OSCILLATORY BEHAVIOR OF SOLUTIONS OF CERTAIN THIRD ORDER MIXED NEUTRAL DIFFERENTIAL EQUATIONS

ETHIRAJU THANDAPANI AND RENU RAMA

Ramanujan Institute for Advanced
Study in Mathematics,
University of Madras, Chennai - 600 005, India.

Abstract

The objective of this paper is to study the oscillatory and asymptotic properties of third order mixed neutral differential equation of the form $\left(a(t)\left[x(t)+b(t) x\left(t-\tau_{1}\right)+c(t) x\left(t+\tau_{2}\right)\right]^{\prime \prime}\right)^{\prime}+q(t) x^{\alpha}\left(t-\sigma_{1}\right)+p(t) x^{\beta}\left(t+\sigma_{2}\right)=0$ where $a(t), b(t), c(t), q(t)$ and $p(t)$ are positive continuous functions, α and β are ratios of odd positive integers, $\tau_{1}, \tau_{2}, \sigma_{1}$ and σ_{2} are positive constants. We establish some sufficient conditions which ensure that all solutions are either oscillatory or converge to zero. Some examples are provided to illustrate the main results.

1. Introduction

In this paper, we are concerned with the following third order mixed neutral type differential equation of the form

$$
\begin{equation*}
\left(a(t)\left[x(t)+b(t) x\left(t-\tau_{1}\right)+c(t) x\left(t+\tau_{2}\right)\right]^{\prime \prime}\right)^{\prime}+q(t) x^{\alpha}\left(t-\sigma_{1}\right)+p(t) x^{\beta}\left(t+\sigma_{2}\right)=0 \tag{1.1}
\end{equation*}
$$

for $t \geq t_{0}$. Throughout this paper, we assume that the following hypotheses hold.
$\left(\mathrm{H}_{1}\right) a(t)$ is a positive nondecreasing continuous function for all $t \geq t_{0}$ with $\int_{t_{0}}^{\infty} \frac{1}{a(t)} d t=\infty ;$
$\left(\mathrm{H}_{2}\right) b(t), c(t) \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ and there exist b and c such that $b(t) \leq b, c(t) \leq$ c with $b+c<1 ;$
$\left(\mathrm{H}_{3}\right) p(t), q(t) \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right)$;

[^0]$\left(\mathrm{H}_{4}\right) \tau_{1}, \tau_{2}, \sigma_{1}$ and σ_{2} are nonnegative constants and α and β are ratios of odd positive integers.
Let $\theta=\max \left\{\tau_{1}, \sigma_{1}\right\}$. By a solution of equation (1.1), we mean a real continuous function $x(t)$ defined for all $t \geq t_{0}-\theta$ and satisfying the equation (1.1) for all $t \geq t_{0}$. A solution of equation (1.1) is called oscillatory if it has large zeros on $\left[t_{0}, \infty\right)$, otherwise it is called nonoscillatory.

Recently there has been a great interest in studying the oscillatory and asymptotic behavior of differential equations, see for example [1-24] and the references cited therein. Especially the equation (1.1) with $c(t) \equiv 0$ and $p(t) \equiv 0$ have been the subject of intensive research. In $[1,4-6,9-11,16,21,24]$, the authors studied the oscillatory behavior of solutions of equation (1.1) when $b(t) \equiv 0, c(t) \equiv 0$ and $p(t) \equiv 0$. In $[7,8,12,13,17-20,22]$, the authors studied the oscillatory behavior of solutions of equation (1.1) when $c(t) \equiv 0$ and $p(t) \equiv 0$. In [2, 14, 15, 23], the authors discussed the oscillatory behavior of all solutions of equation (1.1) when $\alpha=\beta=1$.

It is interesting to study the equation (1.1) under the conditions $\alpha=\beta$ and $\alpha \neq \beta$. To the best of our knowledge, there are no results regarding the oscillation of equation (1.1) under the assumption $\alpha \neq \beta$. So the purpose of this paper is to present some new oscillatory and asymptotic criteria for equation (1.1). In Section 2, we present criteria for equation (1.1) to be oscillatory or for all its nonoscillatory solutions tend to zero as $t \rightarrow \infty$. Examples are provided in Section 3 to illustrate the results presented in Section 2.

2. Oscillatory Results

In this section, we present some new oscillation criteria for equation (1.1). For the sake of convenience, when we write a functional inequality without specifying its domain of validity, we assume that it holds for all large t.

We begin with the following lemmas which are crucial in the proof of the main results. For simplicity, we use the following notations, without further mention:

$$
\begin{aligned}
z(t) & =x(t)+b(t) x\left(t-\tau_{1}\right)+c(t) x\left(t+\tau_{2}\right) \\
Q(t) & =\min \left\{q(t), q\left(t-\tau_{1}\right), q\left(t+\tau_{2}\right)\right\}, \quad P(t)=\min \left\{p(t), p\left(t-\tau_{1}\right), p\left(t+\tau_{2}\right)\right\}, \\
R(t) & =Q(t)+P(t) \\
\eta(t) & =\left(\frac{d}{4}\right)^{\beta-1} \frac{k(t-\sigma)^{\beta}}{2^{\beta}} R(t) \text { for some } k \in(0,1), \sigma=\max \left(\sigma_{1}, \sigma_{2}\right) \text { and } d>0 .
\end{aligned}
$$

Lemma 2.1. Assume $A \geq 0, B \geq 0$. If $\delta \geq 1$, then

$$
(A+B)^{\delta} \leq 2^{\delta-1}\left(A^{\delta}+B^{\delta}\right)
$$

If $0<\delta \leq 1$, then $(A+B)^{\delta} \leq A^{\delta}+B^{\delta}$.

Proof. Proof can be found in [22].

