
TAMKANG JOURNAL OF MATHEMATICS
Volume 43, Number 1, 109-122, Spring 2012
doi:10.5556/j.tkjm.43.2012.109-122

-
+

+

-

-
-

-
-

Available online at http://journals.math.tku.edu.tw/

OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR

NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES

E. THANDAPANI AND V. PIRAMANANTHAM

Abstract. In this paper, the authors established some new oscillation criteria for the sec-

ond order nonlinear neutral delay dynamic equations on time scales. Examples illustrat-

ing the main results are given.

1. Introduction

In recent years, there has been much research activity concerning the oscillation of so-

lutions of second order dynamic equations on time scales, see for example [1-12, 17, 19] and

the references contained therein. However, there are few results dealing with the oscillation of

solutions of neutral delay dynamic equations on time scales, see for example [15, 16, 18]. Mo-

tivated by this observation, in this paper we are concerned with the second order nonlinear

neutral delay dynamic equation on time scales

(r (t )((y(t )+p(t )y(t −τ))∆)γ)∆+q(t )yβ(t −δ) = 0, t ∈T, (1.1)

where T is a time scale.

Throughout this paper we assume the following conditions without further mention:

(H1) γ≥ 1, and β> 0 are quotients of odd positive integers;

(H2) τ,δ are fixed nonnegative constants such that the delay functions τ(t ) = t −τ < t and

δ(t ) = t −δ< t satisfy τ(t ) : T→T and δ(t ) :T→T for all t ∈T;

(H3) q(t ) and r (t ) are real valued rd-continuous positive functions defined on T;

(H4) p(t ) is a positive and rd-continuous function on T such that 0 ≤ p(t )< 1.

By a solution of equation (1.1), we mean a nontrivial real-valued function which has the

properties y(t )+ p(t )y(t −τ) ∈ C ′
rd

[ty ,∞) and r (t )([y(t )+ p(t )y(t −τ)]∆)γ ∈ C ′
rd

[ty ,∞), ty ≥
t0 and satisfying equation (1.1) for all t ≥ ty . A solution y(t ) of equation (1.1) is said to be
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oscillatory if it is neither eventually positive nor eventually negative, that is, if for every b > a

there exists t > b such that y(t )= 0 or y(t )y(σ(t ))< 0; Otherwise it is called nonoscillatory.

Since we are interested in oscillatory behavior of solutions, we will suppose that the time

scale T under considerations is not bounded above and therefore the time scale is assumed

in the form [t0,∞)T = [t0,∞)
⋂

T.

In this paper we obtain the oscillation criteria for equation (1.1) subject to the following

two conditions:

∫∞ 1

r 1/γ(s)
∆s =∞, (1.2)

and

∫∞ 1

r 1/γ(s)
∆s <∞. (1.3)

When p(t )≡ 0, equation (1.1) reduces to the following equation

(r (t )(y∆(t ))γ)∆+q(t )yβ(t −δ) = 0, t ∈T. (1.4)

In the super linear case, when γ = β ≥ 1, the oscillation of the solution of equation (1.1)

was discussed by Saker in [15] under the condition (1.2).

We note that if T = R we have σ(t ) = t , µ(t ) = 0 , f ∆(t ) = f ′(t ). Then equation (1.1) be-

comes

(r (t )([y(t )+p(t )y(t −τ)]′)γ)′+q(t )yβ(t −δ) = 0 t ∈R.

If T = N, we have σ(n) = n + 1,µ(n) = 1 y∆(n) = ∆y(n) = y(n + 1)− y(n), then equation

(1.1) becomes

∆(r (n)(∆[y(n)+p(n)y(n −τ)])γ)+q(n)yβ(n −δ) = 0 n ∈N.

If T = hN , h > 0 , we have σ(t ) = t +h , µ(t ) = h, and y∆(t ) = ∆h(t ) = y(t+h)−y(t )
h

, then

equation (1.1) becomes

∆h(r (t )(∆h[y(t )+p(t )y(t −τ)])γ)+q(t )yβ(t −δ) = 0 t ∈ hN.

