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CLASSIFICATION OF h-HOMOGENEOUS PRODUCTION

FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION

BANG-YEN CHEN

Abstract. Almost all economic theories presuppose a production function, either on the

firm level or the aggregate level. In this sense the production function is one of the key

concepts of mainstream neoclassical theories. There is a very important class of produc-

tion functions that are often analyzed in both microeconomics and macroeconomics;

namely, h-homogeneous production functions. This class of production functions in-

cludes two important production functions; namely, the generalized Cobb-Douglas pro-

duction functions and ACMS production functions. It was proved in 2010 by L. Losonczi

[12] that twice differentiable two-inputs h-homogeneous production functions with con-

stant elasticity of substitution (CES) property are Cobb-Douglas’ and ACMS production

functions. Lozonczi also pointed out in [12] that his proof does not work for production

functions of n-inputs with n > 2.

In this paper we settle this classification problem completely by classifying all h-homo-

geneous production functions which satisfy the CES property. More precisely, we prove

that, for arbitrary number of inputs, the only twice differentiable h-homogeneous pro-

duction functions satisfying the CES property are the generalized Cobb-Douglas produc-

tion functions and the generalized ACMS production functions.

1. Introduction

In microeconomics and macroeconomics, a production function is a positive non-

constant function that specifies the output of a firm, an industry, or an entire economy for

all combinations of inputs. Almost all economic theories presuppose a production function,

either on the firm level or the aggregate level. In this sense, the production function is one of

the key concepts of mainstream neoclassical theories. By assuming that the maximum output

technologically possible from a given set of inputs is achieved, economists using a production

function in analysis are abstracting from the engineering and managerial problems inherently

associated with a particular production process.

Let R denote the set of real numbers. Let us put

R+ = {r ∈R : r > 0} and R
n
+ = {(x1, . . . , xn) ∈Rn : x1, . . . , xn > 0}.
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In this paper, by a production function we mean a function f : D ⊂Rn
+ →R+ from a domain D

of Rn
+ into R+ which has non-vanishing first derivatives.

Let h be a positive number. A production function Q = f (x1, · · · , xn) is said to be h-

homogeneous or homogeneous of degree h, if

f (t x1, . . . , t xn) = t h f (x1, . . . , xn) (1.1)

holds for each t ∈R for which (1.1) is defined. A homogeneous function of degree one is called

linearly homogeneous.

If h > 1, the function exhibits increasing return to scale, and it exhibits decreasing return

to scale if h < 1. If it is homogeneous of degree 1, it exhibits constant return to scale. The

presence of increasing returns means that a one percent increase in the usage levels of all in-

puts would result in a greater than one percent increase in output; the presence of decreasing

returns means that it would result in a less than one percent increase in output. Constant

returns to scale is the in-between case.

In 1928, C. W. Cobb and P. H. Douglas [7] introduced a famous two-factor production

function, nowadays called Cobb-Douglas production function, in order to describe the distri-

bution of the national income by help of production functions.

Cobb-Douglas two-factor production function is given by

Y = bLkC 1−k , (1.2)

where L represents the labor input, C is the capital input, b is the total factor productivity and

Y is the total production. Later work in the 1940s prompted them to allow for the exponents

on C and L vary, which resulting in estimates that subsequently proved to be very close to

improved measure of productivity developed at that time [8, 10].

In its generalized form the Cobb-Douglas production function may be written as

Q(x) = bx
α1

1 · · ·x
αn
n (1.3)

for x = (x1, . . . , xn) ∈ Rn
+, where b is a positive constant and α1, . . . ,αn are nonzero constants.

This function Q is known as the generalized Cobb-Douglas production function.

The most common quantitative indices of production factor substitutability are forms of

the elasticity of substitution. The elasticity of substitution was originally introduced by J. R.

Hicks [11] in case of two inputs for the purpose of analyzing changes in the income shares of

labor and capital.
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R. G. Allen and J. R. Hicks [2] suggested a generalization of Hicks original two variable

elasticity concept given as follows: Let f be a twice differentiable production function. Put

Hi j (x) =

1

xi fxi

+
1

x j fx j

−
fxi xi

f 2
xi

+
2 fxi x j

fxi
fx j

−
fx j x j

f 2
x j

(1.4)

for x ∈Rn
+, 1≤ i 6= j ≤ n, where the subscripts of f denote partial derivatives i.e.

fxi
=

∂ f

∂xi
, fxi x j

=
∂2 f

∂xi∂x j
,

all partial derivatives are taken at the point x and the denominator is assumed to be different

from zero.

The Hi j is called the Hicks elasticity of substitution of the i -th production variable (factor)

with respect to the j -th production variable (factor).

A twice differentiable production function f is said to satisfy the CES (constant elasticity

of substitution) property if there is a nonzero constant σ ∈R such that

Hi j (x) =σ for x ∈R
n
+ and 1 ≤ i 6= j ≤ n. (1.5)

K. J. Arrow, H. B. Chenery, B. S. Minhas and R. M. Solow [3] introduced a two-factor CES

production function given by

Q = F · (aK r
+ (1−a)Lr )

1
r , (1.6)

where Q is the output, F the factor productivity, a the share parameter, K ,L the primary pro-

duction factors (capital and labor), r = (s −1)/s, and s = 1/(1− r ) is the elasticity of substitu-

tion.