Lemma 2.2. Let $x(t)$ be a positive solution of equation (1.1). Then there are only two cases for $z(t)$ for all sufficiently large $t \geq t_{1}$.

$$
\begin{array}{cc}
(I) & z(t)>0, \\
(I I) & z(t)>0, \\
(I)(t)>0, & z^{\prime \prime}(t)<0, \\
(I)>0, & z^{\prime \prime}(t)>0, \\
\left(a(t) z^{\prime \prime}(t)\right)^{\prime} \leq 0 ; \\
\left(a(t) z^{\prime \prime}(t)\right)^{\prime} \leq 0
\end{array}
$$

Proof. Let $x(t)$ be a positive solution of equation (1.1). Then there exists a $t_{1} \geq t_{0}$ such that $x(t)>0, x\left(t-\sigma_{1}\right)>0$ and $x\left(t-\tau_{1}\right)>0$ for all $t \geq t_{1}$. Then $z(t)>0$ for all $t \geq t_{1}$. It follows from equation (1.1) that

$$
\begin{equation*}
\left(a(t) z^{\prime \prime}(t)\right)^{\prime}=-q(t) x^{\alpha}\left(t-\sigma_{1}\right)-p(t) x^{\beta}\left(t+\sigma_{2}\right)<0, \quad t \geq t_{1} . \tag{2.1}
\end{equation*}
$$

Hence $a(t) z^{\prime \prime}(t)$ is strictly decreasing for all $t \geq t_{1}$. We claim that $z^{\prime \prime}(t)>0$ for all $t \geq t_{1}$. If not, then there is a $t_{2} \geq t_{1}$ and $M<0$ such that

$$
a(t) z^{\prime \prime}(t) \leq a\left(t_{2}\right) z^{\prime \prime}\left(t_{2}\right) \leq M \text { for all } t \geq t_{2} .
$$

Integrating the last inequality from t_{2} to t, we have

$$
z^{\prime}(t) \leq z^{\prime}\left(t_{2}\right)+M \int_{t_{2}}^{t} \frac{1}{a(s)} d s
$$

Letting $t \rightarrow \infty$, and using $\left(H_{1}\right)$ we see that $z^{\prime}(t) \rightarrow-\infty$. Thus there exists a $t_{3} \geq t_{2}$ such that $z^{\prime}(t)<0$ for all $t \geq t_{3}$. This implies that $z(t) \rightarrow-\infty$ as $t \rightarrow \infty$, a contradiction. Hence $z^{\prime \prime}(t)>0$ for all $t \geq t_{1}$. This completes the proof.

Lemma 2.3. Let $z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)>0$ and $z^{\prime \prime \prime}(t) \leq 0$ for all $t \geq t_{0}$. Then for some $k \in(0,1)$ and for some t_{1}

$$
\begin{equation*}
\frac{z(t)}{z^{\prime}(t)} \geq \frac{\left(t-t_{0}\right)}{2} \geq \frac{k t}{2} \text { for } t \geq t_{1} \geq t_{0} \tag{2.2}
\end{equation*}
$$

Proof. Since $z^{\prime \prime}(t)$ is nonincreasing and

$$
z^{\prime}(t)=z^{\prime}\left(t_{0}\right)+\int_{t_{0}}^{t} z^{\prime \prime}(s) d s
$$

we have

$$
z^{\prime}(t) \geq\left(t-t_{0}\right) z^{\prime \prime}(t)
$$

Integrating the last inequality from t_{0} to t, we have

$$
z(t) \geq z\left(t_{0}\right)+\left(t-t_{0}\right) z^{\prime}(t)-z(t)+z\left(t_{0}\right)
$$

or

$$
z(t) \geq\left(\frac{t-t_{0}}{2}\right) z^{\prime}(t) \geq \frac{k t}{2} z^{\prime}(t) \text { for some } k \in(0,1)
$$

The proof is now complete.

Lemma 2.4. Let $x(t)$ be a positive solution of equation (1.1), $\alpha=\beta \geq 1$ and the corresponding $z(t)$ satisfies Lemma 2.2 (II). If

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left(\int_{t}^{\infty}\left(\frac{1}{a(s)} \int_{s}^{\infty}(q(u)+p(u)) d u\right) d s\right) d t=\infty \tag{2.3}
\end{equation*}
$$

holds, then $\lim _{t \rightarrow \infty} x(t)=0$.

Proof. Let $x(t)$ be a positive solution of equation (1.1). Then $z(t)>0$ and $z^{\prime}(t)<0$, we have $\lim _{t \rightarrow \infty} z(t)=l \geq 0$ exists. We shall prove that $l=0$. Assume that $l>0$. Then for any $\epsilon>0$, we have $l+\epsilon>z(t)$ eventually. Choose

$$
0<\epsilon<\frac{l(1-b-c)}{b+c}
$$

It is easy to verify that

$$
\begin{aligned}
x(t) & =z(t)-b(t) x\left(t-\tau_{1}\right)-c(t) x\left(t+\tau_{2}\right) \\
& >l-(b+c) z\left(t-\tau_{1}\right) \\
& >l-(b+c)(l+\epsilon) \\
& =k(l+\epsilon)>k z(t),
\end{aligned}
$$

where $k=\frac{l-(b+c)(l+\epsilon)}{l+\epsilon}>0$. Using the above inequality, we obtain from (2.1)

$$
\begin{aligned}
\left(a(t) z^{\prime \prime}(t)\right)^{\prime} & \leq-q(t) k^{\beta} z^{\beta}\left(t-\sigma_{1}\right)-p(t) k^{\beta} z^{\beta}\left(t+\sigma_{2}\right) \\
& \leq-k^{\beta}(q(t)+p(t)) z^{\beta}\left(t-\sigma_{1}\right)
\end{aligned}
$$

Integrating the above inequality from t to ∞ and using $z(t)>l$, we obtain

$$
z^{\prime \prime}(t) \geq(k l)^{\beta}\left[\frac{1}{a(t)} \int_{t}^{\infty}(p(s)+q(s)) d s\right]
$$

Integrating again from t to ∞, we have

$$
-z^{\prime}(t) \geq(k l)^{\beta} \int_{t}^{\infty} \frac{1}{a(s)}\left(\int_{s}^{\infty}(p(t)+q(t)) d t\right) d s
$$

Integrating from t_{1} to ∞, we obtain

$$
z\left(t_{1}\right) \geq(k l)^{\beta} \int_{t=t_{1}}^{\infty}\left(\int_{t}^{\infty}\left(\frac{1}{a(s)} \int_{s}^{\infty}(p(u)+q(u)) d u\right) d s\right) d t
$$

This contradicts (2.3). Hence $l=0$, moreover the inequality $0 \leq x(t) \leq z(t)$ implies that $\lim _{t \rightarrow \infty} x(t)=0$ and the proof is complete.

Next, we establish some oscillation results which ensure that every solution of equation (1.1) either oscillates or converges to zero.