If T = qN = {t : t = qn , n ∈ N}; , q > 1, we have σ(t ) = q(t ) , µ(t ) = (q − 1)t and y∆ =
∆q y(t )= y(qt )−y(t )

h
, then equation (1.1) becomes

∆q (r (t )(∆q [y(t )+p(t )y(t −τ)])γ)+q(t )yβ(t −δ) = 0 t ∈ qN.
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If T=N
2 = {t 2 : t ∈N}, we have σ(t ) = (

p
t +1)2 and µ(t ) = 1+2

p
t and y∆(t ) = ∆N y(t ) =

y((
p

t+1)2−y(t ))

1+2
p

t
, then equation (1.1) becomes

∆N (r (t )(∆N [y(t )+p(t )y(t −τ)])γ)+q(t )yβ(t −δ) = 0 t ∈N
2.

If T = {tn : n ∈ N}, where {tn} is the set of harmonic numbers defined by t0 = 0 , tn =
∑n

k=1
1
k , n ∈N0, we have σ(tn) = tn+1 , µ(tn) = 1

n+1 and y∆(t ) =∆tn y(tn) = (n +1)∆y(tn), then

equation (1.1) becomes

∆tn(r (tn)(∆tn[y(tn)+p(tn)y(tn −τ)])γ)+q(tn)yβ(tn −δ) = 0 t ∈T.

The paper is organized as follows: In the Section 2, we present some oscillation criteria

of solutions of equation (1.1) when (1.2) holds. When (1.3) holds, we also establish some

conditions which are sufficient for solutions of equation (1.1) to be oscillatory or converges to

zero. Our results include those of Jinfa [13] and I.Kubiaczyk et.al.[14] when T=N and p(t ) is

identically zero. In Section 3, we present some examples to illustrate our main results.

2. Oscillation criteria

First, we consider the case , when condition (1.2) holds, and γ≥β≥ 1. To prove our main

result, we will use the following lemma which is called Keller’s chain rule.

Lemma 2.1 ([3]). Let f : R→ R be continuously differentiable and suppose g : T→ R is delta

differentiable. Then f ◦ g :T→R is delta differentiable and the formula

( f ◦ g )∆(t ) = g∆(t )

∫1

0
f ′(g (t )+hµ(t )g∆(t ))dh

holds.

Now we state and prove our main results.

Theorem 2.2. Assume that condition (1.2)holds. Furthermore assume that there exist posi-

tive rd-continuous delta differentiable functions α(t ) and φ(t ) such that for every b ≥ 1 and a

positive number M,

lim
t→∞

sup

∫t

t0

[

α(s)φ(s)Q(s)−
K (s)C 2(s)

4φ(s)βM
γ−1

γ α(t )

]

∆s =∞, (2.1)

where

Q(s) = q(s)(1−p(s −δ))β, C (s) =
φ(s)(α∆(s))+

ασ
+ (φ∆(s))+

K (t ) = (b · (t −δ))1−β(ασ(t ))2r
1
γ (t −δ),

(α∆(t ))+ = max{α∆(t ),0} and (φ∆(t ))+ =max{φ∆(t ),0},

holds. Then every solution of equation (1.1) oscillates on [t0,∞)T.
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Proof. Suppose to the contrary that y(t ) is a nonoscillatory solution of equation (1.1). Let t1 ≥
t0 be such that y(t ) 6= 0 for all t ≥ t1. Without loss of generality, we may assume that y(t ) is an

eventually positive solution of equation (1.1) with y(t−θ)> 0, where θ = max{τ,δ} for all t ≥ t1

sufficiently large.

