +1 +1
| Monte s = @O +(b—a)
L nt (b= a) (ng + 1)

and the first inequality follows from the Theorem 2.

Forp=1
—(a—s)" —(b—9)"
sup |Twn(x,s)] =max< sup |——F|, —_— 1 5.
s€[a,b] | ( | {se[a,x] n (b - a) sefz,b] | T (b - a)
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By an elementary calculation we get

—(a—9)"|  (z—a)"

wcon| mO—a) | " n(b—a)

and (b-9)"| _ G-
iy nb—a) | " n—a)

Now, the second inequality follows from the Theorem 2.

Remark 2. If we apply (3.1) with x = “'H’ we get the generalized midpoint inequality

‘f (a;b) _/abw()f()dtJrjz::QW/a o) (s—‘%b)mds

<ot (e (55)

q 3
ds H £
p

If we additionally assume that w (t) is symmetric on [a,b] i.e. w(t) = w(b—a —t) for
every t € [a, b] this inequality reduces to

b b (21) atb = b\ 2
f(a;r>/a dtJer 2)/11 w(s)<sa;r) ds

b q %
< # / T a_er75 ds Hf(n)
(n—l)' a ’ 2 P

For the generalized trapezoid inequality we apply equality (2.1) first with = a, then
with x = b then add them up and divide by 2. After applying the Holder inequality we
get

n=2 r(j+1) a b ) (i+1) b -
it oo S [ -0

1
1 b :
<o w,n w.n q H (n)
=3 T (/ 1T (a:) + T (b, 9)| ds) £

and

s b
Twn(a,8) + Tyn (b, s) = / w (u) (u— )" du — / w (u) (u—s)"""du

b
= f/ w (u) |u—s[" " du
a
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Again, if we additionally assume that w (¢) is symmetric on [a, b] this inequality reduces
to

\f(a);f(b)‘/a o (®) F ()t

2D (g) + (—1)THE fEHD () g i1
+ ()2((i+)1)! ()Lw(s)(s_“)+d8‘

=0

1 b )
5 — 1\l (n)
< 9 (n — 1)| (/a |Tw,n (a, S) + T’Lu,n (b, S)| dS) Hf

p

4. The Estimation of the Difference of the Two Weighted Integral Means
In this section we generalize the results from [1] and [2] We denote

b— x)i+2 —(a— ac)i+2
(i +2)!(b—a)

n—2
1ol () = 3 040 ()
1=0

for function f : [a,b] — R such that f("~1) is absolutely continuous function for some
n > 2.

For the two intervals [a,b] and [c, d] we have four possible cases if [a,b] N [¢,d] # 0.
The first case is [c,d] C [a,b] and the second [a,b] N [¢,d] = [¢,b]. Other two possible
cases we simply get by change a < ¢, b < d.

Theorem 3. Let f : [a,b]U[c,d] — R be such that f™=1 is an absolutely continuous
function for some n > 2, w : [a,b] — [0,00) and u : [¢,d] — [0,00) some probability
density functions, W (t) = fatw (x)dz fort € [a,b], W(t) =0 fort <a and W(t) =1
fort > b, U(t) = fctu(:c)d:c fort €le,d], U({t) =0 fort <candU(t) =1 fort>d.
Then if [a,b] N [c,d] # 0 and x € [a,b] N [c,d], we have

[wo o [woroa e bt = [ K 1 0
¢ ¢ min{a,c} (4 1)
where in case [c,d] C [a, b

(n_—ll)! </Sw(t) (ts)nldt> ’ s € la,c),

(n__ll)! (/éw(t) (t*S)n ldt*/éu(t) (tfs)n ldt) , 5 € [c,x],
K, (z,s) = b J

(n_l 1)! / w(t)(t—s)"""dt - / w(t)(t—s)""" dt) . s€c{xd,

b
(ni 1! / w(t) (t_s)"ldt> : s e (db],
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and in case [a,b] N [e,d] = [c, b]

(n:11)! (/:w(t) (t—s)”ldt), s€lae),

(n%)! (/:w(t) (t—s)”ldt—/:u(t) (t—s)”ldt), seleal,
Honl,0) = ﬁ /Sbw(t) (ts)”ldt/sdu(t) (ts)"ldt> . se(mb],

(n%ll)! /Sdu(t) (t—s)”_ldt> s € (b,d],
. 11)3roof. We subtract identities (2.1) for interval [a,] and [c, d], to get the formula

Theorem 4. Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo,
% + % =1. Let ‘f(")‘p : [a,b] — R be an R-integrable function for some n > 2. Then we
have

W (@) =t (@)

s

b d
/w(t)f(t)dtf/ w(t) f () dt+ L

max{b,d} é
< / |K,, (x,8)|?ds Hf(”)
min{a,c}

for every x € [a,b]N[c,d]. The constant (f;ﬁiﬁbﬁ}

oo and the best possible for p = 1.