Theorem 2.5. Assume that condition (2.3) holds, $\sigma_{1} \geq \tau_{1}$, and $\alpha=\beta \geq 1$. If there exists a positive real valued function $\rho(t)$ and $t_{1}>0$ with

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{t_{1}}^{t}\left[\rho(s) \eta(s)-\frac{\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right)}{4} \frac{a\left(s-\sigma_{1}\right)\left(\rho^{\prime}(s)\right)^{2}}{\rho(s)}\right] d s=\infty \tag{2.4}
\end{equation*}
$$

holds, then every solution $x(t)$ of equation (1.1) either oscillates or $\lim _{t \rightarrow \infty} x(t)=0$.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1). Without loss of generality, we may assume that there exists a $t_{1} \geq t_{0}$ such that $x(t)>0, x\left(t-\sigma_{1}\right)>0$ and $x\left(t-\tau_{1}\right)>0$ for all $t \geq t_{1}$. Then we have $z(t)>0$ and (2.1) for all $t \geq t_{1}$. From the equation (1.1), we have

$$
\begin{align*}
& \left(a(t) z^{\prime \prime}(t)\right)^{\prime}+q(t) x^{\beta}\left(t-\sigma_{1}\right)+p(t) x^{\beta}\left(t+\sigma_{2}\right)+b^{\beta}\left(a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)\right)^{\prime} \\
& +b^{\beta} q\left(t-\tau_{1}\right) x^{\beta}\left(t-\tau_{1}-\sigma_{1}\right)+b^{\beta} p\left(t-\tau_{1}\right) x^{\beta}\left(t-\tau_{1}+\sigma_{2}\right)+\frac{c^{\beta}}{2^{\beta-1}}\left(a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)\right)^{\prime} \\
& \quad+\frac{c^{\beta}}{2^{\beta-1}} q\left(t+\tau_{2}\right) x^{\beta}\left(t+\tau_{2}-\sigma_{1}\right)+\frac{c^{\beta}}{2^{\beta-1}} p\left(t+\tau_{2}\right) x^{\beta}\left(t+\tau_{2}+\sigma_{2}\right)=0 \tag{2.5}
\end{align*}
$$

That is,

$$
\begin{aligned}
\left(a(t) z^{\prime \prime}(t)\right)^{\prime} & +b^{\beta}\left(a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)\right)^{\prime}+\frac{c^{\beta}}{2^{\beta-1}}\left(a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)\right)^{\prime} \\
+ & Q(t)\left[x^{\beta}\left(t-\sigma_{1}\right)+b^{\beta} x^{\beta}\left(t-\tau_{1}-\sigma_{1}\right)+\frac{c^{\beta}}{2^{\beta-1}} x^{\beta}\left(t+\tau_{2}-\sigma_{1}\right)\right] \\
& +P(t)\left[x^{\beta}\left(t+\sigma_{2}\right)+b^{\beta} x^{\beta}\left(t-\tau_{1}+\sigma_{2}\right)+\frac{c^{\beta}}{2^{\beta-1}} x^{\beta}\left(t+\tau_{2}+\sigma_{2}\right)\right] \leq 0
\end{aligned}
$$

Applying Lemma 2.2 twice, the above inequality becomes

$$
\begin{align*}
\left(a(t) z^{\prime \prime}(t)\right)^{\prime}+b^{\beta}\left(a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)\right)^{\prime} & +\frac{c^{\beta}}{2^{\beta-1}}\left(a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)\right)^{\prime} \\
& +\frac{Q(t)}{4^{\beta-1}} z^{\beta}\left(t-\sigma_{1}\right)+\frac{P(t)}{4^{\beta-1}} z^{\beta}\left(t+\sigma_{2}\right) \leq 0 \tag{2.6}
\end{align*}
$$

By Lemma 2.2, there are two cases for $z(t)$. First let us assume that Lemma 2.2(I) holds for all $t \geq t_{1} \geq t_{0}$. Then $z^{\prime}(t)>0$ implies $z\left(t+\sigma_{2}\right)>z\left(t-\sigma_{1}\right)$. Thus from (2.6), we obtain

$$
\begin{equation*}
\left(a(t) z^{\prime \prime}(t)\right)^{\prime}+b^{\beta}\left(a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)\right)^{\prime}+\frac{c^{\beta}}{2^{\beta-1}}\left(a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)\right)^{\prime}+\frac{R(t)}{4^{\beta-1}} z^{\beta}\left(t-\sigma_{1}\right) \leq 0 \tag{2.7}
\end{equation*}
$$

Define a function $w_{1}(t)$ by

$$
\begin{equation*}
w_{1}(t)=\frac{\rho(t) a(t) z^{\prime \prime}(t)}{z^{\prime}\left(t-\sigma_{1}\right)} \quad \text { for all } t \geq t_{1} \tag{2.8}
\end{equation*}
$$

Then $w_{1}(t)>0$ for all $t \geq t_{1}$. Differentiating (2.8), we obtain

$$
w_{1}^{\prime}(t)=\rho^{\prime}(t) \frac{a(t) z^{\prime \prime}(t)}{z^{\prime}\left(t-\sigma_{1}\right)}+\rho(t) \frac{\left(a(t) z^{\prime \prime}(t)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\rho(t) \frac{a(t) z^{\prime \prime}(t)}{\left(z^{\prime}\left(t-\sigma_{1}\right)\right)^{2}} z^{\prime \prime}\left(t-\sigma_{1}\right)
$$

Since $a(t) z^{\prime \prime}(t)$ is strictly decreasing, we have $a\left(t-\sigma_{1}\right) z^{\prime \prime}\left(t-\sigma_{1}\right) \geq a(t) z^{\prime \prime}(t)$.
Therefore,

$$
\begin{align*}
w_{1}^{\prime}(t) & \leq \rho^{\prime}(t) \frac{a(t) z^{\prime \prime}(t)}{z^{\prime}\left(t-\sigma_{1}\right)}+\rho(t) \frac{\left(a(t) z^{\prime \prime}(t)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\rho(t) \frac{a(t) z^{\prime \prime}(t)}{\left(z^{\prime}\left(t-\sigma_{1}\right)\right)^{2}} \frac{a(t) z^{\prime \prime}(t)}{a\left(t-\sigma_{1}\right)} \\
& \leq \rho^{\prime}(t) \frac{a(t) z^{\prime \prime}(t)}{z^{\prime}\left(t-\sigma_{1}\right)}+\rho(t) \frac{\left(a(t) z^{\prime \prime}(t)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\rho(t) \frac{\left(a(t) z^{\prime \prime}(t)\right)^{2}}{\left(z^{\prime}\left(t-\sigma_{1}\right)\right)^{2} a\left(t-\sigma_{1}\right)} \\
w_{1}^{\prime}(t) & \leq \frac{\rho^{\prime}(t) w_{1}(t)}{\rho(t)}+\frac{\rho(t)\left(a(t) z^{\prime \prime}(t)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\frac{w_{1}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)} . \tag{2.9}
\end{align*}
$$

