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Abstract. The objective of this paper is to study the oscillatory and asymptotic
properties of third order mixed neutral differential equation of the form

(a(t)[x(t) + b(t)x(t− τ1) + c(t)x(t+ τ2)]
′′)′ + q(t)xα(t− σ1) + p(t)xβ(t+ σ2) = 0

where a(t), b(t), c(t), q(t) and p(t) are positive continuous functions, α and β are
ratios of odd positive integers, τ1, τ2, σ1 and σ2 are positive constants. We establish
some sufficient conditions which ensure that all solutions are either oscillatory or
converge to zero. Some examples are provided to illustrate the main results.

1. Introduction

In this paper, we are concerned with the following third order mixed neutral type

differential equation of the form

(a(t)[x(t)+b(t)x(t−τ1)+c(t)x(t+τ2)]
′′)′+q(t)xα(t−σ1)+p(t)xβ(t+σ2) = 0, (1.1)

for t ≥ t0. Throughout this paper, we assume that the following hypotheses hold.

(H1) a(t) is a positive nondecreasing continuous function for all t ≥ t0 with
∞∫

t0

1

a(t)
dt = ∞;

(H2) b(t), c(t) ∈ C([t0,∞), (0,∞)) and there exist b and c such that b(t) ≤ b, c(t) ≤

c with b+ c < 1;

(H3) p(t), q(t) ∈ C([t0,∞), (0,∞));
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(H4) τ1, τ2, σ1 and σ2 are nonnegative constants and α and β are ratios of odd

positive integers.
Let θ = max{τ1, σ1}. By a solution of equation (1.1), we mean a real continuous

function x(t) defined for all t ≥ t0−θ and satisfying the equation (1.1) for all t ≥ t0.

A solution of equation (1.1) is called oscillatory if it has large zeros on [t0,∞),

otherwise it is called nonoscillatory.

Recently there has been a great interest in studying the oscillatory and asymptotic

behavior of differential equations, see for example [1–24] and the references cited

therein. Especially the equation (1.1) with c(t) ≡ 0 and p(t) ≡ 0 have been the

subject of intensive research. In [1, 4–6, 9–11, 16, 21, 24], the authors studied the

oscillatory behavior of solutions of equation (1.1) when b(t) ≡ 0, c(t) ≡ 0 and

p(t) ≡ 0. In [7, 8, 12, 13, 17–20, 22], the authors studied the oscillatory behavior of

solutions of equation (1.1) when c(t) ≡ 0 and p(t) ≡ 0. In [2, 14, 15, 23], the authors

discussed the oscillatory behavior of all solutions of equation (1.1) when α = β = 1.

It is interesting to study the equation (1.1) under the conditions α = β and

α ̸= β. To the best of our knowledge, there are no results regarding the oscillation

of equation (1.1) under the assumption α ̸= β. So the purpose of this paper is to

present some new oscillatory and asymptotic criteria for equation (1.1). In Section

2, we present criteria for equation (1.1) to be oscillatory or for all its nonoscillatory

solutions tend to zero as t → ∞. Examples are provided in Section 3 to illustrate

the results presented in Section 2.

2. Oscillatory Results

In this section, we present some new oscillation criteria for equation (1.1). For

the sake of convenience, when we write a functional inequality without specifying

its domain of validity, we assume that it holds for all large t.
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We begin with the following lemmas which are crucial in the proof of the main

results. For simplicity, we use the following notations, without further mention:

z(t) = x(t) + b(t)x(t− τ1) + c(t)x(t+ τ2),

Q(t) = min{q(t), q(t− τ1), q(t+ τ2)}, P (t) = min{p(t), p(t− τ1), p(t+ τ2)},

R(t) = Q(t) + P (t),

η(t) =

(
d

4

)β−1
k(t− σ)β

2β
R(t) for some k ∈ (0, 1), σ = max(σ1, σ2) and d > 0.

Lemma 2.1. Assume A ≥ 0, B ≥ 0. If δ ≥ 1, then

(A+B)δ ≤ 2δ−1(Aδ +Bδ).

If 0 < δ ≤ 1, then (A+B)δ ≤ Aδ +Bδ.