Set

x(t ) = y(t )+p(t )y(t −τ). (2.2)

From equation (1.1) and (H2) we have

(r (t )(x∆(t ))γ)∆ =−q(t )yβ(t −δ) < 0 for all t ∈ [t1,∞)T, (2.3)

and this implies that r (t )(x∆(t ))γ is an eventually decreasing function. We first show that

r (t )(x∆(t ))γ is eventually nonnegative. If r (t )(x∆(t ))γ < 0 for t ≥ t2 ≥ t1, we have r (t )(x∆(t ))γ ≤

r (t2)(x∆(t2))γ = c < 0 for some constant c. Hence x∆(t )≤
(

c
r (t )

) 1
γ

. Now integrating from t2 to t ,

we obtain

x(t )≤ x(t2)+c
1
γ
∫t

t2

(

1
r (s)

) 1
γ
∆s,

which implied by (H1) that x(t ) → −∞. This contradicts the fact that x(t ) > 0 for all t ≥ t1.

Hence r (t )(x∆(t ))γ is eventually nonnegative. Thus we see that there is some t1 such that

x(t )> 0, x∆(t ) ≥ 0, r (t )(x∆(t ))γ > 0,and (r (t )(x∆(t ))γ)∆ ≥ 0, for t ≥ t1. (2.4)

From (2.2) and (2.4), we have

y(t ) = x(t )−p(t )y(t −τ) ≥ (1−p(t ))x(t ).

Then, for t ≥ t2 = t1 +δ, we have

y(t −δ) ≥ (1−p(t −δ))x(t −δ).

Using the last inequality in (2.3), we have

(r (t )(x∆(t ))γ)∆+q(t )(1−p(t −δ))βxβ(t −δ) ≤ 0 for t ∈ [t1,∞)T.

Define

w (t )=α(t )
r (t )(x∆(t ))γ

xβ(t −δ)
for t ∈ [t2,∞)T. (2.5)

Then w (t )> 0, and

w∆(t ) = (r (x∆)γ)σ
[ α(t )

xβ(t −δ)

]

∆

+
α(t )

xβ(t −δ)
(r (t )(x∆(t ))γ)∆
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=
α(t )

xβ(t −δ)
(r (t )(x∆(t ))γ)∆+ (r (t )(x∆(t ))γ)σ

[xβ(t −δ)α∆(t )−α(t )(xβ(t −δ))∆

xβ(t −δ)xβ(σ(t )−δ)

]

≤ −α(t )Q(t )+
(α∆(t ))+
ασ(t )

wσ(t )−
α(t )(r (t )(x∆(t ))γ)σ(xβ(t −δ))∆

xβ(t −δ)xβ(σ(t )−δ)
. (2.6)

The Keller’s chain rule yields that

(xβ(t ))∆ = β

∫1

0
[hxσ+ (1−h)x]β−1dhx∆(t )

≥ β(x(t ))β−1x∆(t ).

Then, for t ∈ [t2,∞)T sufficiently large, we have

(xβ(t −δ))∆ =β(xβ−1(t −δ))(x∆(t −δ)).

Also from (2.4) we have for t ≥ t2,

r (t −δ)((x∆(t −δ))γ) ≥ r (σ(t )−δ)(x∆(σ(t )−δ))γ ≥ (r (t )(x∆)γ(t ))σ,

or

x∆(t −δ) ≥
(r

1
γ (t )(x∆))σ

r
1
γ (t )(t −δ)

.

Substitute the last inequality in (2.6), we obtain

w∆(t )≤−α(t )Q(t )+
(α∆(t ))+
ασ(t )

wσ(t )−
βα(t )

r
1
γ (t −δ)

(r
1+γ
γ (t )(x∆(t ))γ+1)σ

xβ(t −δ)xβ(σ(t )−δ)
xβ−1(t −δ).