Next, we define a function $w_{2}(t)$ by

$$
\begin{equation*}
w_{2}(t)=\frac{\rho(t) a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)}{z^{\prime}\left(t-\sigma_{1}\right)} \quad \text { for all } t \geq t_{1} \tag{2.10}
\end{equation*}
$$

Then $w_{2}(t)>0$ for all $t \geq t_{1}$. Differentiating (2.10), and similar to (2.9) we have

$$
\begin{equation*}
w_{2}^{\prime}(t) \leq \frac{\rho^{\prime}(t) w_{2}(t)}{\rho(t)}+\frac{\rho(t)\left(a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\frac{w_{2}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)} \tag{2.11}
\end{equation*}
$$

Define a function $w_{3}(t)$ by

$$
\begin{equation*}
w_{3}(t)=\frac{\rho(t) a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)}{z^{\prime}\left(t-\sigma_{1}\right)} \quad \text { for all } t \geq t_{1} \tag{2.12}
\end{equation*}
$$

Then $w_{3}(t)>0$ for all $t>t_{1}$. Differentiating (2.12), and similar to (2.9) we have

$$
\begin{equation*}
w_{3}^{\prime}(t) \leq \frac{\rho^{\prime}(t) w_{3}(t)}{\rho(t)}+\frac{\rho(t)\left(a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\frac{w_{3}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)} . \tag{2.13}
\end{equation*}
$$

From (2.9), (2.11) and (2.13), we have

$$
\begin{aligned}
w_{1}^{\prime}(t)+b^{\beta} w_{2}^{\prime}(t)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}^{\prime}(t) \leq & \frac{\rho^{\prime}(t) w_{1}(t)}{\rho(t)}+\frac{\rho(t)\left(a(t) z^{\prime \prime}(t)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\frac{w_{1}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)} \\
& +b^{\beta}\left[\frac{\rho^{\prime}(t) w_{2}(t)}{\rho(t)}+\frac{\rho(t)\left(a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}\right. \\
& \left.-\frac{w_{2}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]+\frac{c^{\beta}}{2^{\beta-1}}\left[\frac{\rho^{\prime}(t) w_{3}(t)}{\rho(t)}\right. \\
& \left.+\frac{\rho(t)\left(a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)\right)^{\prime}}{z^{\prime}\left(t-\sigma_{1}\right)}-\frac{w_{3}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]
\end{aligned}
$$

$$
=\frac{\rho(t)}{z^{\prime}\left(t-\sigma_{1}\right)}\left[\left(a(t) z^{\prime \prime}(t)\right)^{\prime}+b^{\beta}\left(a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)\right)^{\prime}\right.
$$

$$
\left.+\frac{c^{\beta}}{2^{\beta-1}}\left(a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)\right)^{\prime}\right]+\left[\frac{\rho^{\prime}(t) w_{1}(t)}{\rho(t)}\right.
$$

$$
\left.-\frac{w_{1}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]+b^{\beta}\left[\frac{\rho^{\prime}(t) w_{2}(t)}{\rho(t)}-\frac{w_{2}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]
$$

$$
\left.+\frac{c^{\beta}}{2^{\beta-1}}\left[\frac{\rho^{\prime}(t) w_{3}(t)}{\rho(t)}-\frac{w_{3}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]\right]
$$

$$
\leq \frac{\rho(t)}{z^{\prime}\left(t-\sigma_{1}\right)}\left[-k^{\beta}(q(t)+p(t)) z^{\beta}\left(t-\sigma_{1}\right)-b^{\beta} k^{\beta}\left(q\left(t-\tau_{1}\right)\right.\right.
$$

$$
\left.+p\left(t-\tau_{1}\right)\right) z^{\beta}\left(t-\tau_{1}-\sigma_{1}\right)-\frac{c^{\beta}}{2^{\beta-1}} k^{\beta}\left(q\left(t+\tau_{2}\right)\right.
$$

$$
\left.+p\left(t+\tau_{2}\right)\right) z^{\beta}\left(t+\tau_{2}-\sigma_{1}\right)+\left[\frac{\rho^{\prime}(t) w_{1}(t)}{\rho(t)}\right.
$$

$$
\left.-\frac{w_{1}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]+b^{\beta}\left[\frac{\rho^{\prime}(t) w_{2}(t)}{\rho(t)}-\frac{w_{2}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]
$$

$$
\left.+\frac{c^{\beta}}{2^{\beta-1}}\left[\frac{\rho^{\prime}(t) w_{3}(t)}{\rho(t)}-\frac{w_{3}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]\right]
$$

$$
\leq-\frac{\rho(t) R(t)}{z^{\prime}\left(t-\sigma_{1}\right) 4^{\beta-1}} z^{\beta}\left(t-\tau_{1}-\sigma_{1}\right)+\left[\frac{\rho^{\prime}(t) w_{1}(t)}{\rho(t)}\right.
$$

$$
\left.-\frac{w_{1}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]+b^{\beta}\left[\frac{\rho^{\prime}(t) w_{2}(t)}{\rho(t)}-\frac{w_{2}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right]
$$

$$
\begin{equation*}
+\frac{c^{\beta}}{2^{\beta-1}}\left[\frac{\rho^{\prime}(t) w_{3}(t)}{\rho(t)}-\frac{w_{3}^{2}(t)}{\rho(t) a\left(t-\sigma_{1}\right)}\right] \tag{2.14}
\end{equation*}
$$