Proof. Proof can be found in [22]. �

Lemma 2.2. Let x(t) be a positive solution of equation (1.1). Then there are only

two cases for z(t) for all sufficiently large t ≥ t1.

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, (a(t) z′′(t))′ ≤ 0;
(II) z(t) > 0, z′(t) < 0, z′′(t) > 0, (a(t) z′′(t))′ ≤ 0.

Proof. Let x(t) be a positive solution of equation (1.1). Then there exists a t1 ≥ t0

such that x(t) > 0, x(t− σ1) > 0 and x(t− τ1) > 0 for all t ≥ t1. Then z(t) > 0 for

all t ≥ t1. It follows from equation (1.1) that

(a(t) z′′(t))′ = −q(t)xα(t− σ1)− p(t)xβ(t+ σ2) < 0, t ≥ t1. (2.1)

Hence a(t)z′′(t) is strictly decreasing for all t ≥ t1. We claim that z′′(t) > 0 for all

t ≥ t1. If not, then there is a t2 ≥ t1 and M < 0 such that

a(t) z′′(t) ≤ a(t2) z
′′(t2) ≤ M for all t ≥ t2.
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Integrating the last inequality from t2 to t, we have

z′(t) ≤ z′(t2) +M

t∫
t2

1

a(s)
ds.

Letting t → ∞, and using (H1) we see that z
′(t) → −∞. Thus there exists a t3 ≥ t2

such that z′(t) < 0 for all t ≥ t3. This implies that z(t) → −∞ as t → ∞, a

contradiction. Hence z′′(t) > 0 for all t ≥ t1. This completes the proof. �

Lemma 2.3. Let z(t) > 0, z′(t) > 0, z′′(t) > 0 and z′′′(t) ≤ 0 for all t ≥ t0. Then

for some k ∈ (0, 1) and for some t1

z(t)

z′(t)
≥ (t− t0)

2
≥ kt

2
for t ≥ t1 ≥ t0. (2.2)

Proof. Since z′′(t) is nonincreasing and

z′(t) = z′(t0) +

t∫
t0

z′′(s)ds,

we have

z′(t) ≥ (t− t0)z
′′(t).

Integrating the last inequality from t0 to t, we have

z(t) ≥ z(t0) + (t− t0)z
′(t)− z(t) + z(t0)

or

z(t) ≥
(
t− t0
2

)
z′(t) ≥ kt

2
z′(t) for some k ∈ (0, 1).

The proof is now complete. �

Lemma 2.4. Let x(t) be a positive solution of equation (1.1), α = β ≥ 1 and the

corresponding z(t) satisfies Lemma 2.2 (II). If
∞∫

t0

 ∞∫
t

 1

a(s)

∞∫
s

(q(u) + p(u))du

 ds

 dt = ∞ (2.3)

holds, then lim
t→∞

x(t) = 0.
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Proof. Let x(t) be a positive solution of equation (1.1). Then z(t) > 0 and z′(t) < 0,

we have lim
t→∞

z(t) = l ≥ 0 exists. We shall prove that l = 0. Assume that l > 0.

Then for any ϵ > 0, we have l + ϵ > z(t) eventually. Choose

0 < ϵ <
l(1− b− c)

b+ c
.

It is easy to verify that

x(t) = z(t)− b(t)x(t− τ1)− c(t)x(t+ τ2)

> l − (b+ c)z(t− τ1)

> l − (b+ c)(l + ϵ)

= k(l + ϵ) > kz(t),

where k =
l − (b+ c)(l + ϵ)

l + ϵ
> 0. Using the above inequality, we obtain from (2.1)

(a(t) z′′(t))′ ≤ −q(t)kβzβ(t− σ1)− p(t)kβzβ(t+ σ2)

≤ −kβ(q(t) + p(t))zβ(t− σ1).

Integrating the above inequality from t to ∞ and using z(t) > l, we obtain

z′′(t) ≥ (kl)β

 1

a(t)

∞∫
t

(p(s) + q(s))ds

 .

Integrating again from t to ∞, we have

−z′(t) ≥ (kl)β
∞∫
t

1

a(s)

 ∞∫
s

(p(t) + q(t))dt

 ds.

