
TAMKANG JOURNAL OF MATHEMATICS
Volume 44, Number 2, 113-122, Summer 2013
doi:10.5556/j.tkjm.44.2013.1126

-
+

+

-

-
-

-
-

Available online at http://journals.math.tku.edu.tw/

COMMENT ON “EXACT BAYESIAN VARIABLE SAMPLING PLANS

FOR THE EXPONENTIAL DISTRIBUTION BASED ON TYPE-I

HYBRID CENSORED SAMPLES" AND “ITS CORRECTIONS"

TACHEN LIANG

Abstract. We compare the performances of two sampling plans, namely, the Lin-Liang-

Huang (2002)’s Bayesian sampling plan (n∗,ξ∗) and the Lin-Huang-Balakrishnan (2008a,

2010a)’s exact Bayesian sampling plan (n0,r0, t0,ξ0). We also comment the accuracy of

the values of the design parameters (n0,r0, t0,ξ0) provided in Lin-Huang-Balakrishnan

(2010a). We conclude that among the class of sampling plans (n,r, t ,ξ) of Lin et al. (2008a,

2010a), the exact Bayesian sampling plan does not exist.

1. Introduction

Recently, Lin, et al. (2008a, 2008b, 2010a, 2010b, 2011), Huang (2010) and Lin and Huang

(2011) have studied the problem of acceptance sampling for exponential distributions. Sam-

pling plans have been designed based on different censoring schemes. However, those papers

are carelessly written. In the papers, incorrect approaches are applied. The so claimed exact

Bayesian sampling plans are not the true Bayesian sampling plans and the provided tables

contains too many serious computational errors. We will present papers to discuss the re-

lated problems of acceptance sampling and comment the accuracy of those sampling plans

proposed in the above mentioned papers. In this paper, we shall comment the results pre-

sented in Lin et al. (2008a, 2010a). Our comments are based on the Bayesian concept and the

Bayesian analysis method introduced in Berger (1985).

Recently, Lin et al. (2008a) have studied the problem of acceptance sampling for expo-

nential distributions based on type-I hybrid censored sample. Their method is described as

follows.

Suppose we are given a batch of lifetime components for acceptance sampling. A sample

of size n items is put on life test at the outset. Failed items are not replaced. We let X1, . . . , Xn
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denote the lifetimes of these n components. It is assumed that X1, . . . , Xn are mutually inde-

pendent, follow an exponential distribution, having expected lifetime θ = 1/λ. It is assumed

that the parameter λ follows a gamma (α,β) prior distribution. Let Cs denote the cost per

item inspected. Let d denote an action on this problem of acceptance sampling. When d = 1,

it means that the batch is accepted; and when d = 0, it means to reject the batch. We let Cr be

the loss of rejecting the batch and let h(λ)= a0+a1λ+a2λ
2 be the loss of accepting the batch,

where a0 ≥ 0, a1 ≥ 0, and a2 > 0. The following loss function is considered:

L(d ,λ,n)= dh(λ)+ (1−d )Cr +nCs . (1)

Lin et al. (2008a) proposed using type-I hybrid censoring scheme to collect data from

the sample. Let Y1, . . . ,Yn be the ordered statistics of X1, . . . , Xn . For a given time t > 0 and an

integer r , 1 ≤ r ≤ n, type-I hybrid censoring scheme (type-IHCS) terminates the life-testing

experiment at a random time τ≡ τ(n,r, t ) = min(Yr , t ). Define D ≡ D(n,r, t ) = max{ j | 1 ≤ j ≤

r , and Y j ≤ t } = max{ j | Y j ≤ τ} if Y1 ≤ τ; and D = 0 if Y1 > τ. D is the number of failures at

the end of the life testing experiment. We denote the observable variable by (D,Y(D)), where

Y(D) = (Y1, . . . ,YD ). Let θ̃ML (D) denote the MLE of θ based on type-I hybrid censored sample

(D,Y(D)). Lin et al. (2008a) studied a type of sampling plans based on θ̃ML(D), in which, the

associated decision function δLHB is given by:

If D > 0, then, δLHB (D,Y(D)) = 1 if θ̃ML (D) ≥ ξ; and 0, otherwise.

If D = 0, then no decision is made.