Since x∆(t )≥ 0, we have x(σ(t )−δ) ≥ x(t −δ) and this implies that

w∆(t ) ≤−α(t )Q(t )+
(α∆(t ))+
ασ(t )

wσ(t )−
βα(t )

r
1
γ (t −δ)

(r
1+γ
γ (t )(x∆(t ))γ+1)σ

x2β(σ(t )−δ)
xβ−1(t −δ). (2.7)

Form (2.5) and (2.7), we obtain

w∆(t )≤−α(t )Q(t )+
(α∆(t ))+
ασ(t )

wσ(t )−
βα(t )r

1−γ
γ (σ(t ))

r
1
γ (t −δ)

(wσ(t ))2

(ασ(t ))2

1

x1−β(t −δ)(x∆(σ(t ))γ−1
. (2.8)

Now from equation (2.4), we see that r (t )(x∆(t ))γ is positive and nonincreasing function onT,

and therefore there exists a t2 ∈ [t1,∞)T such that r (t )(x∆(t ))γ ≤ 1
M for some positive constant

M and for t ∈ [t2,∞)T. Hence

1

x∆(σ(t ))γ−1
≥ (Mr (σ(t )))

γ−1

γ . (2.9)
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Further from (2.4) we have

x(t )−x(t0) =
∫t

t0

x∆(s)∆s ≤ x∆(t0)(t − t0),

and thus there exists a T ∈ [t0,∞)T and a suitable constant b ≥ 1 such that

x(t )≤ bt for t ∈ [T,∞)T.

Hence

x1−β(t −δ) ≤ b1−β(t −δ)1−β for t ∈ [T1,∞)T, (2.10)

where T1 = T +δ. Now substitute (2.9)and (2.10) in (2.8), we have

w∆(t ) ≤−α(t )Q(t )+
(α∆(t ))+
ασ(s)

wσ(t )−
βM

γ−1

γ α(t )

(b · (t −δ))1−β(ασ(t ))2r
1
γ (t −δ)

(wσ(t ))2. (2.11)

Multiplying (2.11) by φ(s) and integrating from t2 to t , (t ≥ t2), we have

∫t

t2

φ(s)α(s)Q(s)∆s ≤ −
∫t

t2

φ(s)w∆(s)∆s +
∫t

t2

φ(s)
(α∆(s))+
ασ(s)

wσ(s)∆s

−
∫t

t2

φ(s)
βM

γ−1

γ α(s)

(b · (s −δ))1−β(ασ(s))2r
1
γ s −δ)

(wσ(s))2
∆s.

(2.12)

Using integration by parts, we obtain

∫t

t2

φ(s)w∆(s)∆s = φ(t )w (t )|tt2
−

∫t

t2

(φ(s))∆wσ(s)∆s

≤ −φ(t2)w (t2)−
∫t

t2

(φ∆(s))+wσ(s)∆s. (2.13)

From (2.12) and (2.13), we have

∫t

t2

φ(s)α(s)Q(s)∆s ≤ w (t2)φ(t2)+
∫t

t2

[

φ(s)
(α∆(s))+
ασ(s)

+ (φ∆(s))+
]

wσ(s)∆s

−
∫t

t2

φ(s)
βM

γ−1

γ α(s)

(b · (s −δ))1−β(ασ(s))2r
1
γ (s −δ)

w 2(σ(s))∆s,

or

∫t

t2

φ(s)α(s)Q(s)∆s ≤ w (t2)φ(t2)+
∫t

t2

(

√

√

√

√

φ(s)
βM

γ−1

γ α(s)

K (s)
wσ(s)
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−
p

K (s)C (s)

2

√

φ(s)βM
γ−1

γ α(s)

)2
∆s +

∫t

t2

K (s)C 2(s)

4φ(s)βM
γ−1

γ α(s)

∆s.

Hence

lim
t→∞

∫t

t2

[

α(s)φ(s)Q(s)−
K (s)C 2(s)

4φ(s)βM
γ−1

γ α(s)

]

∆s ≤ w (t2)φ(t2) <∞,

a contradiction to the condition (2.1). This completes the proof. ���

Remark 2.3. From Theorem 2.2, one can establish different sufficient conditions for the os-

cillation of equation (1.1) by different choices of α(t ) and φ(t ). For instance , if φ(t ) = 1 for

t ≥ t0 we have the following results.