Integrating from t1 to ∞, we obtain

z(t1) ≥ (kl)β
∞∫

t=t1

 ∞∫
t

 1

a(s)

∞∫
s

(p(u) + q(u))du

 ds

 dt.

This contradicts (2.3). Hence l = 0, moreover the inequality 0 ≤ x(t) ≤ z(t) implies

that lim
t→∞

x(t) = 0 and the proof is complete. �
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Next, we establish some oscillation results which ensure that every solution of

equation (1.1) either oscillates or converges to zero.

Theorem 2.5. Assume that condition (2.3) holds, σ1 ≥ τ1, and α = β ≥ 1. If there

exists a positive real valued function ρ(t) and t1 > 0 with

lim
t→∞

sup

t∫
t1

[
ρ(s)η(s)−

(1 + bβ + cβ

2β−1 )

4

a(s− σ1)(ρ
′(s))2

ρ(s)

]
ds = ∞ (2.4)

holds, then every solution x(t) of equation (1.1) either oscillates or lim
t→∞

x(t) = 0.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of gen-

erality, we may assume that there exists a t1 ≥ t0 such that x(t) > 0, x(t− σ1) > 0

and x(t− τ1) > 0 for all t ≥ t1. Then we have z(t) > 0 and (2.1) for all t ≥ t1.

From the equation (1.1), we have

(a(t) z′′(t))′ + q(t)xβ(t− σ1) + p(t)xβ(t+ σ2) + bβ(a(t− τ1)z
′′(t− τ1))

′

+ bβq(t− τ1)x
β(t− τ1 − σ1) + bβp(t− τ1)x

β(t− τ1 + σ2) +
cβ

2β−1
(a(t+ τ2)z

′′(t+ τ2))
′

+
cβ

2β−1
q(t+ τ2)x

β(t+ τ2 − σ1) +
cβ

2β−1
p(t+ τ2)x

β(t+ τ2 + σ2) = 0 (2.5)

That is,

(a(t) z′′(t))′ + bβ(a(t− τ1)z
′′(t− τ1))

′ +
cβ

2β−1
(a(t+ τ2)z

′′(t+ τ2))
′

+Q(t)

[
xβ(t− σ1) + bβxβ(t− τ1 − σ1) +

cβ

2β−1
xβ(t+ τ2 − σ1)

]
+ P (t)

[
xβ(t+ σ2) + bβxβ(t− τ1 + σ2) +

cβ

2β−1
xβ(t+ τ2 + σ2)

]
≤ 0.

Applying Lemma 2.2 twice, the above inequality becomes

(a(t) z′′(t))′ + bβ(a(t− τ1)z
′′(t− τ1))

′ +
cβ

2β−1
(a(t+ τ2)z

′′(t+ τ2))
′

+
Q(t)

4β−1
zβ(t− σ1) +

P (t)

4β−1
zβ(t+ σ2) ≤ 0. (2.6)
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By Lemma 2.2, there are two cases for z(t). First let us assume that Lemma 2.2(I)

holds for all t ≥ t1 ≥ t0. Then z′(t) > 0 implies z(t + σ2) > z(t − σ1). Thus from

(2.6), we obtain

(a(t) z′′(t))′+bβ(a(t−τ1)z
′′(t−τ1))

′+
cβ

2β−1
(a(t+τ2)z

′′(t+τ2))
′+

R(t)

4β−1
zβ(t−σ1) ≤ 0.

(2.7)

Define a function w1(t) by

w1(t) =
ρ(t)a(t)z′′(t)

z′(t− σ1)
for all t ≥ t1. (2.8)

Then w1(t) > 0 for all t ≥ t1. Differentiating (2.8), we obtain

w′
1(t) = ρ′(t)

a(t)z′′(t)

z′(t− σ1)
+ ρ(t)

(a(t)z′′(t))′

z′(t− σ1)
− ρ(t)

a(t)z′′(t)

(z′(t− σ1))2
z′′(t− σ1).

Since a(t)z′′(t) is strictly decreasing, we have a(t − σ1)z
′′(t − σ1) ≥ a(t) z′′(t).