(2)

A sampling plan is a determination of the values of the parameters (n,r, t ,ξ) or (n,r, t ,

δLHB ). Using the loss function L(d ,λ,n) of (1), Lin et al.(2008a) attempted to find the best

sampling plan, say (n0,r0, t0,δLHB
0 ) or (n0,r0, t0,ξ0), which will minimize the Bayes risks R(n,r ,

t ,δLHB ) among all sampling plans of the types (n,r, t ,ξ) described in (2).

Lin et al. (2008a) have provided tables for the values of the design parameters (n0 ,r0, t0,ξ0)

and the associated Bayes risk R0 = R(n0,r0, t0,ξ0). However, they made serious computa-

tional errors. Most of the provided values of the design parameters (n0,r0, t0,ξ0) of their so

claimed the exact Bayesian sampling plans are unreasonable and incorrect. Later, Lin et al.

(2010a) have made “corrections" on those errors, and provided new “corrected" values for

(n0,r0, t0,ξ0) and R0.

However, we have observed that the type of sampling plans (n,r, t ,ξ) possesses certain

defects. (a) The type of decision functions δLHB of (2) is not derived through a Bayesian anal-

ysis, and is not a Bayes decision function. Thus, (n0,r0, t0,δLHB
0 ) is not a Bayesian sampling

plan; (b) Since the cost of experimental time used for life test experiment is not included in the

loss, for n being fixed, the best choice of (r, t ) should be: r = n and t =∞, so that we are able
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to observe the complete lifetime data of the n components and obtain the most information

about the expected lifetime θ = 1/λ. Based on the complete lifetime data, we can make a suit-

able decision to reduce the cost of making a wrong decision. In this note, we shall consider

a competitor, the Bayesian sampling plan of Lin et al. (2002). In Section 2, we shall compare

the performances of the two sampling plans. In Section 3, we comment the accuracy of the

values of (n0,r0, t0,ξ0) provided in Lin et al.(2010a). A concluding remark is given in Section

4. We conclude that among the class of sampling plans (n,r, t ,ξ) of Lin et al. (2008a, 2010a),

the Bayesian sampling plan does not exist.

2. Comparing the performances of two sampling plans

Lin et al.(2002) have studied the problem of deriving the Bayesian sampling plans (n∗,δ∗)

for the problem of acceptance sampling using the loss function L(d ,λ,n) of (1) based on com-

plete observations. Let θ̃ML denote the MLE of the expected lifetime θ based on the complete

observations. Let

ξ∗ = max
(a1(n∗+α)+

√
a2

1(n∗+α)2 +4(Cr −a0)a2(n∗+α)(n∗+α+1)

2(Cr −a0)
−β,0

)
/n∗.

The Lin et al.(2002)’s Bayesian decision function δ∗ can be presented as:

δ∗(θ̃ML )= 1 if θ̃ML ≥ ξ∗; and 0, otherwise. (3)

Due to (3), we may also denote the Bayesian sampling plan (n∗,δ∗) by (n∗,ξ∗) and its corre-

sponding Bayes risk by R∗ = R(n∗,ξ∗).

In the following, we provide numerical comparison on the performances of the two sam-

pling plans (n0,r0, t0,ξ0) and (n∗,ξ∗). In Tables 1-6, we list the values of (n0,r0, t0,ξ0), R0,

(n∗,ξ∗) and R∗. The values of the entries (n0,r0, t0,ξ0) and R0 are cited from Lin et al. (2010a).

Since Lin et al. (2002) haven’t provided the values of (n∗,ξ∗) and R∗, the IMSL, STAT/LIBRARY

(1995) is employed to the Fortran program for searching the optimal design parameters (n∗ ,ξ∗)

and computing the value of the Bayes risk R∗. The numerical results indicate that R∗ is

smaller than R0 in all cases. In all cases studied, we observe that n0 = r0. Also, the Bayesian

sampling plan (n∗,ξ∗) allows no sample situation, that is, n∗ can be 0, (see Table 1, (α,β) =

(2.5,1.2) case, Table 4, a = 0.5 case, and Table 6, Cr = 10 and 100 cases), while the sampling

plan (n0,r0, t0,ξ0) requests n0 to be at least one.

3. On the accuracy of (n0,r0, t0,ξ0)

Lin et al. (2008a,2010a) claimed that their sampling plans (n0,r0, t0,ξ0) are the Bayesian

sampling plans among all sampling plans having the type of decision function as defined in



116 TACHEN LIANG

Table 1: Numerical comparison on the performance of (n∗,ξ∗) and (n0,r0, t0,ξ0) with Cs =

0.5, Cr = 30, a0 = 2, a1 = 2, a2 = 2, and (α,β) varying.