Since $a(t)$ is nondecreasing and $z^{\prime \prime}(t)>0$ for $t \geq t_{1}$, it follows from $\left(a(t) z^{\prime \prime}(t)\right)^{\prime} \leq 0$ that $z^{\prime \prime \prime}(t) \leq 0$ for $t \geq t_{1}$ and therefore by Lemma 2.3, there exists a $k \in(0,1)$ such that

$$
\begin{equation*}
\frac{z\left(t-\sigma_{1}\right)}{z^{\prime}\left(t-\sigma_{1}\right)} \geq \frac{k\left(t-\sigma_{1}\right)}{2} \tag{2.15}
\end{equation*}
$$

Now $z(t)>0, z^{\prime}(t)>0$ and $z^{\prime \prime}(t)>0$ for $t \geq t_{1}$ imply

$$
\begin{equation*}
z(t)=z\left(t_{1}\right)+\int_{t_{1}}^{t} z^{\prime}(t) d t \geq\left(t-t_{1}\right) z^{\prime}\left(t_{1}\right) \geq \frac{d t}{2} \tag{2.16}
\end{equation*}
$$

for some $d>0$ and for large value of t. From (2.15), (2.16) and $\beta \geq 1$, we have

$$
\frac{z^{\beta}\left(t-\sigma_{1}\right)}{z^{\prime}\left(t-\sigma_{1}\right)} \geq \frac{d^{\beta-1} k\left(t-\sigma_{1}\right)^{\beta}}{2^{\beta}}
$$

Combining the last inequality with (2.14) and then applying the completing the square in the right hand side of the resulting inequality, we obtain

$$
\begin{aligned}
w_{1}^{\prime}(t)+b^{\beta} w_{2}^{\prime}(t)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}^{\prime}(t) \leq & -\frac{\rho(t) R(t)}{2^{\beta}}\left(\frac{d}{4}\right)^{\beta-1} k\left(t-\sigma_{1}\right)^{\beta} \\
& +\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) \frac{a\left(t-\sigma_{1}\right)\left(\rho^{\prime}(t)\right)^{2}}{4 \rho(t)} \\
= & -\eta(t) \rho(t)+\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) \frac{a\left(t-\sigma_{1}\right)\left(\rho^{\prime}(t)\right)^{2}}{4 \rho(t)} .
\end{aligned}
$$

Integrating the above inequality from $t_{2} \geq t_{1}$ to t, we have
$\int_{t_{2}}^{t}\left(\eta(s) \rho(s)-\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) \frac{a\left(s-\sigma_{1}\right)\left(\rho^{\prime}(s)\right)^{2}}{4 \rho(s)}\right) d s \leq w_{1}\left(t_{2}\right)+b^{\beta} w_{2}\left(t_{2}\right)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}\left(t_{2}\right)$.
Taking limsup in the last inequality, we get a contradiction to (2.4).
Now, let us assume that Lemma 2.2 (II) holds. Then by Lemma 2.4, we can obtain $\lim _{t \rightarrow \infty} x(t)=0$. This completes the proof.

Let $\rho(t)=t$ and $\beta=1$. Then we can obtain the following corollary to Theorem 2.5.

Corollary 2.6. Assume that condition (2.3) holds, $\sigma_{1} \geq \tau_{1}$ and there is a $t_{1} \geq t_{0}$ with

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{1}}^{t}\left(s \eta(s)-\frac{(1+b+c)}{4 s} a\left(s-\sigma_{1}\right)\right) d s=\infty \tag{2.17}
\end{equation*}
$$

holds, then every solution $x(t)$ of equation (1.1)either oscillates or $\lim _{t \rightarrow \infty} x(t)=0$.

Theorem 2.7. Assume that condition (2.3) holds, $\sigma_{1} \leq \tau_{1}$ and $\alpha=\beta \geq 1$. If there exists a positive real valued function $\rho(t)$ and $t_{1} \geq t_{0}$ with

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{1}}^{t}\left(\rho(s) \eta(s)-\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) \frac{a\left(s-\tau_{1}\right)\left(\rho^{\prime}(s)\right)^{2}}{4 \rho(s)}\right) d s=\infty \tag{2.18}
\end{equation*}
$$

holds, then every solution $x(t)$ of equation (1.1) either oscillates or $\lim _{t \rightarrow \infty} x(t)=0$.

Proof. Proceeding as in the proof of Theorem 2.5, we obtain (2.6). By Lemma 2.2 there are two cases for $z(t)$. Assume Lemma 2.2 (I) holds, for all $t \geq t_{1} \geq t_{0}$. Then we obtain (2.7). By defining
$w_{1}(t)=\frac{\rho(t) a(t) z^{\prime \prime}(t)}{z^{\prime}\left(t-\tau_{1}\right)}, w_{2}(t)=\frac{\rho(t) a\left(t-\tau_{1}\right) z^{\prime \prime}\left(t-\tau_{1}\right)}{z^{\prime}\left(t-\tau_{1}\right)}, w_{3}(t)=\frac{\rho(t) a\left(t+\tau_{2}\right) z^{\prime \prime}\left(t+\tau_{2}\right)}{z^{\prime}\left(t-\tau_{1}\right)}$ for all $t \geq t_{1}$, then as in the proof of Theorem 2.5, we obtain

$$
\begin{align*}
w_{1}^{\prime}(t)+b^{\beta} w_{2}^{\prime}(t)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}^{\prime}(t) \leq & -\frac{\rho(t) R(t)}{z^{\prime}\left(t-\tau_{1}\right) 4^{\beta-1}} z^{\beta}\left(t-\tau_{1}\right)+\frac{\rho^{\prime}(t) w_{1}(t)}{\rho(t)} \\
& -\frac{w_{1}^{2}(t)}{\rho(t) a\left(t-\tau_{1}\right)}+b^{\beta}\left[\frac{\rho^{\prime}(t) w_{2}(t)}{\rho(t)}-\frac{w_{2}^{2}(t)}{\rho(t) a\left(t-\tau_{1}\right)}\right] \\
& +\frac{c^{\beta}}{2^{\beta-1}}\left[\frac{\rho^{\prime}(t) w_{3}(t)}{\rho(t)}-\frac{w_{3}^{2}(t)}{\rho(t) a\left(t-\tau_{1}\right)}\right] . \tag{2.19}
\end{align*}
$$