Therefore,

w′
1(t) ≤ ρ′(t)

a(t)z′′(t)

z′(t− σ1)
+ ρ(t)

(a(t)z′′(t))′

z′(t− σ1)
− ρ(t)

a(t)z′′(t)

(z′(t− σ1))2
a(t)z′′(t)

a(t− σ1)

≤ ρ′(t)
a(t)z′′(t)

z′(t− σ1)
+ ρ(t)

(a(t)z′′(t))′

z′(t− σ1)
− ρ(t)

(a(t)z′′(t))2

(z′(t− σ1))2 a(t− σ1)

w′
1(t) ≤ ρ′(t)w1(t)

ρ(t)
+

ρ(t)(a(t)z′′(t))′

z′(t− σ1)
− w2

1(t)

ρ(t)a(t− σ1)
. (2.9)

Next, we define a function w2(t) by

w2(t) =
ρ(t)a(t− τ1)z

′′(t− τ1)

z′(t− σ1)
for all t ≥ t1. (2.10)

Then w2(t) > 0 for all t ≥ t1. Differentiating (2.10), and similar to (2.9) we have

w′
2(t) ≤

ρ′(t)w2(t)

ρ(t)
+

ρ(t)(a(t− τ1)z
′′(t− τ1))

′

z′(t− σ1)
− w2

2(t)

ρ(t)a(t− σ1)
. (2.11)

Define a function w3(t) by

w3(t) =
ρ(t)a(t+ τ2)z

′′(t+ τ2)

z′(t− σ1)
for all t ≥ t1. (2.12)

Then w3(t) > 0 for all t > t1. Differentiating (2.12),and similar to (2.9) we have

w′
3(t) ≤

ρ′(t)w3(t)

ρ(t)
+

ρ(t)(a(t+ τ2)z
′′(t+ τ2))

′

z′(t− σ1)
− w2

3(t)

ρ(t)a(t− σ1)
. (2.13)



8 Ethiraju Thandapani and Renu Rama

From (2.9), (2.11) and (2.13), we have

w′
1(t) + bβw′

2(t) +
cβ

2β−1
w′

3(t) ≤ ρ′(t)w1(t)

ρ(t)
+

ρ(t)(a(t)z′′(t))′

z′(t− σ1)
− w2

1(t)

ρ(t)a(t− σ1)

+bβ
[
ρ′(t)w2(t)

ρ(t)
+

ρ(t)(a(t− τ1)z
′′(t− τ1))

′

z′(t− σ1)

− w2
2(t)

ρ(t)a(t− σ1)

]
+

cβ

2β−1

[
ρ′(t)w3(t)

ρ(t)

+
ρ(t)(a(t+ τ2)z

′′(t+ τ2))
′

z′(t− σ1)
− w2

3(t)

ρ(t)a(t− σ1)

]

=
ρ(t)

z′(t− σ1)

[
(a(t) z′′(t))′ + bβ(a(t− τ1)z

′′(t− τ1))
′

+
cβ

2β−1
(a(t+ τ2)z

′′(t+ τ2))
′
]
+

[
ρ′(t)w1(t)

ρ(t)

− w2
1(t)

ρ(t)a(t− σ1)

]
+ bβ

[
ρ′(t)w2(t)

ρ(t)
− w2

2(t)

ρ(t)a(t− σ1)

]
+

cβ

2β−1

[
ρ′(t)w3(t)

ρ(t)
− w2

3(t)

ρ(t)a(t− σ1)

]]
≤ ρ(t)

z′(t− σ1)

[
−kβ(q(t) + p(t))zβ(t− σ1)− bβkβ(q(t− τ1)

+p(t− τ1))z
β(t− τ1 − σ1)−

cβ

2β−1
kβ(q(t+ τ2)

+p(t+ τ2))z
β(t+ τ2 − σ1) +

[
ρ′(t)w1(t)

ρ(t)

− w2
1(t)

ρ(t)a(t− σ1)

]
+ bβ

[
ρ′(t)w2(t)

ρ(t)
− w2

2(t)

ρ(t)a(t− σ1)

]
+

cβ

2β−1

[
ρ′(t)w3(t)

ρ(t)
− w2

3(t)

ρ(t)a(t− σ1)

]]
≤ − ρ(t)R(t)

z′(t− σ1)4β−1
zβ(t− τ1 − σ1) +

[
ρ′(t)w1(t)