Lin et al.(2002) Lin et al.(2010a)

α β (n∗,ξ∗) R∗ (n0,r0, t0,ξ0) R0

2.5 0.4 (1, 0.7930) 29.7506 (2, 2, 1.1207, 0.5603) 29.8119

2.5 0.6 (3, 0.4022) 27.7267 (3, 3, 0.8537, 0.4268) 27.8193

1.5 0.8 (3, 0.2333) 16.5825 (3, 3, 0.5262, 0.2631) 16.7533

2.0 0.8 (4, 0.2899) 21.1398 (4, 4, 0.6051, 0.3026) 21.2875

2.5 0.8 (4, 0.3281) 24.8419 (4, 4, 0.6808, 0.3404) 24.9893

3.0 0.8 (3, 0.3865) 27.5581 (3, 3, 0.8170, 0.4085) 27.6521

3.5 0.8 (2, 0.5032) 29.2789 (2, 2, 1.0037, 0.5019) 29.3642

2.5 1.0 (4, 0.2781) 21.7081 (4, 4, 0.5819, 0.2910) 21.8515

2.5 1.2 (0, 0.0) 18.3194 (3, 3, 0.4158, 0.2079) 18.7384

10.0 3.0 (2, 0.3970) 29.5166 (2, 2, 0.8194, 0.4097) 29.5959

Table 2: Numerical comparison on the performance of (n∗,ξ∗) and (n0,r0, t0,ξ0) with (α,β) =

(2.5,0.8), Cs = 0.5, Cr = 30, a1 = 2, a2 = 2 and a0 varying.

Lin et al.(2002) Lin et al.(2010a)

a0 (n∗,ξ∗) R∗ (n0,r0, t0,ξ0) R0

0.1 (4, 0.3091) 23.8394 (4, 4, 0.6539, 0.3269) 23.9966

0.5 (4, 0.3129) 24.0549 (4, 4, 0.6539, 0.3269) 24.2101

1.5 (4, 0.3229) 24.5833 (4, 4, 0.6808, 0.3404) 24.7318

2 (4, 0.3281) 24.8419 (4, 4, 0.6808, 0.3404) 24.9893

3 (4, 0.3391) 25.3474 (3, 3, 0.7346, 0.3673) 25.4818

5 (3, 0.3751) 26.2801 (3, 3, 0.7884, 0.3942) 26.3831

10 (3, 0.4619) 28.2637 (3, 3, 0.9768, 0.4884) 28.3359

Table 3: Numerical comparison on the performance of (n∗,ξ∗) and (n0,r0, t0,ξ0) with (α,β) =

(2.5,0.8), Cs = 0.5, Cr = 30, a0 = 2, a2 = 2 and a1 varying.

Lin et al.(2002) Lin et al.(2010a)

a1 (n∗,ξ∗) R∗ (n0,r0, t0,ξ0) R0

0.1 (4, 0.2694) 22.6418 (4, 4, 0.5732, 0.2866) 22.8050

0.5 (4, 0.2813) 23.1538 (4, 4, 0.6001, 0.3000) 23.3141

1.5 (4, 0.3121) 24.3181 (4, 4, 0.6539, 0.3269) 24.4684

2 (4, 0.3281) 24.8419 (4, 4, 0.6808, 0.3404) 24.9893

3 (4, 0.3616) 25.7826 (3, 3, 0.7884, 0.3942) 25.8993

5 (3, 0.4543) 27.2215 (3, 3, 0.9768, 0.4884) 27.3145

10 (2, 0.7786) 29.2149 (2, 2, 1.5956,0.7978) 29.3100
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Table 4: Numerical comparison on the performance of (n∗,ξ∗) and (n0,r0, t0,ξ0) with (α,β) =

(2.5,0.8), Cs = 0.5, Cr = 30, a0 = 2, a1 = 2 and a2 varying.