The generalized ACMS production function (or the generalized CES production function)

is defined as

Q(x)= b
( n
∑

i=1

a
ρ

i
x
ρ

i

)
h
ρ

, x = (x1, . . . , xn) ∈Rn
+, (1.7)

with a1, . . . , an ,b,h > 0, ρ < 1, ρ 6= 0.

It is well-known that both the generalized Cobb-Douglas production function and the

ACMS production function satisfy the CES property. In fact, it is easy to verify that Hi j (x) = 1

for the generalized Cobb-Douglas production function and Hi j (x) = 1/ρ for the ACMS pro-

duction function if ρ 6= 1. For ρ = 1 the denominator of Hi j is zero, hence it is not defined.

From mathematical point of view, it is a quite interesting problem to classify h-homo-

geneous production functions which satisfy the CES property. For functions of two variables,

this was done recently by to L. Losonczi in 2010. More precisely, Losonczi proved the following

result in [12, Theorem 10].
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Theorem A. Suppose that P : R2
+ → R+ is a twice differentiable two-variable production func-

tion, homogeneous of degree h 6= 0 and satisfying H12(x)=σ for some 0 6=σ∈R. Then

P(x, y) =







C xαyh−α, if σ= 1,
(

β1x
h
β +β2 y

h
β

)β

, if σ 6= 1,
(1.8)

where α 6= 0 is arbitrary nonzero constant such that h −α 6= 0 holds, C ,β1,β2 are are arbitrary

positive constants.

Theorem A generalizes and somewhat clarifies analogous result of [3]. In the closing re-

mark of [12], L. Losonczi pointed out that the method of his proof of Theorem A does not work

for production functions with more than two inputs.

In this paper, we settle this problem completely, for arbitrary number of inputs, by clas-

sifying all h-homogeneous production functions which satisfy the CES property. More pre-

cisely, we prove the following.

Theorem 1. Let f (x1, . . . , xn) be a twice differentiable h-homogeneous production function. If

f satisfies the constant elasticity of substitution property, then it is either the generalized Cobb-

Douglas production function given by

f (x1, . . . , xn) = bx
α1

1 · · ·x
αn
n , (1.9)

with α1, . . . ,αn 6= 0 and
∑n

i=1αi =h or the generalized ACMS production function given by

f (x1, . . . , xn) = b
( n
∑

i=1

a
ρ

i
x
ρ

i

)
h
ρ

, (1.10)

with a1, . . . , an ,b,h > 0, ρ < 1, ρ 6= 0.

2. Proof of Theorem 1.

Let Q = f (x1, . . . , xn) be a twice differentiable h-homogeneous production function. Then

f has non-vanishing first partial derivatives. The Euler Homogeneous Function Theorem im-

plies that

x1 fx1
+x2 fx2

+·· ·+xn fxn
= h f . (2.1)

If h = 0, then after taking the partial derivatives of (1.1) with respect to x1, . . . , xn , we find

t fx j
= fx j

, i = 1, . . . ,n. Therefore, we have fx1
= ·· · = fxn

= 0, which contradicts to the assump-

tion that f has non-vanishing first partial derivatives. Consequently, we must have h 6= 0.
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By taking the partial derivatives of (2.1) with respect to x1, . . . , xn , respectively, we obtain

x1 fx1x1
+x2 fx1x2

+·· ·+xn fx1xn
= (h −1) fx1

,

x1 fx1x2
+x2 fx2x2

+·· ·+xn fx2xn
= (h −1) fx2

,

...

x1 fx1xn
+x2 fx2xn

+·· ·+xn fxn xn
= (h −1) fxn

.

(2.2)

Assume that the production function f satisfies the constant elasticity of substitution

property. Then we obtain (1.5) for some nonzero constant σ. Therefore, we have the following

equations from (1.4):

2 fxi
fx j

fxi x j
− f 2

x j
fxi xi

− f 2
xi

fx j x j
=

(xi fxi
+x j fx j

) fxi
fx j

σxi x j
(2.3)

for 1 ≤ i < j ≤ n.

It follows from (2.3) that

fxi x j
=

(xi fxi
+x j fx j

) fxi
fx j

+σxi x j ( fxi xi
f 2

x j
+ fx j x j

f 2
xi

)

2σxi x j fxi
fx j

(2.4)

for 1 ≤ i < j ≤ n.

After substituting (2.4) into (2.2) and after solving the resulting equations for fxi xi
, i =

1, . . . ,n, we obtain

fxi xi
=

(

1+ (h −1)σ

hσ
·

fxi

f
−

1

σxi

)

fxi
, i = 1, . . . ,n, (2.5)

by virtue of (2.1). Thus, after substituting (2.5) into (2.4) we get

fxi x j
=

(

1+ (h −1)σ

hσ

)

fxi
fx j

f
, 1 ≤ i < j ≤n. (2.6)

Now, we divide the proof into two separate cases.

