GENERALIZATION OF AN INEQUALITY OF ALZER FOR NEGATIVE POWERS

CHAO-PING CHEN AND FENG QI

Abstract. Let \(\{a_n\}_{n=1}^{\infty} \) be a positive, strictly increasing, and logarithmically concave sequence satisfying
\[
\left(\frac{a_{n+1}}{a_n} \right)^n < \left(\frac{a_{n+2}}{a_{n+1}} \right)^{n+1}.
\]
Then we have
\[
\frac{a_n}{a_{n+m}} < \left(\frac{1}{n} \sum_{i=1}^{n} a_i^r / \frac{1}{n+m} \sum_{i=1}^{n+m} a_i^r \right)^{1/r},
\]
where \(n, m \) are natural numbers and \(r \) is a positive real number. The lower bound is the best possible. This generalizes an inequality of Alzer for negative powers.

1. Introduction

When studying a problem on upper bound for permanents of \((0,1)\)-matrices, in 1964 H. Minc and L. Sathre [5] discovered several noteworthy inequalities involving \((n!)^{1/n} \). One of them is the following: If \(n \) is a positive integer, then
\[
\frac{n}{n+1} < \frac{\sqrt[n]{n!}}{n+1} \leq 1.
\]
(1)

By investigating a problem on Lorentz sequence spaces, in 1988 J. S. Martins [4] published another lower bound for \(\sqrt[n]{n!}/n!^{1/(n+1)} \): Let \(r \) be a positive real number and let \(n \) be a natural number, then
\[
\left(\frac{1}{n} \sum_{i=1}^{n} i^r / \frac{1}{n+1} \sum_{i=1}^{n+1} i^r \right)^{1/r} \leq \frac{\sqrt[n]{n!}}{n!^{1/(n+1)}}.
\]
(2)
In 1993 H. Alzer [1] compared the lower bounds of (1) and (2), and established the following result: Let n be a positive integer, then for any positive real number r,

$$
\frac{n}{n + 1} \leq \left(\frac{1}{n} \sum_{i=1}^{n} i^r \right) / \left(\frac{1}{n + 1} \sum_{i=1}^{n+1} i^r \right)^{1/r}.
$$

The proof given by Alzer is remarkable, but it is quite long and complicated. Several easy proofs of (3) have been published by different authors, see [2, 7, 8], and these proofs show that in fact (3) holds with strictly inequality. By mathematical induction and Cauchy’s mean-value theorem, F. Qi [6] generalized the inequality (3) and showed that: Let n and m be natural numbers, k a nonnegative integer, then

$$
\frac{n + k}{n + m + k} < \left(\frac{1}{n} \sum_{i=k+1}^{n+k} i^r \right) / \left(\frac{1}{n + m} \sum_{i=k+1}^{n+m+k} i^r \right)^{1/r},
$$

where r is any given positive real number. The lower bound is the best possible. In fact, (4) is essentially equivalent to

$$
\frac{n}{n + m} < \left(\frac{1}{n} \sum_{i=1}^{n} a^r \right) / \left(\frac{1}{n + m} \sum_{i=1}^{n+m} a^r \right)^{1/r}.
$$

In this paper, the inequalities (3) and (5) are further generalized as follows.

Theorem. Let $\{a_n\}_{n=1}^{\infty}$ be a positive and strictly increasing sequence satisfying

$$
\frac{a_n}{a_{n+1}} \leq \frac{a_{n+1}}{a_{n+2}}, \quad n \in \mathbb{N} := \{1, 2, \ldots\}
$$

and

$$
\left(\frac{a_{n+1}}{a_n} \right)^n \leq \left(\frac{a_{n+2}}{a_{n+1}} \right)^{n+1}, \quad n \in \mathbb{N}.
$$

Then we have

$$
\frac{a_n}{a_{n+m}} < \left(\frac{1}{n} \sum_{i=1}^{n} a_i^r \right) / \left(\frac{1}{n + m} \sum_{i=1}^{n+m} a_i^r \right)^{1/r},
$$

where $n, m \in \mathbb{N}$ and r is a positive real number. The lower bound is the best possible.

Notice that if a positive sequence $\{a_n\}_{n=1}^{\infty}$ satisfies the inequality (6), then we call it a logarithmically concave sequence.