Lin et al.(2002) Lin et al.(2010a)

a2 (n∗,ξ∗) R∗ (n0,r0, t0,ξ0) R0

0.5 (0, 0) 15.0859 (2, 2, 0.0081, 0.0041) 16.1299

1 (3, 0.1811) 20.8052 (3, 3, 0.3848, 0.1924) 20.9471

1.5 (4, 0.2662) 23.2670 (4, 4, 0.5463, 0.2731) 23.4151

2 (4, 0.3281) 24.8419 (4, 4, 0.7077, 0.3539) 24.9893

3 (3, 0.4545) 26.7561 (3, 3, 0.9768, 0.4884) 26.8623

5 (3, 0.4536) 28.5115 (3, 3, 1.3804, 0.6902) 28.5944

10 (1, 1.7000) 29.8049 (2, 2, 2.3759, 1.1879) 29.8832

Table 5: Numerical comparison on the performance of (n∗,ξ∗) and (n0,r0, t0,ξ0) with (α,β) =

(2.5,0.8), Cr = 30, a0 = 2, a1 = 2, a2 = 2, and Cs varying.

Lin et al.(2002) Lin et al.(2010a)

Cs (n∗,ξ∗) R∗ (n0,r0, t0,ξ0) R0

0.1 (10, 0.3165) 22.5339 (11, 11, 0.6270, 0.3135) 22.6644

0.3 (5, 0.3237) 23.9619 (5, 5, 0.6808, 0.3404) 24.1174

0.4 (4, 0.3281) 24.4419 (4, 4, 0.6808, 0.3404) 24.5893

0.5 (4, 0.3281) 24.8419 (4, 4, 0.6808, 0.3404) 24.9893

0.6 (3, 0.3355) 25.1847 (3, 3, 0.7077, 0.3539) 25.3067

1.0 (2, 0.3500) 26.2298 (3, 3, 0.7077, 0.3539) 26.5067

2.0 (1, 0.3930) 27.7605 (2, 2, 0.7077, 0.3539) 28.5744

Table 6: Numerical comparison on the performance of (n∗,ξ∗) and (n0,r0, t0,ξ0) with (α,β) =

(2.5,0.8), Cs = 0.5, a0 = 2, a1 = 2, a2 = 2, and Cr varying.

Lin et al.(2002) Lin et al.(2010a)

Cr (n∗,ξ∗) R∗ (n0,r0, t0,ξ0) R0

10 (0 , ) 10.0000 (1, 1, 2.6988, 1.3494) 10.4252

15 (1, 1.0490) 14.8625 (2, 2, 1.5687, 0.7844) 15.0499

20 (2, 0.5635) 18.8571 (2, 2, 1.1382, 0.5691) 18.9763

30 (4, 0.3281) 24.8419 (4, 4, 0.6808, 0.3404) 24.9893

40 (5, 0.2479) 28.9908 (5, 5, 0.5194, 0.2597) 29.2025

50 (5, 0.1987) 31.8898 (5, 5, 0.4117, 0.2059) 32.1352

100 (0, 0.0) 35.5938 (2, 2, 0.0081, 0.0041) 36.8491

(2) and achieve the minimum Bayes risk which is denoted by R(n0,r0, t0,ξ0). However, such

a claim is not true. We are able to find many such type of sampling plans which are bet-

ter than the sampling plans (n0,r0, t0,ξ0). In the following, for each given (n0,r0) and given
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Table 7: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (2.5,0.4), Cs = 0.5, Cr =

30, a0 = 2, a1 = 2, and a2 = 2 case.

t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.4999 31.612509

1.0000 0.5418 29.830957

2.0000 0.5488 29.760890

3.0000 0.5497 29.753666

4.0000 0.5499 29.752197

5.0000 0.5500 29.751767

6.0000 0.5500 29.751609

8.0000 0.5500 29.751509

10.0000 0.5500 29.751482

(n∗,ξ∗)= (1,0.7930), R∗ = 29.750554, (n0,r0, t0,ξ0) = (2,2,1.1207,0.5603), R0 = 29.8119

Table 8: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (2.5,0.6), Cs = 0.5, Cr =

30, a0 = 2, a1 = 2, and a2 = 2 case.

t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.3932 29.367186

1.0000 0.4008 27.750468

2.0000 0.4020 27.727979

3.0000 0.4021 27.726865

4.0000 0.4021 27.726705

5.0000 0.4021 27.726669

6.0000 0.4021 27.726658

8.0000 0.4021 27.726653

10.0000 0.4021 27.726651

(n∗,ξ∗)= (3,0.4022), R∗ = 27.726651, (n0,r0, t0,ξ0) = (3,3,0.8537,0.4268), R0 = 27.8193

t > 0, we let ξ1 = ξ1(t ) ≡ ξ(n0,r0, t ) be the value of the best design parameter for the decision

function of the type given in (2). We also denote the Bayes risk associated with the sam-

pling plan (n0,r0, t ,ξ1) by R(n0,r0, t ,ξ1). For cases considered in Table 1, certain numerical

results of (n0,r0, t ,ξ1) and R(n0,r0, t ,ξ1) are computed and given in Tables 7-16, respectively.