Corollary 2.4. Assume condition (1.2) holds. Let α(t ) be as defined in Theorem 2.2 such that

for every b ≥ 1 and a positive number M

lim
t→∞

sup

∫t

t0

[

α(s)q(s)(1−p(s −δ))β−
K (s)

( (α∆(s))+
ασ(s)

)2

4βM
γ−1

γ α(s)

]

∆s =∞, (2.14)

where

K (t )= b1−β(ασ(t ))2r
1
γ (t −δ)(t −δ)1−β, (α∆(t ))+ =max{α∆(t ),0}.

Then every solution of equation (1.1) oscillates on [t0,∞)T.

Corollary 2.5. Assume condition (1.2) holds. Let α(t ) be as defined in Theorem 2.2 such that

lim
t→∞

sup

∫t

t0

α(s)q(s)(1−p(s −δ))β∆s =∞, (2.15)

and

lim
t→∞

sup

∫t

t0

r
1
γ (s −δ)(s −δ)1−β(α∆(s))2

+
α(s)

∆s <∞. (2.16)

Then every solution of equation (1.1) oscillates on [t0,∞)T.

Remark 2.6. From Corollary 2.4, one can establish different sufficient conditions for the os-

cillation of equation (1.1) by different choices of α(t ). For instance , if α(t ) = t and α(t ) = 1,

for t ≥ t0, we have the following results respectively.

Corollary 2.7. Assume condition (1.2) holds. Furthermore assume that for every b ≥ 1 and

positive number M

lim
t→∞

sup

∫t

t0

[

sq(s)(1−p(s −δ))β−
b1−βa

1
γ (s −δ)(s −δ)1−β

4βM
γ−1

γ s

]

∆s =∞. (2.17)

Then every solution of equation (1.1) oscillates on [t0,∞)T.



116 E. THANDAPANI AND V. PIRAMANANTHAM

Corollary 2.8. Assume condition (1.2) holds. Let α(t ) be as defined in Theorem 2.2 such that

lim
t→∞

sup

∫t

t0

q(s)(1−p(s −δ))β∆s =∞. (2.18)

Then every solution of equation (1.1) oscillates on [t0,∞)T.

The following theorem gives Philos-type oscillation criteria for equation (1.1). First let us

introduce a new class of functions P which will be extensively used in the sequel.

Let D0 = {(t , s) ∈T
2 : t > s ≥ t0} and D= {(t , s) ∈T

2 : t > s ≥ t0}. The function H ∈Crd (D,R)

is said to belongs to the class P if

(i) H (t , t0) = 0 , H (t , s)> 0 on D0

(ii) H has a continuous ∆-partial derivative H∆s (t , s) on D0 with respect to the second vari-

able. (H is rd-continuous functions if H is r d−continuous function in t and s).

Theorem 2.9. Assume condition (1.2) holds. Furthermore, assume that there exists a positive

rd-continuous delta differentiable functions α(t ) and let h, H : D → R be rd-continuous func-

tions such that H belongs to the class P and for every b ≥ 1 and a positive number M with

lim
t→∞

sup
1

H (t , t0)

∫t

t0

[

α(s)H (t , s)Q(s)−
K (s)C 2(t , s)

4βM
γ−1

γ H (t , s)α(s)

]

∆s =∞, (2.19)

where Q(t )= q(t )(1−p(t−δ))β,K (t )= (b · · ·(tδ))1−β(ασ(t ))2r
1
γ (t−δ), and C (t , s)= H(t ,s)(α∆(s))

ασ +
H∆s (t , s). Then every solution of equation (1.1) oscillates on [t0,∞)T.

Proof. Suppose to the contrary that y(t ) is a nonoscillatory solution of equation (1.1). Let

t1 ≥ t0 be such that y(t ) 6= 0 for all t ≥ t1. Without loss of generality, we may assume that y is an

eventually positive solution of equation (1.1) with y(t −θ)> 0 where θ = max{τ,δ} for all t ≥ t1

sufficiently large. We proceed as in the proof of Theorem 2.2 to obtain that (2.4) holds for

t ≥ t2. From (2.11), it follows that

w∆(t ) ≤−α(t )Q(t )+
(α∆(t ))+
ασ(t )

wσ(t )−
βM

γ−1

γ α(t )