On the otherhand, by Lemma 2.3, for some $k \in(0,1)$ and for sufficiently large t, we have

$$
\begin{equation*}
\frac{z\left(t-\sigma_{1}\right)}{z^{\prime}\left(t-\tau_{1}\right)} \geq \frac{z\left(t-\sigma_{1}\right)}{z^{\prime}\left(t-\sigma_{1}\right)} \geq \frac{k\left(t-\sigma_{1}\right)}{2} \tag{2.20}
\end{equation*}
$$

since $z^{\prime \prime}(t) \geq 0$ and $\tau_{1} \geq \sigma_{1}$. Combining the inequality (2.20) with (2.19) and then applying the completing the square in the right hand side of the resulting inequality, we have

$$
w_{1}^{\prime}(t)+b^{\beta} w_{2}^{\prime}(t)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}^{\prime}(t) \leq-\eta(t) \rho(t)+\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) \frac{a\left(t-\tau_{1}\right)\left(\rho^{\prime}(t)\right)^{2}}{4 \rho(t)}
$$

Integrating the above inequality from t_{2} to t, we obtain
$\int_{t_{2}}^{t}\left(\eta(s) \rho(s)-\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) \frac{a\left(s-\tau_{1}\right)\left(\rho^{\prime}(s)\right)^{2}}{4 \rho(s)}\right) d s \leq w_{1}\left(t_{2}\right)+b^{\beta} w_{2}\left(t_{2}\right)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}\left(t_{2}\right)$.
Taking limsup on both sides of the above inequality, we obtain a contradiction to (2.18). Assume that Lemma 2.2 (II) holds. Then by Lemma 2.4 we can obtain $\lim _{t \rightarrow \infty} x(t)=0$. This completes the proof.

Let $\rho(t)=t$ and $\beta=1$. Then, we can obtain the following corollary to Theorem 2.7.

Corollary 2.8. Assume that condition (2.3) holds, $\tau_{1} \geq \sigma_{1}$ and $\beta=1$. If

$$
\limsup _{t \rightarrow \infty} \int_{t_{1}}^{t}\left(s \eta(s)-\frac{1+b+c}{4 s} a\left(s-\tau_{1}\right)\right) d s=\infty
$$

holds, then every solution $x(t)$ of equation (1.1) either oscillates or $\lim _{t \rightarrow \infty} x(t)=0$.

Theorem 2.9. Assume that $a(t) \equiv 1,0<\alpha<1<\beta$ and $\sigma_{i}>\tau_{i}$ for $i=1,2$. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t}^{t+\sigma-\tau_{2}}(s-t)^{2} P^{\eta_{1}}(s) Q^{\eta_{2}}(s) d s>2 \eta_{1}^{\eta_{1}} \eta_{2}^{\eta_{2}}\left(4^{\beta-1}\right)^{\eta_{1}} \tag{2.21}
\end{equation*}
$$

where $\eta_{1}=\frac{1-\alpha}{\beta-\alpha}, \eta_{2}=\frac{\beta-1}{\beta-\alpha}$ and $\sigma=\max \left(\sigma_{1}, \sigma_{2}\right)$, then equation (1.1) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1). Without loss of generality, we assume that there exists a $t_{1} \geq t_{0}$ such that $x(t)>0, x\left(t-\sigma_{1}\right)>0$ and $x\left(t-\tau_{1}\right)>0$ for all $t \geq t_{1}$. From equation (1.1), we have

$$
z^{\prime \prime \prime}(t)=-q(t) x^{\alpha}\left(t-\sigma_{1}\right)-p(t) x^{\beta}\left(t+\sigma_{2}\right)<0 \text { for all } t \geq t_{1} .
$$

Then as in Lemma 2.2, we have $z^{\prime \prime}(t)>0$ for all $t \geq t_{1}$. Define a function $y(t)$ by

$$
\begin{equation*}
y(t)=z(t)+b^{\alpha} z\left(t-\tau_{1}\right)+c^{\alpha} z\left(t+\tau_{2}\right) . \tag{2.22}
\end{equation*}
$$

Since $z(t)>0$ and $z^{\prime \prime}(t)>0$, we have $y(t)>0, y^{\prime \prime}(t)>0$ and

$$
\begin{aligned}
y^{\prime \prime \prime}(t)= & z^{\prime \prime \prime}(t)+b^{\alpha} z^{\prime \prime \prime}\left(t-\tau_{1}\right)+c^{\alpha} z^{\prime \prime \prime}\left(t+\tau_{2}\right) \\
= & -q(t) x^{\alpha}\left(t-\sigma_{1}\right)-p(t) x^{\beta}\left(t+\sigma_{2}\right) \\
& +b^{\alpha}\left[-q\left(t-\tau_{1}\right) x^{\alpha}\left(t-\tau_{1}-\sigma_{1}\right)-p\left(t-\tau_{1}\right) x^{\beta}\left(t-\tau_{1}+\sigma_{2}\right)\right] \\
& +c^{\alpha}\left[-q\left(t+\tau_{2}\right) x^{\alpha}\left(t+\tau_{2}-\sigma_{1}\right)-p\left(t+\tau_{2}\right) x^{\beta}\left(t+\tau_{2}+\sigma_{2}\right)\right] \\
y^{\prime \prime \prime}(t)+ & Q(t)\left[x^{\alpha}\left(t-\sigma_{1}\right)+b^{\alpha} x^{\alpha}\left(t-\tau_{1}-\sigma_{1}\right)+c^{\alpha} x^{\alpha}\left(t+\tau_{2}-\sigma_{1}\right)\right] \\
& +P(t)\left[x^{\beta}\left(t+\sigma_{2}\right)+b^{\alpha} x^{\beta}\left(t-\tau_{1}+\sigma_{2}\right)+c^{\alpha} x^{\beta}\left(t+\tau_{2}+\sigma_{2}\right)\right] \leq 0 .
\end{aligned}
$$

Using Lemma 2.1 and $0<\alpha<1<\beta, b<1$ and $c<1$, we get

$$
\begin{aligned}
& y^{\prime \prime \prime}(t)+Q(t)\left[x\left(t-\sigma_{1}\right)+b x\left(t-\tau_{1}-\sigma_{1}\right)+c x\left(t+\tau_{2}-\sigma_{1}\right)\right]^{\alpha} \\
& \quad+P(t)\left[x^{\beta}\left(t+\sigma_{2}\right)+b^{\beta} x^{\beta}\left(t-\tau_{1}+\sigma_{2}\right)+c^{\beta} x^{\beta}\left(t+\tau_{2}+\sigma_{2}\right)\right] \leq 0 .
\end{aligned}
$$