Proof. The inequality (8) can be written as

$$
\frac{1}{(n + m)a_{n+m}} \sum_{i=1}^{n+m} a_i^r \leq \frac{1}{na_n^r} \sum_{i=1}^{n} a_i^r,
$$
which is equivalent to

\[
\frac{1}{(n+1)a_{n+1}^r} \sum_{i=1}^{n+1} a_i^r < \frac{1}{na_n^r} \sum_{i=1}^{n} a_i^r. \tag{9}
\]

Since

\[
\sum_{i=1}^{n+1} a_i^r = \sum_{i=1}^{n} a_i^r + a_{n+1}^r,
\]

(9) reduces to

\[
\sum_{i=1}^{n} a_i^r > \frac{na_n^r a_{n+1}^r}{(n+1)a_{n+1}^r - na_n^r}. \tag{10}
\]

It is easy to see that the inequality (10) holds for \(n = 1 \). Suppose that the inequality (10) holds for some \(n = k (k \geq 1) \), that is

\[
\sum_{i=1}^{k} a_i^r > \frac{ka_k^r a_{k+1}^r}{(k+1)a_{k+1}^r - ka_k^r}. \tag{11}
\]

Adding \(a_{k+1}^r \) to the both sides of (11), we have

\[
\sum_{i=1}^{k+1} a_i^r > \frac{(k+1)a_{k+1}^r a_{k+2}^r}{(k+1)a_{k+2}^r - (k+1)a_{k+1}^r}. \tag{12}
\]

By mathematical induction, it remains to show that

\[
\sum_{i=1}^{k+1} a_i^r > \frac{(k+1)a_{k+1}^r a_{k+2}^r}{(k+2)a_{k+2}^r - (k+1)a_{k+1}^r}. \tag{13}
\]

From (12) and (13) it is sufficient to show that

\[
\frac{(k+1)a_{k+1}^r a_{k+2}^r}{(k+1)a_{k+1}^r - ka_k^r} > \frac{(k+1)a_k^r a_{k+2}^r}{(k+2)a_{k+2}^r - (k+1)a_{k+1}^r},
\]

which can be rearranged as

\[
(k+1) \left(\frac{a_{k+1}}{a_{k+2}} \right)^r - k \left(\frac{a_k}{a_{k+1}} \right)^r < 1. \tag{14}
\]

We define for \(r > 0 \)

\[
f(r) = (k+1) \left(\frac{a_{k+1}}{a_{k+2}} \right)^r - k \left(\frac{a_k}{a_{k+1}} \right)^r.
\]

Differentiation yields

\[
f'(r) = (k+1) \left(\frac{a_{k+1}}{a_{k+2}} \right)^r \ln \left(\frac{a_{k+1}}{a_{k+2}} \right) - k \left(\frac{a_k}{a_{k+1}} \right)^r \ln \left(\frac{a_k}{a_{k+1}} \right) \]

\[
= - \left(\frac{a_{k+1}}{a_{k+2}} \right)^r \ln \left(\frac{a_{k+2}}{a_{k+1}} \right)^{k+1} + \left(\frac{a_k}{a_{k+1}} \right)^r \ln \left(\frac{a_{k+1}}{a_k} \right)^k.
\]
Since
\[0 < \frac{a_k}{a_{k+1}} \leq \frac{a_{k+1}}{a_{k+2}} \quad k \in \mathbb{N}, \]
\[1 < \left(\frac{a_{k+1}}{a_k} \right)^k < \left(\frac{a_{k+2}}{a_{k+1}} \right)^{k+1}, \quad k \in \mathbb{N}. \]

It is easy to see that
\[\left(\frac{a_k}{a_{k+1}} \right)^r \ln \left(\frac{a_{k+1}}{a_k} \right)^k < \left(\frac{a_{k+1}}{a_{k+2}} \right)^r \ln \left(\frac{a_{k+2}}{a_{k+1}} \right)^{k+1} \]
which implies that \(f'(r) < 0 \) and \(f(r) < f(0) = 1 \), and then (14) holds.

By L’ Hospital rule, easy calculation produces
\[\lim_{r \to +\infty} \left(\frac{1}{n} \sum_{i=1}^{n} a_i^r \right) \left(\frac{1}{n + m} \sum_{i=1}^{n+m} a_i^r \right)^{1/r} = \frac{a_n}{a_{n+m}}, \]
thus, the lower bound given in (8) is the best possible. The proof is complete.

The authors [3] showed that (3) holds strictly for all natural numbers \(n \) and all real numbers \(r \). Now we pose the following open problem.

Open Problem. What conditions does the sequence \(\{a_k\}_{k=1}^{\infty} \) satisfy such that (8) holds for all natural numbers \(n, m \) and all real numbers \(r \)?

References

Department of Applied Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan 454010, CHINA.

E-mail: chenchaoping@sohu.com

Department of Applied Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan 454010, CHINA.

E-mail: qifeng@jzit.edu.cn