(4.2)

Q=

|K,, (z,8)]? ds) is sharp for 1 < p <

Proof. Use the identity (4.1) and apply the Holder inequality to obtain

b d
[w@r@a- [ @i @+l @

max{b,d} max{b,d} %
</ |meMwwﬁws</ muaﬂWQ\Mw

min{a,c} min{a,c} p

which proves the inequality. The proof for sharpness and the best possibility are similar
as in Theorem 2.

4.1. Case [c,d] C [a, b]
Here we denote

n—2

thet (2) = Y fOY (@)

=0

(b— ac)i+2 —(a— ac)i+2
(i+2)(b—a)
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Corollary 2. Let ‘f(")‘ [a,b] — R be an R- mtegmble function for some n > 2,
[e,d] C [a,b], x € [c,d], slfaJrﬁ, —=b_ Then if 51 ¢ [c,2], and

o ¢ [od] _

e /f pat = 2 [0 et ) 9 0

= (n+1).(b—a) [(x @)™ 4 (b—a)™ Z—Z (xc)"“%(dx)”“] Hf(n) o

b—a b—a

if s1 ¢ [c,x], and s2 € [x,d]

P [ /f — 4o (@) 4+t ()

)n—i-l _ (b _ I)n-‘rl + 9 (b _ 82)71—‘,-1

r—a

L [(
(n+1)!1(b—a)
+Z:(z ((d —o)"t (@ —e)"t = 2(d - 52)"“)} Hf(")

if s1 € [c,z], and s2 ¢ [x,d]

bialv(dt———/f dt — 1l (2) + e ()

[— (x — a)n'ir1 +(b— ac)n+1

8

N CEICET)

+2(s1 — a)"* % (=™ = @=2)"™*" = 2(s1 - c)”“)] Hf(”)

if s1 € [c,z], and s2 € [x,d]

bfa/UaMt /f — 8 (@) + 9 (a)

= f£i;13%a:ifas[2(<81-a)”*1-+<b——32>”+1)-—<x._cw”+1-—<b__x>n+1

b-a ((:c — )M (d— )" -2 ((51 )"y (d— 52)”“))} Hf<">

*a

—C o0

and

b—a/f t*—/f ydt — 1ot (z) + ¢l ()

n' b—a ’ b—a7 d—c  b—a |’
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Proof. We put w (t) = 3, t € [a,b]; u (t) = [¢,d] and ¢ = 1 in the Theorem

4. Thus we have " (z) and tled) (z) instead of t[a b] (z) and tL“;fﬂ (z) and

max{b,d}
/ | K, (z,8)| ds

min{a,c}
(a—s)"

ﬁ([md’”[
/: b—s)" (d—s)" d”/db

The first and the last integrals are

(a=5)" (c—9)"

nb—a) n(d-c)

(b—s)" ds)

n((b—a)

ds

nb—a) n(d--c)

I A Nk i o\ ds — (c—a)"™
Il*/a n(b—a) d n(b—a)/a (s—a)"d T nb—a)(n+1)
M =s)" o1 ’ s — (b—a)"
I4i/d n(b—a) d n(b—a)/d (b—s)"d " nb—a)(n+1)

Now, we suppose n is odd. The second integral is
A
C

— ds
S CEDICED) —c/| —c)(s—a)" —(b—a)(s—c)"|ds.

"G nli=9

Let s1 :a+1_f%\/“dz, f(8)=(d-¢c)(s—a)" —(b—a)(s—c)". We have f(s1) =0

and f’ (s1) # 0 so there are two possible cases:

1. If 81 > x, i.e. 51 € [c, z] we have
/| —c)(s—a)"—(b—a)(s—c)"|ds
_/ (A=) (s —a)" = (b—a) (s — )" ds

L (-0 (=0 - ™) ~ - a—er )

:n+1

2. If 51 <z, i.e. s € [c, 7] (since =5 <150 51 >¢)

/| —c¢)(s—a)"—(b—a)(s—c)"|ds
= [0 6-a -0 ds
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+/x((dc)(sa)n+(ba)(sc)")ds

= —— (-9 (21—~ (e— ) - - )"

+(b—-a) ((ac — )"t 2 (s — c)"+1)> :

The third integral is

d
.