Now using Lemma 2.1, $c<1$ and $\beta>1$, we have

$$
\begin{aligned}
y^{\prime \prime \prime}(t) & +Q(t) z^{\alpha}\left(t-\sigma_{1}\right)+P(t)\left[\frac{1}{2^{\beta-1}}\left(x\left(t+\sigma_{2}\right)+b x\left(t+\sigma_{2}-\tau_{1}\right)\right)^{\beta}+\frac{c^{\beta}}{2^{\beta-1}} x^{\beta}\left(t+\sigma_{2}+\tau_{2}\right)\right] \leq 0 \\
y^{\prime \prime \prime}(t) & \left.+Q(t) z^{\alpha}\left(t-\sigma_{1}\right)+\frac{P(t)}{4^{\beta-1}}\left[x\left(t+\sigma_{2}\right)+b x\left(t+\sigma_{2}-\tau_{1}\right)\right)+c x\left(t+\sigma_{2}+\tau_{2}\right)\right]^{\beta} \leq 0 \\
y^{\prime \prime \prime} & +Q(t) z^{\alpha}\left(t-\sigma_{1}\right)+\frac{P(t)}{4^{\beta-1}} z^{\beta}\left(t+\sigma_{2}\right) \leq 0
\end{aligned}
$$

or

$$
\begin{equation*}
y^{\prime \prime \prime}(t)+Q(t) z^{\alpha}(t-\sigma)+\frac{P(t)}{4^{\beta-1}} z^{\beta}(t-\sigma) \leq 0 . \tag{2.23}
\end{equation*}
$$

Define $u_{1}=\eta_{1}^{-1} \frac{P(t)}{4^{\beta-1}} z^{\beta}(t-\sigma)$ and $u_{2}=\eta_{2}^{-1} Q(t) z^{\alpha}(t-\sigma)$. Using arithmetic-geometric mean inequality $u_{1} \eta_{1}+u_{2} \eta_{2} \geq u_{1}^{\eta_{1}} u_{2}^{\eta_{2}}$, we have

$$
\begin{equation*}
y^{\prime \prime \prime}(t)+\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}\left(\frac{P(t)}{4^{\beta-1}}\right)^{\eta_{1}} Q^{\eta_{2}}(t) z(t-\sigma) \leq 0 \tag{2.24}
\end{equation*}
$$

Since $z^{\prime}(t)>0$, we see that

$$
\begin{align*}
y(t-\sigma) & =z(t-\sigma)+b^{\alpha} z\left(t-\tau_{1}-\sigma\right)+c^{\alpha} z\left(t+\tau_{2}-\sigma\right) \\
& \leq\left(1+b^{\alpha}+c^{\alpha}\right) z\left(t+\tau_{2}-\sigma\right) \tag{2.25}
\end{align*}
$$

Using the inequality (2.25) in (2.24), we obtain that $y(t)$ is a positive solution of

$$
\begin{equation*}
y^{\prime \prime \prime}(t)+\frac{\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}}{\left(1+b^{\alpha}+c^{\alpha}\right)}\left(\frac{P(t)}{4^{\beta-1}}\right)^{\eta_{1}} Q^{\eta_{2}}(t) y\left(t-\tau_{2}+\sigma\right) \leq 0 . \tag{2.26}
\end{equation*}
$$

But by [12, Corollary 1], the condition (2.21) implies that equation (2.26) is oscillatory. This contradiction completes the proof.

Theorem 2.10. Assume that $a(t) \equiv 1,0<\beta<1<\alpha$ and $\sigma_{i}>\tau_{i}$ for $i=1,2$. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t-\left(\sigma+\tau_{2}\right) / 3}^{t}\left(\sigma+\tau_{2}\right)^{2} Q^{\eta_{1}}(s) P^{\eta_{2}}(s) d s>\frac{1}{e}\left(\frac{3}{2}\right)^{2} \dot{\eta}_{1}^{\eta_{1}} \eta_{2}^{\eta_{1}}\left(4^{\beta-1}\right)^{\eta_{1}} \tag{2.27}
\end{equation*}
$$

where $\eta_{1}=\frac{1-\beta}{\alpha-\beta}, \eta_{2}=\frac{\alpha-1}{\alpha-\beta}$ and $\sigma=\max \left(\sigma_{1}, \sigma_{2}\right)$ has no increasing solution, then equation (1.1) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1). Without loss of generality, let us assume that there exists a $t_{1} \geq t_{0}$ such that $x(t)>0, x\left(t-\tau_{1}\right)>0$ and $x\left(t-\sigma_{1}\right)>0$ for all $t \geq t_{1}$. From equation (1.1), we have $z^{\prime \prime \prime}(t)<0$ for all $t \geq t_{1}$ and therefore from Lemma 2.2, we have $z^{\prime \prime}(t)>0$ for all $t \geq t_{1}$.

Define a function $y(t)$ by

$$
y(t)=z(t)+b^{\alpha} z\left(t-\tau_{1}\right)+c^{\alpha} z\left(t+\tau_{2}\right)
$$

Then as in the proof of Theorem 2.9, we have $y(t)>0, y^{\prime \prime}(t)>0$ and

$$
y^{\prime \prime \prime}(t)+\frac{Q(t)}{4^{\alpha-1}} z^{\alpha}\left(t-\sigma_{1}\right)+P(t) z^{\beta}\left(t+\sigma_{2}\right) \leq 0
$$

or

$$
\begin{equation*}
y^{\prime \prime \prime}(t)+\frac{Q(t)}{4^{\alpha-1}} z^{\alpha}(t-\sigma)+P(t) z^{\beta}(t-\sigma) \leq 0 . \tag{2.28}
\end{equation*}
$$

Define $u_{1}=\eta_{1}^{-1} \frac{Q(t)}{4^{\alpha-1}} z^{\alpha}(t-\sigma)$ and $u_{2}=\eta_{2}^{-1} P(t) z^{\beta}(t-\sigma)$. Then by using arithmeticgeometric mean inequality $u_{1} \eta_{1}+u_{2} \eta_{2} \geq u_{1}^{\eta_{1}} u_{2}^{\eta_{2}}$, we have

$$
\begin{equation*}
y^{\prime \prime \prime}(t)+\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}\left(\frac{Q(t)}{4^{\alpha-1}}\right)^{\eta_{1}} P^{\eta_{2}}(t) z(t-\sigma) \leq 0 \tag{2.29}
\end{equation*}
$$