ρ(t)

− w2
1(t)

ρ(t)a(t− σ1)

]
+ bβ

[
ρ′(t)w2(t)

ρ(t)
− w2

2(t)

ρ(t)a(t− σ1)

]
+

cβ

2β−1

[
ρ′(t)w3(t)

ρ(t)
− w2

3(t)

ρ(t)a(t− σ1)

]
. (2.14)

Since a(t) is nondecreasing and z′′(t) > 0 for t ≥ t1, it follows from (a(t)z′′(t))′ ≤ 0

that z′′′(t) ≤ 0 for t ≥ t1 and therefore by Lemma 2.3, there exists a k ∈ (0, 1) such
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that

z(t− σ1)

z′(t− σ1)
≥ k(t− σ1)

2
. (2.15)

Now z(t) > 0, z′(t) > 0 and z′′(t) > 0 for t ≥ t1 imply

z(t) = z(t1) +

t∫
t1

z′(t)dt ≥ (t− t1)z
′(t1) ≥

dt

2
(2.16)

for some d > 0 and for large value of t. From (2.15), (2.16) and β ≥ 1, we have

zβ(t− σ1)

z′(t− σ1)
≥ dβ−1k(t− σ1)

β

2β
.

Combining the last inequality with (2.14) and then applying the completing the

square in the right hand side of the resulting inequality, we obtain

w′
1(t) + bβw′

2(t) +
cβ

2β−1
w′

3(t) ≤ −ρ(t)R(t)

2β

(
d

4

)β−1

k(t− σ1)
β

+(1 + bβ +
cβ

2β−1
)
a(t− σ1)(ρ

′(t))2

4ρ(t)
.

= −η(t)ρ(t) + (1 + bβ +
cβ

2β−1
)
a(t− σ1)(ρ

′(t))2

4ρ(t)
.

Integrating the above inequality from t2 ≥ t1 to t, we have
t∫

t2

(
η(s)ρ(s)− (1 + bβ +

cβ

2β−1
)
a(s− σ1)(ρ

′(s))2

4ρ(s)

)
ds ≤ w1(t2)+bβw2(t2)+

cβ

2β−1
w3(t2).

Taking lim sup in the last inequality, we get a contradiction to (2.4).

Now, let us assume that Lemma 2.2 (II) holds. Then by Lemma 2.4, we can

obtain lim
t→∞

x(t) = 0. This completes the proof. �

Let ρ(t) = t and β = 1. Then we can obtain the following corollary to Theorem

2.5.

Corollary 2.6. Assume that condition (2.3) holds,σ1 ≥ τ1 and there is a t1 ≥ t0

with

lim sup
t→∞

t∫
t1

(
sη(s)− (1 + b+ c)

4s
a(s− σ1)

)
ds = ∞ (2.17)
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holds, then every solution x(t) of equation (1.1)either oscillates or lim
t→∞

x(t) = 0.

Theorem 2.7. Assume that condition (2.3) holds, σ1 ≤ τ1 and α = β ≥ 1. If there

exists a positive real valued function ρ(t) and t1 ≥ t0 with

lim sup
t→∞

t∫
t1

(
ρ(s)η(s)− (1 + bβ +

cβ

2β−1
)
a(s− τ1)(ρ

′(s))2

4ρ(s)

)
ds = ∞ (2.18)

holds, then every solution x(t) of equation (1.1) either oscillates or lim
t→∞

x(t) = 0.

Proof. Proceeding as in the proof of Theorem 2.5, we obtain (2.6). By Lemma 2.2

there are two cases for z(t). Assume Lemma 2.2 (I) holds, for all t ≥ t1 ≥ t0. Then

we obtain (2.7). By defining

w1(t) =
ρ(t)a(t)z′′(t)

z′(t− τ1)
, w2(t) =

ρ(t)a(t− τ1)z
′′(t− τ1)

z′(t− τ1)
, w3(t) =

ρ(t)a(t+ τ2)z
′′(t+ τ2)

z′(t− τ1)

for all t ≥ t1, then as in the proof of Theorem 2.5, we obtain

w′
1(t) + bβw′

2(t) +
cβ

2β−1
w′

3(t) ≤ − ρ(t)R(t)

z′(t− τ1)4β−1
zβ(t− τ1) +

ρ′(t)w1(t)