(b-9)" (d—s)"

nb—a) n(d-c) ds

d
s ) @0t = =0 =" as
Let 52:bfl_i;dd;c,g(s):(d*C)(b*S)n*(b*a)(d—S)n. We have g (s2) = 0 and

b—a

g’ (s2) # 0 so again there are two possible cases:

1. If 89 < x, i.e. s3 ¢ [x,d] (since sy < d) we have
d
/ (A=) (b—8)" — (b—a) (d— 5)"|ds
d

:/I ((d=c)(b=s)" = (b—a)(d—s)")ds
- nJlrl ((d—c) ((b_gc)n—Irl - (b_d)n—H) —(b—a) (d—x)”"’l) .

2. If s3> x, i.e. s2 € [z,d] (since s3 < d)

[ ld=at-s" = o=@~ s
:/82(—(d—c)(b—s)"—i—(b—a)(d—s)")ds
+/ (d=c)(b—8)" — (b—a) (d— s)") ds

+(b—a) ((d —a)"t —2(d - 52)”“)) .
Now, we suppose n is even. The second integral is
1 T
h=——- ds.
= e [ s

Let s = a + —<*~— and s3 = a + —<2—. We have f(s1) = f(s3) = 0 and
1 177{/5 3 1+7{/§ f( 1) f( 3)

f'(s1) #0, f'(s3) # 0. By an elementary calculation we also have s3 < ¢ < s1 so there

are two possible cases:
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1. Ifsg<ec<si <z
/ (d—c)(s—a)" —(b—a)(s—c)"|ds
/ (d-—c)(s—a)" —(b—a)(s—c)")ds

+/m(f(dfc)(sfa)n+(bfa)(sfc)")ds

- n i 1 ((d —c) (2 (s1— a)"+1 —(c— a)"'H (z— a)"'H)
(b

—a) ((ac —e)"Tt = 2(sy — c)"H)) :

2. If ss<ec<xz<sy
/ (d—c)(s—a)" —(b—a)(s—c)"|ds
/ (d-=c)(s—a)"—(b—a)(s—c)")ds

_ ! (@0 (-0 = (c=a)"") = (b-0) (@~ "),

n+1
1 d

== —— ds.

= g [ el
Let s4 =b——=2_ and sy = b——=2 . We have g (s2) = ¢ (s4) =0 and ¢’ (s 0,

4 1+7{/g 2 1*@ 9(2) 9(4) 9(2)7é

g’ (s4) # 0. By an elementary calculation we also have sy < s4 and d < s4 so there are
two possible cases:

The third integral is

1. Ifso<ax<d< sy
/| —c)(b—3s)"—(b—a)(d—s)"|ds

l/(MAcﬂb 9"~ (b—a) (d—s)")ds

1

T+l <(d —9) ((b —a)" (b~ d)n—H) —(b—a)(d- :c)”‘“) .

2. Ifrx <sy<d< sy
/| ) (b—s)" — (b—a) (d— )"|ds
/ (—(d=c) (b )"+ (b—a) (d—s)") ds
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d
+/ (d=c)(b—8)"—(b—a)(d—s)")ds

+(b—a) ((d L Yo 52)”“)) .

Finally, by summing I, Is, I3 and I4, the statement for 1 < p < oo follows.
For p = 1, by putting w () = ﬁ, t € [a,b], and u (t) = ﬁ, t € [¢,d] in the Theorem
4 again, we have

1K (2, 5)]l oo = sup Ky (x,5)|
s€la,b]

1 N (a—s)" (a—s5)" (c—9)"
 (n—1)! x se[a,)i] n(b—a)| selea]|n(b—a) n(d—rc)
(b-s5)"  (d—s)" (b—s)"
sren[g,)fi} nb—a) n(d-c) ’se[d,)l(z] nb—a)|l]’
By an elementary calculation we get
(@a—s)"|_ (c—a)" (b—s)"|_(b—a)"
srél[%?i] nb—a)| nb-—a) srél[g,b] nb—a)| n{d-a)

and in both cases s1 € [¢,z] and s1 ¢ [c, 7]

(a—s5)" (c—9)" max{(ca)"
nb—a) n(d-c) n(b—a)’
and similarly for sy € [z, d] and s2 ¢ [z, d]

(b—s)" (d—s)" max{ (b—d)"
nb—a) n(d-c) n(b—a)’

Thus, the proof is done.