K (t )
(wσ(t ))2. (2.20)

Multiplying (2.20) by H (t , s) on both sides and integrating from t2 to t , we get

∫t

t2

H (t , s)α(s)Q(s)∆s ≤ −
∫t

t2

H (t , s)w∆(s)∆s +
∫t

t2

H (t , s)(α∆(s))+
ασ(s)

wσ(s)∆s

−
∫t

t2

H (t , s)
βM

γ−1

γ α(s)

K (s)
(wσ(s))2

∆s. (2.21)
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Using integration by parts we have

−
∫t

t2

H (t , s)w∆(s)∆s = −[H (t , s)w (s)]t
t2
+

∫t

t2

H∆s (t , s)wσ(s)∆s

≤ H (t , t2)w (t2)+
∫t

t2

H∆s (t , s)wσ(s)∆s. (2.22)

Substituting (2.22) in (2.21), we obtain

∫t

t2

H (t , s)α(s)Q(s)∆s ≤ w (t2)H (t , t2)+
∫t

t2

[H (t , s)(α∆(s))+
ασ(s)

+ (H (t , s)∆s )
]

wσ(s)∆s

−
∫t

t2

H (t , s)
βM

γ−1

γ α(s)

K (s)
(wσ(s))2

∆s. (2.23)

This implies that

∫t

t2

H (t , s)α(s)Q(s)∆s ≤ w (t2)H (t , t2)+
∫t

t2

C (t , s)wσ(s)∆s

−
∫t

t2

H (t , s)
βM

γ−1

γ α(s)

K (s)
(wσ(s))2

∆s.

Then by completing the square, we have

∫t

t2

H (t , s)α(s)Q(s)∆s ≤ w (t2)H (t , t2)+
∫t

t2

K (s)C 2(t , s)

4βM
γ−1

γ H (t , s)α(s)

∆s.

Thus for all t ≥ t2, we have

∫t

t2

[

H (t , s)α(s)Q(s)−
K (s)C 2(t , s)

4βM
γ−1

γ H (t , s)α(s)

]

∆s < H (t , t2)w (t2),

and

lim
t→∞

sup
1

H (t , t2)

∫t

t2

[

α(s)H (t , s)Q(s)−
K (s)C 2(t , s)

4βM
γ−1

γ H (t , s)α(s)

]

∆s <∞,

which contradicts to the condition (2.19). This completes the proof. ���

Corollary 2.10. Let assumption (2.19) in Theorem 2.9 be replaced by

lim
t→∞

sup
1

H (t , t0)

∫t

t0

α(s)H (t , s)Q(s)∆s =∞,

and

lim
t→∞

sup
1

H (t , t0)

∫t

t0

K (s)C 2(t , s)

H (t , s)α(s)
∆s <∞.

Then every solution of equation (1.1) oscillates on [t0,∞)T.
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Remark 2.11. With an appropriate choice of the functions H and h, one can establish a num-

ber of oscillation criteria for equation (1.1) on different types of time scales.

For example, if H (t , s)= (t − s)m , t , s ∈ D with m > 1 then it is clear that H belongs to the class

P and ((t − s)m)∆s ≤−m(t −σ(s))m−1. We consider the following two cases

Case: 1. If µ(t )= 0, then

((t − s)m)∆s =−m(t − s)m−1.

Case: 2. If µ(t ) 6= 0, then we have

((t − s)m)∆s =
1

µ(s)
[((t −σ(s))m)− ((t − s)m)]

≤ −m(t − s)m−1.

Then from (2.11) and (2.24), we have ((t − s)m)∆s ≤−m((t −σ(s))m−1. From Theorem 2.9,

we have the following Kamenev-type oscillation criteria for equation (1.1).