ρ(t)

− w2
1(t)

ρ(t)a(t− τ1)
+ bβ

[
ρ′(t)w2(t)

ρ(t)
− w2

2(t)

ρ(t)a(t− τ1)

]
+

cβ

2β−1

[
ρ′(t)w3(t)

ρ(t)
− w2

3(t)

ρ(t)a(t− τ1)

]
. (2.19)

On the otherhand, by Lemma 2.3, for some k ∈ (0, 1) and for sufficiently large t, we

have

z(t− σ1)

z′(t− τ1)
≥ z(t− σ1)

z′(t− σ1)
≥ k(t− σ1)

2
, (2.20)

since z′′(t) ≥ 0 and τ1 ≥ σ1. Combining the inequality (2.20) with (2.19) and then

applying the completing the square in the right hand side of the resulting inequality,

we have

w′
1(t) + bβw′

2(t) +
cβ

2β−1
w′

3(t) ≤ −η(t)ρ(t) + (1 + bβ +
cβ

2β−1
)
a(t− τ1)(ρ

′(t))2

4ρ(t)
.
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Integrating the above inequality from t2 to t, we obtain

t∫
t2

(
η(s)ρ(s)− (1 + bβ +

cβ

2β−1
)
a(s− τ1)(ρ

′(s))2

4ρ(s)

)
ds ≤ w1(t2)+bβw2(t2)+

cβ

2β−1
w3(t2).

Taking lim sup on both sides of the above inequality, we obtain a contradiction to

(2.18). Assume that Lemma 2.2 (II) holds. Then by Lemma 2.4 we can obtain

lim
t→∞

x(t) = 0. This completes the proof. �

Let ρ(t) = t and β = 1. Then, we can obtain the following corollary to Theorem

2.7.

Corollary 2.8. Assume that condition (2.3) holds, τ1 ≥ σ1 and β = 1. If

lim sup
t→∞

t∫
t1

(
sη(s)− 1 + b+ c

4s
a(s− τ1)

)
ds = ∞

holds, then every solution x(t) of equation (1.1) either oscillates or lim
t→∞

x(t) = 0.

Theorem 2.9. Assume that a(t) ≡ 1, 0 < α < 1 < β and σi > τi for i = 1, 2. If

lim inf
t→∞

t+σ−τ2∫
t

(s− t)2P η1(s)Qη2(s)ds > 2ηη11 ηη22
(
4β−1

)η1
(2.21)

where η1 =
1− α

β − α
, η2 =

β − 1

β − α
and σ = max(σ1, σ2), then equation (1.1) is oscilla-

tory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of gen-

erality, we assume that there exists a t1 ≥ t0 such that x(t) > 0, x(t− σ1) > 0 and

x(t− τ1) > 0 for all t ≥ t1. From equation (1.1), we have

z′′′(t) = −q(t)xα(t− σ1)− p(t)xβ(t+ σ2) < 0 for all t ≥ t1.

Then as in Lemma 2.2, we have z′′(t) > 0 for all t ≥ t1. Define a function y(t) by

y(t) = z(t) + bαz(t− τ1) + cαz(t+ τ2). (2.22)
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Since z(t) > 0 and z′′(t) > 0, we have y(t) > 0, y′′(t) > 0 and

y′′′(t) = z′′′(t) + bαz′′′(t− τ1) + cαz′′′(t+ τ2)

= −q(t)xα(t− σ1)− p(t)xβ(t+ σ2)

+bα
[
−q(t− τ1)x

α(t− τ1 − σ1)− p(t− τ1)x
β(t− τ1 + σ2)

]
+cα

[
−q(t+ τ2)x

α(t+ τ2 − σ1)− p(t+ τ2)x
β(t+ τ2 + σ2)

]
y′′′(t) + Q(t) [xα(t− σ1) + bαxα(t− τ1 − σ1) + cαxα(t+ τ2 − σ1)]

+P (t)
[
xβ(t+ σ2) + bαxβ(t− τ1 + σ2) + cαxβ(t+ τ2 + σ2)

]
≤ 0.