(r—a)" (x=o)"

nb—a) n(d-c)

max
s€lc,x]

}
|

Remark 3. If we put ¢ = d = z as a limit case, the inequalities from Corollary 2
reduce to Ostrowski type inequalities from Corollary 1.

b-—2)" (d-x)"

nb—a) n(d-c)

max
s€[x,d]

4.2. Case [a,b] N [c,d] = [c, b]

Corollary 3. Let ‘f(")‘ : la,d] — R be an R-integrable function for some n > 2

a4 e g g _d=b : ’
[a,b]ﬂ[c,d]C[c,b],ze[c,b], 51*a+1_n H;SQ b+1_7{/§ Thenzf51§2[0,x],
and sg ¢ [z, b)

1 b 1 d |
m /a f (t) dt — d—c /C f (t) dt — t£?7b] ($) + t%,d] (I)
1

<
~(n+1)! b—a d—c

oo

($ o a)nJrl _ (b _ x)nJrl . (d o I)nJrl o ($ o c)n+11 Hf(n)
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if s1 ¢ [c,x], and s2 € [z, D]

— /f dt——/f (t) dt — tleY (z) + tlod (2)

(z—a)" ™+ (b—z)"T —2(b—s9)" T
(b—a)

—[@d=2)"" (@ =" +2(d—s)"" | |l )
d—c Hf

if s1 € [c,x], and s ¢ [z,b]

b_a/f dtf—/f t)dt — tlo¥ (z) + tlod ()

< {2 (s1—a)""" = (@—a)""" = (b—2)""!
- n+1). b—a
T—c n+1 —x n+1 o s1 — n+1
I = [ A B

if s1 € [c,x], and sz € [z,b]

[ roa- 2 [ rwa- g @ vl w

(b*l‘)nJrl (l‘* )n+1+2( )n+172(b782)n+1
_(n+1). b—a
(@™ —(d=—a)"" +2(d—s)"" =251 =" || m)
+ d—c Hf 00
and
[ dt——/f et () + 40 (3)
<_maX{(c—a) @d=b" |@-a)" (@-—0o" ‘(b—x)n_(d—ac)n‘}Hf(n)
n! b—a ' d—c | b—a d—c |'| b—a d—c 1

[¢,d] and ¢ = 1 in the Theorem

ds+/

d
ds+/
b

Proof. We put w (t) = 3, t € [a,b]; u (t) = -
4. Thus
(a—s)"

max{b,d} 1 c
K = —-—-——— —_—
/min{a,c} o (@ 9)lds = 2=y, (/ no—a)

/b b—s)" (d—s)"

(a _ S)TL (C _ S)TL

nb—a) n(d-c

-
n(d—c) d)

ds

nb—a) n(d-c)
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The first and the last integrals are

“l(a—s)" (= a)"
n= [ e al = e g ey
—(d—s)" (d—b)"""
ne [ RS e
Suppose n is odd. The second integral is
[ a=9)"  (c—s)"
12*/0 (b—a)’ @-a®
:n(bfa 0 / |(d (s—a)" —(b—a)(s—c)"|ds.
Let51:a+1_t{/‘}7:;, (s) =(d—-c)(s—a)" —(b—a)(s—c)". We have f(s1) =0

and f’(s1) # 0, so there are two possible cases:

1. If s1 ¢ [c, 2] we have
/x|(dc)(sa)"(ba)(sc)n|ds

- [ - aG-a" - 0-as-ams

_ 1 ((d ) ((x —a)"t" = (c— a)n+1) —(b—a)(x- c)"+1) .

n+1

2. If $1 € [c, 2]
/ [(d—c)(s—a)"—(b—a)(s—c)"|ds
= [ == 0-a) (=) st [ (= d=0) =) + (0-a) (=" s
= nJlr - ((d —c) (2 (s1—a)" T —(c—a)" = (z — a)nH)
+(b—a) ((:c o)™t o (s — c)”“)) .
The third integral is
b5  (d—s)"

b
13:/x (b—a)* @l
e [l (b a)(d )" ds.
Let52:b+1_ %,g(s):(dfc)(bfs) —(b—a)(d—s)". We have g (s2) = 0 and

g’ (s2) # 0 and again we have two possible cases:
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1. If so ¢ [x,b] we have
b
/|<dfc><b "~ (b—a) (d— s)"| ds

b
:/ (—(d—c)(b—8)"+(b—a)(d—s)")ds

1

=1 (f (d—c¢)(b—2)"T + (b—a) ((d,x)nﬂ B (dib)nJrl))
]