Corollary 2.12. Assume condition (1.2) holds. Furthermore assume that there exist a positive

rd-continuous delta differentiable function α(t ) and for every b ≥ 1 and a positive number M

with

lim
t→∞

sup
1

t m

∫t

t0

[

α(s)(t , s)mQ(s)−
K (s)C 2(t , s)

4βM
γ−1

γ (t , s)mα(s)

]

∆s∆s =∞, (2.24)

where m > 1,C (t , s) = (t−s)m (α∆(s))+
ασ −m((t −σ(s))m−1 , t ≥ s ≥ t ≥ t0. Then every solution of

equation (1.1) oscillates on [t0,∞)T.

Also, one can use the factorial function H (t , s) = (t − s)(k) where (t )(k) = t (t − 1)(t −
2)...(t −k +1) , t (0) = 1 and establish new oscillation criteria for equation (1.1).

In this case

H∆s(t − s)(k) =
(t −σ(s))k − (t − s)k

µ(s)

=
−(t − s)k − (t −σ(s))k

µ(s)

≥ −k(t − s)k−1.

Next, we consider the case when (1.3) holds and 0 <β< 1,γ≥ 1.

Theorem 2.13. Assume that (1.3) holds. Furthermore, assume that there exist positive func-

tions α(t ) and φ(t ) such that (2.1) holds and

∫∞

t0

1

r
1
γ (s)

(

∫s

t1

q(u)(1−p(u −δ))β∆u
) 1
γ
∆s =∞, (2.25)

for some t0 ∈T. Then every solution x(t ) of equation (1.1) is either oscillatory or tends to zero as

t →∞.
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Proof. Suppose to the contrary that y(t ) is a nonoscillatory solution of equation (1.1). Let t1 ≥
t0 be such that y(t ) 6= 0 for all t ≥ t1. Without loss of generality, we may assume that y(t ) is an

eventually positive solution of equation (1.1) with y(t−θ)> 0, where θ =max{τ,δ} for all t ≥ t1

sufficiently large. Let x(t ) = y(t )+p(t )y(t −τ). Then x(t )> 0 for all t ∈ [t0,∞)T. From equation

(1.1), we have (r (t )(x∆(t ))γ)∆ ≤ 0.

Hence r (t )(x∆(t ))γ is either eventually nonnegative or eventually negative. Since r (t )> 0

and γ is a ratio of odd positive integers, we have either x∆(t ) ≥ 0 or x∆(t ) < 0 for all t ≥ t1 ≥ t0.

In the case, where x∆(t ) is eventually nonnegative, we may follow the inequality (2.6) as

in the proof of Theorem 2.2 and one obtains

w∆(t ) ≤ −α(t )Q(t )+
(α∆(t ))+

ασ
wσ(t )−

α(t )(r (x∆)γ)σ(xβ(t −δ))∆

xβ(t −δ)xβ(σ(t )−δ)
. (2.26)

Since β≤ 1, the Keller’s chain rule yields that

(xβ(t ))∆ = β

∫1

0
[hxσ+ (1−h)x]β−1dhx∆(t )

≥ βxβ−1(σ(t ))x∆(t ).

Then, for t ∈ [t2,∞)T sufficiently large, we have

(xβ(t −δ))∆ =β(xβ−1(σ(t )−δ))(x∆(t −δ)).

Since the remaining part of the proof is similar to that of Theorem 2.2, we omit the details.

If x∆(t ) is eventually negative, then limt→∞ x(t ) = a ≥ 0. We assert that a = 0. If not, then

xβ(t −δ) → aβ > 0 as t → ∞. Then there exists t1 ∈ [t0,∞)T such that xβ(t −δ) ≥ aβ. From

equation (1.1), we have

(r (t )(x∆(t ))γ)∆ ≤−q(t )(1−p(t −δ))βaβ.

Now integrating the last inequality from t1 to t , we have

r (t )(xδ(t ))γ ≤ r (t )(xδ(t ))γ− r (t1)(x∆(t1))γ

≤ −aβ
∫t

t1

q(s)(1−p(s −δ))β∆s,

or

x∆(t ) ≤−a
β

γ

( 1

r (t )

∫t

t1

q(s)(1−p(s −δ))β∆s
) 1
γ

.