Case (a): σ= 1. In this case, system (2.5) and (2.6) become

fxi xi
= fxi

(

fxi

f
−

1

xi

)

, i = 1, . . . ,n, (2.7)

fxi x j
=

fxi
fx j

f
, 1 ≤ i 6= j ≤ n. (2.8)

After solving the second order differential equation given by (2.7) with i = 1, we find

f =λ(x2, . . . , xn)(x1)µ(x2,...,xn ) (2.9)
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for some functions λ(x2, . . . , xn) and µ(x2, . . . , xn).

By substituting (2.9) into the second order differential equation given by (2.8) with i = 1

and j ∈ {2, . . . ,n}, we get

µx2
= ·· · =µxn

= 0.

Thus, in views of fx1
6= 0, the function µ is a nonzero constant, said α1. Hence (2.9) becomes

f =λ(x2, . . . , xn) x
α1

1 . (2.10)

After substituting (2.10) into (2.7) with i = 2, we obtain the following second order differential

equation for λ:

λx2x2
=λx2

(

λx2

λ
−

1

x2

)

. (2.11)

After solving this differential equation, we get

λ=ϕ(x3, . . . , xn)(x2)η(x3,...,xn )

for some functions ϕ(x3, . . . , xn) and η(x3, . . . , xn). By combining this with (2.10) we obtain

f =ϕ(x3, . . . , xn)(x2)η(x3,...,xn )x
α1

1 . (2.12)

Now, after substituting (2.12) into (2.8) with i = 2 and j ∈ {3, . . . ,n} and after applying fx2
6= 0,

we conclude that η(x3, . . . , xn) is a nonzero constant, say α2. Therefore (2.12) becomes

f =ϕ(x3, . . . , xn)x
α1

1 x
α2

2 . (2.13)

By continuing such procedure n −1 times, we derive that

f = bx
α1

1 · · ·x
αn
n (2.14)

for some positive real number b and nonzero real numbers αi , i = 1, . . . ,n, with
∑n

i=1αi = h.

Consequently, the production function f is a generalized Cobb-Douglas production function.

Case (b): σ 6= 1. After solving the second order differential equation given by (2.5) with i = 1,

we get

f = u(x2, . . . , xn)
(

x
σ−1
σ

1 +v(x2, . . . , xn)
) hσ
σ−1 (2.15)

for some functions u(x2, . . . , xn) and v(x2, . . . , xn).

By substituting (2.15) into the second differential equations given by (2.6) with i = 1 and

j ∈ {2, . . . ,n}, we derive that

ux2
= ·· · = uxn

= 0.
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Thus u is a constant. Therefore we may put u = ba
σ−1
σ

1 for some positive real numbers b and

a1. Consequently, (2.15) becomes

f = b
(

a
σ−1
σ

1 x
σ−1
σ

1 +v(x2, . . . , xn)
)

hσ
σ−1 . (2.16)

Now, after substituting (2.16) into the differential equations given by (2.6) with 2 ≤ i < j ≤ n,

we find vxi x j
= 0, which imply that

v = v (2)(x2)+·· ·+v (n)(xn)

for some non-constant functions v (2)(x2), . . . , v (n)(xn). Therefore, by combining this with (2.16)

we obtain

f = b
(

a
σ−1
σ

1 x
σ−1
σ

1 +v (2)(x2)+·· ·+v (n)(xn)
)

hσ
σ−1 .

Now, by substituting this into the second order differential equations given by (2.5) with i =

2, . . . ,n, we conclude that v (i )(xi ) i = 2, . . . ,n, are of the form:

v (i )(xi ) = a
σ−1
σ

i
x

σ−1
σ

i

for some positive real numbers a2, . . . , an . Consequently, the production function is the ACMS

function defined by (1.7) with ρ =
σ−1
σ

.

3. Closing Remarks

A production function is called quasi-sum if there are continuous strict monotone func-

tions gi :R+ →R, i = 1, . . . ,n, and there exist an interval I ⊂R of positive length and a continu-

ous strict monotone function g : I →R+ such that for each x∈Rn
+ we have g1(x1)+·· ·+gn(xn) ∈

I and

f (x) = g (g1(x1)+·· ·+ gn(xn)).

The justification for studying production functions of quasi-sum form is that these functions

appear as solutions of the general bisymmetry equation and they are related to the problem

of consistent aggregation (cf. [1]).

The generalized Cobb-Douglas production functions and the generalized ACMS produc-

tion functions have been characterized by the homogeneity of some degree and quasi-sum

form by W. Eichorn [9], B. Nyul [15] and F. Stehling [16].

Recently, several geometric results on h-homogeneous and quasi-sum production func-

tions have been obtained by B.-Y. Chen, A. D. Vîlcu and G. E. Vîlcu using production hyper-

surfaces [4, 5, 6, 17, 18]. Several applications of these geometric results to generalized Cobb-

Douglas’ and ACMS production functions can be found in these papers.

Concerning the history on production functions, we refer to S. K. Mishra [14].
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