In each case studied, the numerical output indicates that R(n0,r0, t ,ξ1) decreases in t , and as

t > t0, R(n0,r0, t ,ξ1) < R(n0,r0, t0,ξ0), which is a contradiction to the Lin et al. (2008a,2010a)’s

claim that (n0,r0, t0,ξ0) is the exact Bayesian sampling plan. We have observed that: for

cases in which n0 = n∗, R(n0,r0, t ,ξ1) ≥ R∗ for all t > 0, and R(n0,r0, t ,ξ1) approximates R∗

when t is sufficiently large; and for cases where n0 6= n∗, R(n0,r0, t ,ξ1) > R∗ for all t > 0, and

R(n0,r0, t ,ξ1) does not approximate R∗ though t is very large, see Tables 7 and 15 .
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Table 9: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (1.5,0.8), Cs = 0.5, Cr =

30, a0 = 2, a1 = 2, and a2 = 2 case.

t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.2231 16.705377

1.0000 0.2314 16.602043

2.0000 0.2331 16.584421

3.0000 0.2333 16.582895

4.0000 0.2333 16.582607

5.0000 0.2333 16.582526

6.0000 0.2333 16.582497

8.0000 0.2333 16.582480

10.0000 0.2333 16.582475

(n∗,ξ∗) = (3,0.2333), R∗ = 16.582472, (n0,r0, t0,ξ0) = (3,3,0.5262,0.2631), R0 = 16.7533

Table 10: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (2.5,0.8), Cs = 0.5,

Cr = 30, a0 = 2, a1 = 2, and a2 = 2 case.

t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.2868 21.580729

1.0000 0.2896 21.144029

2.0000 0.2899 21.139957

3.0000 0.2899 21.139797

4.0000 0.2899 21.139778

5.0000 0.2899 21.139774

6.0000 0.2899 21.139773

8.0000 0.2899 21.139773

10.0000 0.2899 21.139773

(n∗,ξ∗) = (4,0.2899), R∗ = 21.139773, (n0,r0, t0,ξ0) = (4,4,0.6051,0.3026), R0 = 21.2875

Table 11: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (2.5,0.8), Cs = 0.5,

Cr = 30, a0 = 2, a1 = 2, and a2 = 2 case.

t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.3253 25.895917
1.0000 0.3279 24.849182
2.0000 0.3281 24.842000
3.0000 0.3281 24.841873
4.0000 0.3281 24.841861
5.0000 0.3281 24.841858
6.0000 0.3281 24.841858
8.0000 0.3281 24.841858

10.0000 0.3281 24.841857

(n∗,ξ∗) = (4,0.3281), R∗ = 24.841857, (n0,r0, t0,ξ0) = (4,4,0.6808,0.3404), R0 = 24.9893
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Table 12: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (3.0,0.8), Cs = 0.5,

Cr = 30, a0 = 2, a1 = 2, and a2 = 2 case.
t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.3780 28.829113
1.0000 0.3853 27.577942
2.0000 0.3864 27.559127
3.0000 0.3865 27.558238
4.0000 0.3865 27.558125
5.0000 0.3865 27.558101
6.0000 0.3865 27.558095
8.0000 0.3865 27.558092

10.0000 0.3865 27.558091

(n∗,ξ∗)= (3,0.3865), R∗ = 27.558091, (n0,r0, t0,ξ0) = (3,3,0.8170,0.4085), R0 = 27.6521

Table 13: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (3.5,0.8), Cs = 0.5,

Cr = 30, a0 = 2, a1 = 2, and a2 = 2 case.
t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.6382 30.254936
1.0000 0.4965 29.366270
2.0000 0.5025 29.287118
3.0000 0.5031 29.280417
4.0000 0.5032 29.279298
5.0000 0.5032 29.279021
6.0000 0.5032 29.278933
8.0000 0.5032 29.278886