2. If s3 € [z,b
/ |(d—c)(b—3s)" —(b—a)(d—s)"|ds
b
= [ @0 ="~ 0-a) (a=s" s [ =) 69"+ (- (d—)") ds
- Jlr - ((d p ((b —o)™ o 52)”“)
(b=a) (= (=) +2(d—s)""" = (@-0)""))
Now suppose n is even. The second integral is

1 xr
I = m/c |f (s)| ds.

Let ssfaJrAc =a+ - . We have f (s1) = f(s3) =0 and f’(s1) #0,

1+ 3/i=’ =
f'(s3) #0, s3 < s1. By an elementary calculation we also have a < s3 < ¢ so there are
three possible cases:

1. If s3 <81 <cor sz <c<zx< s wehave

/| — ) (s—a) — (b—a) (s — "] ds

2. If ss<e<si <

/m|(dfc)(sfa)nf(bfa)(sfc)"|ds

= /51((dfc) (s—a)" — (b—a)(s—c)") ds+/ (—(d—c)(s—a)" + (b—a) (s—c)") ds
1

L (-0 (oo oo o)

+(b—a) ((z )"t o (s — c)"“)) :
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The third integral is

1 b
I3 = m/x lg (s)|ds.

+n Tl pEn S2 + ey e have g (s2) = g (s4) and ¢’ (s2) # 0,
g’ (s4) # 0. By an elementary calculation we also have b < s4 so there are two possible
case:

Let s4 = b+

1. fz <b< sy <sgorsy <x<b< sy we have
/:|<d—c><b—s> —(b—a)(d—s)"|ds
=Lb<—<d—c><b—s>”+<b—a><d—s>”>ds
! (f (d—c)(b—2)"" + (b—a) ((d )" (d - b)”“)) .

:n+1

2. Ifz <sg<b< sy
/| — ) (b—s)" — (b—a) (d—s)"| ds
f/ (d— ) (b—3)" — (b—a) (d—s)")ds

/ c)(b—3s)"+(b—a)(d—s)")ds

= - Jlr - ((d —0 ((b )"t (b 52)"“)
(b—a) (= (=) +2(d—5)"" = (d=0)")).

Finally, by summing I, I, I3 and 14, the statement for 1 < p < oo follows.
For p = 1, by putting w (t) = 5=, t € [a,b], and u (t) = 7, ¢ € [¢, d] in the Theorem
4 again, we have

[ (2,8) |l oo = sup |Kn (2, 5)]

s€la,b]
1 (a—s)" (a—s)" (c—s)"
 (n—1)! max{srél[z;% n(b—a)| selcal|n(b—a) n(d-c)
n n n
max (b=s) (d=s) , max _d=s) .
selzb) [n(b—a) n(d—c)| sebd| n(d—c)
By an elementary calculation we get
n n n n
i (a—s) :(c—a) , i (d—s) :(d—b)
s€la,c] |1 (b—a) n((b—a) selbd | n(d—c) n(d—c)
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and in both cases s1 € [¢,z] and s1 ¢ [c, 7]

(a—9)" (c—9)" me{@aﬁ

nb—a) n(d—c) n(b—a)’

(z—a)" (z=o)"

nb—a) n(d-c)

b
b

Remark 4. If we put b = ¢ = = as a limit case, the inequalities from Corollary 3
reduce to

s€le,z]

and similarly for s, € [z,d] and s2 ¢ [z, d]

- {1

(b—s)" (d—s)"

nb—a) n(d-c

(b-2)" (d—a)"

nb—a) n(d-c)

max
s€[x,b]

Thus, the proof is done.

x_a/f - [ a4

[(z —a)" + (d—)"]||

- (n+ 1)!

and

z d
1./f@MP~J— F (@) dt —tlo (z) + =4 (1)

T—a d—2x J,

<= a- )

L .

Remark 5. If we suppose b = d in both cases [¢,d] C [a,b] and [a,b] N [c,d] = [e, b]
the analogues results in Corollary 2 and Corollary 3 coincides.
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