Again integrating from t1 to t , we obtain

x(t )≤ x(t1)−a
β

γ

∫t

t1

1

r
1
γ (s)

(

∫s

t1

q(u)(1−p(u −δ))β∆u
) 1
γ
∆s.
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Condition (2.25) implies that x(t ) is eventually negative, which is a contradiction. Therefore

limt→∞ x(t )= 0. Since x(t )= y(t )+p(t )y(t −δ), then 0 < y(t )≤ x(t ). This implies that y(t )→ 0

as t →∞. The proof is complete. ���

3. Examples

In this section, we give some examples to illustrate our main results. To obtain the con-

dition for oscillation, we will use the following facts.

∫∞

t0

∆s

sv
=∞, if 0 ≤ v ≤ 1,

and
∫∞

t0

∆s

sv
<∞ if v > 1.

Example 3.1. Consider the following second order neutral delay dynamic equation

(((y(t )+
1

2
y(t −τ))∆)3)∆+

1

t +1
y5/3(t −δ) = 0, t ∈ [1,∞)T, (3.1)

τ and δ are non-negative constants such that t −τ and t −δ ∈ T . In this example γ = 3, β =
5/3, r (t ) = 1, q(t ) = 1

t , p(t ) = 1
2 . It is easy to see that assumptions (H1)− (H4) hold. Choose

φ(s) = 1 and α(s) = 1, then from Corollary 2.8 we have

limsup
t→∞

∫t

t0

q(s)(1−p(s −δ))5/3
∆s = limsup

t→∞

1

25/3

∫t

t0

1

s +1
∆s =∞.

Hence every solution of equation (3.1) is oscillatory.

Example 3.2. Consider the following second order neutral delay dynamic equation

(((y(t )+
1

2
y(t −τ))∆)5)∆+

1

t 2
y5/3(t −δ) = 0, t ∈ [1,∞)T, (3.2)

τ and δ are non-negative constants such that t −τ and t −δ ∈ T . In this example γ = 5, β =
5/3, r (t ) = 1, q(t ) = 1

t , p(t ) = 1
2 . It is easy to see that assumptions (H1)− (H4) hold. Choose

φ(s) = 1 and α(s) = s, then from Corollary 2.7 we have

lim
t→∞

sup

∫t

t0

[

sq(s)(1−p(s −δ))β−
b1−βr

1
γ (s −δ)(s −δ)1−β

4βM
γ−1

γ s

]

∆s

= lim
t→∞

sup

∫t

t0

[ 1

25/3

1

s
−

3

20b2/3M 4/5

1

s(s −δ)2/3

]

∆s

=∞.

Hence every solution of equation (3.2) is oscillatory.
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Example 3.3. Consider the following second order neutral delay dynamic equation

[y(t )+
1

t +δ
y(t −τ)]∆∆+

λ

t 2
y(t −δ) = 0 t ∈ [1,∞)T, (3.3)

τ and δ are non-negative constants such that t−τ and t−δ∈T andλ> 0 is a constant. For this

equation, β = γ= 1 , r (t ) = 1 , f (t ,u) = q(t )u , q(t ) = λ
t 2 , p(t ) = 1

t+δ i.e., p(t −δ) = 1
t . It is easy

to see that assumptions (H1)− (H4) hold. Choose φ(s) = 1 and α(s) = s, then from Corollary

2.7 we have

lim
t→∞

sup

∫t

t0

[

sq(s)(1−p(s −δ))β−
b1−βr

1
γ (s −δ)(s −δ)1−β

4βM
γ−1

γ s

]

∆s =∞.

= lim
t→∞

sup

∫t

t0

[λ

s
(1−

1

s
)−

1

4s

]

∆s

= lim
t→∞

sup

∫t

t0

[λ

s
−

λ

s2
−

1

4s

]

∆s

= lim
t→∞

sup

∫t

t0

[4λ−1

4s
−

λ

s2

]

∆s

= ∞, if λ>
1

4
.

Hence every solution of equation (3.3) oscillates if λ> 1
4

.
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