10.0000 0.5032 29.278876

(n∗,ξ∗)= (2,0.5032), R∗ = 29.278871, (n0,r0, t0,ξ0) = (2,2,1.0037,0.5019), R0 = 29.3642

Table 14: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (2.5,1.0), Cs = 0.5,

Cr = 30, a0 = 2, a1 = 2, and a2 = 2 case.
t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.2753 22.027740
1.0000 0.2779 21.711446
2.0000 0.2781 21.708202
3.0000 0.2781 21.708092
4.0000 0.2781 21.708080
5.0000 0.2781 21.708078
6.0000 0.2781 21.708078
8.0000 0.2781 21.708078

10.0000 0.2781 21.708078

(n∗,ξ∗)= (4,0.2781), R∗ = 21.708077, (n0,r0, t0,ξ0) = (4,4,0.5819,0.2910), R0 = 21.8515

4. Concluding remark

Lin et al.(2008a, 2010a) have studied the problem of acceptance sampling for exponential

distributions using the loss function L(d ,λ,n). The hybrid type-I censoring scheme is used to
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Table 15: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (2.5,1.2), Cs = 0.5,

Cr = 30, a0 = 2, a1 = 2, and a2 = 2 case.
t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.1932 18.677392

1.0000 0.2008 18.605391

2.0000 0.2020 18.594293

3.0000 0.2021 18.593585

4.0000 0.2021 18.593481

5.0000 0.2021 18.593456

6.0000 0.2021 18.593449

8.0000 0.2021 18.593445

10.0000 0.2021 18.593444

(n∗,ξ∗) = (0,0.00), R∗ = 18.319444, (n0,r0, t0,ξ0) = (3,3,0.4158,0.2079), R0 = 18.7384

Table 16: Numerical values of ξ(n0,r0, t ) and R(n0,r0, t ,ξ1) for (α,β) = (10.0,3.0), Cs = 0.5,

Cr = 30, a0 = 2, a1 = 2, and a2 = 2 case.

t ξ(n0,r0, t ) R(n0,r0, t ,ξ1)

0.5000 0.3732 29.856178

1.0000 0.3935 29.553686

2.0000 0.3969 29.517816

3.0000 0.3970 29.516645

4.0000 0.3970 29.516571

5.0000 0.3970 29.516563

6.0000 0.3970 29.516562

8.0000 0.3970 29.516562

10.0000 0.3970 29.516562

(n∗,ξ∗) = (2,0.3970), R∗ = 29.516562, (n0,r0, t0,ξ0) = (2,2,0.8194,0.4097), R0 = 29.5959

collect data. However, Lin et al. (2008a, 2010a) failed to carry out Bayesian analysis to derive

the Bayesian decision functions. For the loss function L(d ,λ,n), the numerical results show

that the hybrid type-I censoring scheme is not a suitable sampling scheme for collecting data

from the sample. Thus, their proposed sampling plans (n0,r0, t0,δLHB
0 ) have certain defects

and are not the Bayesian sampling plans. The Bayesian sampling plan (n∗,δ∗) is a challenging

competitor to the sampling plan (n0,r0, t0,δLHB
0 ). The numerical results indicate that (n∗,δ∗)

performs better than (n0,r0, t0,δLHB
0 ) in all cases studied. When r0 = n0 6= n∗, R(n0,r0, t ,ξ1) ≥

R∗ for all t > 0, and R(n0,r0, t ,ξ1) decreases in t for t > 0, and approximates R∗ when t is

sufficiently large. However, when r0 = n0 6= n∗, R(n0,r0, t ,ξ1) > R∗, for all t > 0, and there is

some gap between R(n0,r0, t ,ξ1) and R∗ even for very large t . Also, R(n0,r0, t ,ξ1) decreases in

t for t > 0.

Lin et al. (2008a, 2010a) attempted to find the exact Bayesian sampling plans from among
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the class of sampling plans (n,r, t ,ξ) of the type having decision functions given in (2). How-

ever, since R(n0,r0, t ,ξ1) decreases in t for t > 0, thus, for any t1 > 0, the sampling plan

(n0,r0, t1,ξ1(t1)) is always dominated by (n0,r0, t2,ξ1(t2)) as t2 > t1. This fact implies that

among the class of sampling plans (n,r, t ,ξ), the exact Bayesian sampling plan does not exist.

Thus, the Lin et al. (2008a, 2010a)’s goal to find the exact Bayesian sampling plans will never

be successfully achieved.
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