Using Lemma 2.1 and 0 < α < 1 < β, b < 1 and c < 1, we get

y′′′(t) +Q(t) [x(t− σ1) + b x(t− τ1 − σ1) + c x(t+ τ2 − σ1)]
α

+ P (t)
[
xβ(t+ σ2) + bβxβ(t− τ1 + σ2) + cβxβ(t+ τ2 + σ2)

]
≤ 0.

Now using Lemma 2.1, c < 1 and β > 1, we have

y′′′(t) + Q(t)zα(t− σ1) + P (t)

[
1

2β−1
(x(t+ σ2) + b x(t+ σ2 − τ1))

β +
cβ

2β−1
xβ(t+ σ2 + τ2)

]
≤ 0

y′′′(t) + Q(t)zα(t− σ1) +
P (t)

4β−1
[x(t+ σ2) + b x(t+ σ2 − τ1)) + c x(t+ σ2 + τ2)]

β ≤ 0

y′′′ + Q(t)zα(t− σ1) +
P (t)

4β−1
zβ(t+ σ2) ≤ 0

or

y′′′(t) +Q(t)zα(t− σ) +
P (t)

4β−1
zβ(t− σ) ≤ 0. (2.23)

Define u1 = η−1
1

P (t)

4β−1
zβ(t−σ) and u2 = η−1

2 Q(t)zα(t−σ). Using arithmetic-geometric

mean inequality u1η1 + u2η2 ≥ uη1
1 uη2

2 , we have

y′′′(t) + η−η1
1 η−η2

2

(
P (t)

4β−1

)η1

Qη2(t) z(t− σ) ≤ 0. (2.24)
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Since z′(t) > 0, we see that

y(t− σ) = z(t− σ) + bαz(t− τ1 − σ) + cαz(t+ τ2 − σ)

≤ (1 + bα + cα) z(t+ τ2 − σ). (2.25)

Using the inequality (2.25) in (2.24), we obtain that y(t) is a positive solution of

y′′′(t) +
η−η1
1 η−η2

2

(1 + bα + cα)

(
P (t)

4β−1

)η1

Qη2(t) y(t− τ2 + σ) ≤ 0. (2.26)

But by [12, Corollary 1], the condition (2.21) implies that equation (2.26) is oscilla-

tory. This contradiction completes the proof. �

Theorem 2.10. Assume that a(t) ≡ 1, 0 < β < 1 < α and σi > τi for i = 1, 2. If

lim inf
t→∞

t∫
t−(σ+τ2)/3

(σ + τ2)
2Qη1(s)P η2(s)ds >

1

e

(
3

2

)2

η̇η11 ηη12
(
4β−1

)η1
(2.27)

where η1 =
1− β

α− β
, η2 =

α− 1

α− β
and σ = max(σ1, σ2) has no increasing solution, then

equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of gen-

erality, let us assume that there exists a t1 ≥ t0 such that x(t) > 0, x(t − τ1) > 0

and x(t−σ1) > 0 for all t ≥ t1. From equation (1.1), we have z′′′(t) < 0 for all t ≥ t1

and therefore from Lemma 2.2, we have z′′(t) > 0 for all t ≥ t1.

Define a function y(t) by

y(t) = z(t) + bαz(t− τ1) + cαz(t+ τ2).

Then as in the proof of Theorem 2.9, we have y(t) > 0, y′′(t) > 0 and

y′′′(t) +
Q(t)

4α−1
zα(t− σ1) + P (t)zβ(t+ σ2) ≤ 0

or

y′′′(t) +
Q(t)

4α−1
zα(t− σ) + P (t)zβ(t− σ) ≤ 0. (2.28)
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Define u1 = η−1
1

Q(t)
4α−1 z

α(t−σ) and u2 = η−1
2 P (t)zβ(t−σ). Then by using arithmetic-

geometric mean inequality u1η1 + u2η2 ≥ uη1
1 uη2

2 , we have

y′′′(t) + η−η1
1 η−η2

2

(
Q(t)

4α−1

)η1

P η2(t) z(t− σ) ≤ 0. (2.29)

