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GENERALIZATION OF AN INEQUALITY OF ALZER

FOR NEGATIVE POWERS

CHAO-PING CHEN AND FENG QI

Abstract. Let {an}∞n=1 be a positive, strictly increasing, and logarithmically concave sequence

satisfying (an+1/an)n < (an+2/an+1)
n+1. Then we have
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where n, m are natural numbers and r is a positive real number. The lower bound is the best

possible. This generalizes an inequality of Alzer for negative powers.

1. Introduction

When studying a problem on upper bound for permanents of (0, 1)–matrices, in 1964

H. Minc and L. Sathre [5] discovered several noteworthy inequalities involving (n!)1/n.

One of them is the following: If n is a positive integer, then
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By investigating a problem on Lorentz sequence spaces, in 1988 J. S. Martins [4] published

another lower bound for n
√

n!/ n+1
√

(n + 1)!: Let r be a positive real number and let n be

a natural number, then
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In 1993 H. Alzer [1] compared the lower bounds of (1) and (2), and established the

following result: Let n be a positive integer, then for any positive real numbe r,
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The proof given by Alzer is remarkable, but it is quite long and complicated. Several easy

proofs of (3) have been published by different authors, see [2, 7, 8], and these proofs show

that in fact (3) holds with strictly inequality. By mathematical induction and Cauchy’s
mean-value theorem, F. Qi [6] generalized the inequality (3) and showed that: Let n and

m be natural numbers, k a nonnegative integer, then
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where r is any given positive real number. The lower bound is the best possible. In fact,

(4) is essentially equivalent to
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In this paper, the inequalities (3) and (5) are further generalized as follows.

Theorem. Let {an}∞n=1 be a positive and strictly increasing sequence satisfying
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Then we have
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where n, m ∈ N and r is a positive real number. The lower bound is the best possible.

Notice that if a positive sequence {an}∞n=1 satisfies the inequality (6), then we call it
a logarithmically concave sequence.

Proof. The inequality (8) can be written as
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which is equivalent to
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It is easy to see that the inequality (10) holds for n = 1. Suppose that the inequality
(10) holds for some n = k(k ≥ 1), that is
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Adding ar
k+1 to the both sides of (11), we have
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By mathematical induction, it remains to show that
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From (12) and (13) it is sufficient to show that
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which can be rearranged as
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We difine for r > 0
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Differentiation yields
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Since
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which implies that f ′(r) < 0 and f(r) < f(0) = 1, and then (14) holds.
By L’ Hospital rule, easy caculation produces
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thus, the lower bound given in (8) is the best possible. The proof is complete.

The authors [3] showed that (3) holds strictly for all natural numbers n and all real
numbers r. Now we pose the following open problem.

Open Problem. What conditions does the sequence {ak}∞k=1 satisfy such that (8)
holds for all natural numbers n, m and all real numbers r?
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