Since z′(t) > 0, we have

y(t− σ) = z(t− σ) + bαz(t− τ1 − σ) + cαz(t+ τ2 − σ)

≤ (1 + bα + cα) z(t+ τ2 − σ). (2.30)

Using the inequality (2.30) in (2.29), we obtain that y(t) is a positive solution of

y′′′(t) + η−η1
1 η−η2

2

(
Q(t)

4α−1

)η1

P η2(t) y(t− τ2 − σ) ≤ 0. (2.31)

But by [12, Corollary 1], the condition (2.27) implies that all solutions of equation

(2.31) are oscillatory. This contradiction completes the proof. �

3. Examples

Example 3.1. Consider the differential equation[
x(t) +

1

6e
x(t− 1) +

e

6
x(t+ 1)

]′′′

+e2t−6x3(t−2)+
2

3
e2t+3x3(t+1) = 0, t ≥ 0. (3.1)

Here a(t) ≡ 1, b =
1

6e
, c =

e

6
and b+c =

1 + e2

6e
< 1, τ1 = 1, τ2 = 1, σ1 = 2, σ2 = 2,

β = 3, q(t) = e2t−6, p(t) =
2

3
e2t+3, σ = max(σ1, σ2).

Q(t) = min(q(t), q(t− τ1), q(t+ τ2)) = e2t−8

P (t) = min(p(t), p(t− τ1), p(t+ τ2) =
2

3
e2t+1

R(t) = Q(t) + P (t) = e2t
(

1

e8
+

2e

3

)
η(s) =

(
d

4

)β−1
k(s− σ)β

2β
, R(s) =

(
d

4

)2
k

8
(s− 2)3e2s

(
1

e8
+

2e

3

)
By taking ρ(t) = 1 one can easily verify that all the conditions of Theorem 2.5 are

satisfied. Therefore all the solutions of equation (3.1) are either oscillatory or tend
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to zero as t → ∞. In particular x(t) = e−t is one solution,since it satisfies equation

(3.1), such that x(t) → 0 as t → ∞.

Example 3.2. Consider the differential equation[
x(t) +

1

2
x

(
t− 5π

2

)
+

1

3
x

(
t+

3π

2

)]′′′

+
1

12
x(t−π)+

1

12
x(t+π) = 0, t ≥ 0. (3.2)

Here a(t) ≡ 1, β = 1, b = 1/3, c = 1/3, q(t) =
1

12
, p(t) =

1

2
, R(t) =

1

6

σ1 = π, σ2 = π, τ1 =
5π

2
, τ2 =

3π

2
, σ1 ≤ τ1, σ2 ≤ τ2, η(s) =

k(s− π)

12
, k ∈ (0, 1).

By taking ρ(t) = t, it is easy to see that all the conditions of Corollary 2.8 are

satisfied. Therefore all the solutions of equation (3.2) are either oscillatory or tend

to zero as t → ∞. In particular x(t) = cos t is one such solution,since it satisfies

equation(3.2), which is an oscillatory solution.

Example 3.3. Consider the differential equation[
x(t) +

1

3
x(t− 1) +

1

2
x(t+ 2)

]′′′
+

(
3

8t3/2(t− 1)9/2
+

1

8(t− 1)6

)
x3(t− 1)

+
3

16(t+ 2)6
x3(t+ 2) = 0 (3.3)

Here a(t) = 1, β = 3 > 1, b =
1

3
, c =

1

2
, q(t) =

3

8t3/2(t− 1)9/2
+

1

8(t− 1)6
,

p(t) =
3

16(t+ 2)6
, R(t) =

3

8(t+ 2)3/2(t+ 1)9/2
+

1

8(t+ 2)6
+

3

16(t+ 4)6

η(t) =

(
d

4

)2
k(t− 2)3

23

[
3

8(t+ 2)3/2(t+ 1)9/2
+

1

8(t+ 2)6
+

3

16(t+ 4)6

]
By taking ρ(t) = 1 one can see that all the conditions of Theorem 2.5 except the

conditions 2.3 and 2.4 are satisfied. Therefore all the solutions of equation (3.3) are

neither oscillatory nor tend to zero. In particular x(t) = t3/2 is one such solution of

equation (3.3) such that lim
t→∞

x(t) = ∞.
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