Since $z^{\prime}(t)>0$, we have

$$
\begin{align*}
y(t-\sigma) & =z(t-\sigma)+b^{\alpha} z\left(t-\tau_{1}-\sigma\right)+c^{\alpha} z\left(t+\tau_{2}-\sigma\right) \\
& \leq\left(1+b^{\alpha}+c^{\alpha}\right) z\left(t+\tau_{2}-\sigma\right) \tag{2.30}
\end{align*}
$$

Using the inequality (2.30) in (2.29), we obtain that $y(t)$ is a positive solution of

$$
\begin{equation*}
y^{\prime \prime \prime}(t)+\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}\left(\frac{Q(t)}{4^{\alpha-1}}\right)^{\eta_{1}} P^{\eta_{2}}(t) y\left(t-\tau_{2}-\sigma\right) \leq 0 \tag{2.31}
\end{equation*}
$$

But by [12, Corollary 1], the condition (2.27) implies that all solutions of equation (2.31) are oscillatory. This contradiction completes the proof.

3. Examples

Example 3.1. Consider the differential equation

$$
\begin{equation*}
\left[x(t)+\frac{1}{6 e} x(t-1)+\frac{e}{6} x(t+1)\right]^{\prime \prime \prime}+e^{2 t-6} x^{3}(t-2)+\frac{2}{3} e^{2 t+3} x^{3}(t+1)=0, t \geq 0 \tag{3.1}
\end{equation*}
$$

Here $a(t) \equiv 1, b=\frac{1}{6 e}, c=\frac{e}{6}$ and $b+c=\frac{1+e^{2}}{6 e}<1, \tau_{1}=1, \tau_{2}=1, \sigma_{1}=2, \sigma_{2}=2$, $\beta=3, q(t)=e^{2 t-6}, p(t)=\frac{2}{3} e^{2 t+3}, \sigma=\max \left(\sigma_{1}, \sigma_{2}\right)$.

$$
\begin{gathered}
Q(t)=\min \left(q(t), q\left(t-\tau_{1}\right), q\left(t+\tau_{2}\right)\right)=e^{2 t-8} \\
P(t)=\min \left(p(t), p\left(t-\tau_{1}\right), p\left(t+\tau_{2}\right)=\frac{2}{3} e^{2 t+1}\right. \\
R(t)=Q(t)+P(t)=e^{2 t}\left(\frac{1}{e^{8}}+\frac{2 e}{3}\right) \\
\eta(s)=\left(\frac{d}{4}\right)^{\beta-1} \frac{k(s-\sigma)^{\beta}}{2^{\beta}}, R(s)=\left(\frac{d}{4}\right)^{2} \frac{k}{8}(s-2)^{3} e^{2 s}\left(\frac{1}{e^{8}}+\frac{2 e}{3}\right)
\end{gathered}
$$

By taking $\rho(t)=1$ one can easily verify that all the conditions of Theorem 2.5 are satisfied. Therefore all the solutions of equation (3.1) are either oscillatory or tend to zero as $t \rightarrow \infty$. In particular $x(t)=e^{-t}$ is one solution,since it satisfies equation (3.1), such that $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Example 3.2. Consider the differential equation

$$
\begin{equation*}
\left[x(t)+\frac{1}{2} x\left(t-\frac{5 \pi}{2}\right)+\frac{1}{3} x\left(t+\frac{3 \pi}{2}\right)\right]^{\prime \prime \prime}+\frac{1}{12} x(t-\pi)+\frac{1}{12} x(t+\pi)=0, t \geq 0 \tag{3.2}
\end{equation*}
$$

Here $a(t) \equiv 1, \beta=1, b=1 / 3, c=1 / 3, q(t)=\frac{1}{12}, p(t)=\frac{1}{2}, \quad R(t)=\frac{1}{6}$

$$
\sigma_{1}=\pi, \sigma_{2}=\pi, \tau_{1}=\frac{5 \pi}{2}, \tau_{2}=\frac{3 \pi}{2}, \sigma_{1} \leq \tau_{1}, \sigma_{2} \leq \tau_{2}, \eta(s)=\frac{k(s-\pi)}{12}, k \in(0,1)
$$

By taking $\rho(t)=t$, it is easy to see that all the conditions of Corollary 2.8 are satisfied. Therefore all the solutions of equation (3.2) are either oscillatory or tend to zero as $t \rightarrow \infty$. In particular $x(t)=\cos t$ is one such solution,since it satisfies equation(3.2), which is an oscillatory solution.

Example 3.3. Consider the differential equation

$$
\begin{align*}
{\left[x(t)+\frac{1}{3} x(t-1)+\frac{1}{2} x(t+2)\right]^{\prime \prime \prime}+} & \left(\frac{3}{8 t^{3 / 2}(t-1)^{9 / 2}}+\frac{1}{8(t-1)^{6}}\right) x^{3}(t-1) \\
& +\frac{3}{16(t+2)^{6}} x^{3}(t+2)=0 \tag{3.3}
\end{align*}
$$

Here $a(t)=1, \quad \beta=3>1, b=\frac{1}{3}, c=\frac{1}{2}, q(t)=\frac{3}{8 t^{3 / 2}\left(t-\frac{1}{3}\right)^{9 / 2}}+\frac{1}{8(t-1)^{6}}$, $p(t)=\frac{3}{16(t+2)^{6}}, \quad R(t)=\frac{3}{8(t+2)^{3 / 2}(t+1)^{9 / 2}}+\frac{1}{8(t+2)^{6}}+\frac{3}{16(t+4)^{6}}$

$$
\eta(t)=\left(\frac{d}{4}\right)^{2} \frac{k(t-2)^{3}}{2^{3}}\left[\frac{3}{8(t+2)^{3 / 2}(t+1)^{9 / 2}}+\frac{1}{8(t+2)^{6}}+\frac{3}{16(t+4)^{6}}\right]
$$

By taking $\rho(t)=1$ one can see that all the conditions of Theorem 2.5 except the conditions 2.3 and 2.4 are satisfied. Therefore all the solutions of equation (3.3) are neither oscillatory nor tend to zero. In particular $x(t)=t^{3 / 2}$ is one such solution of equation (3.3) such that $\lim _{t \rightarrow \infty} x(t)=\infty$.

References

[1] R. P. Agarwal, M. F. Aktas, and A. Tiryaki, On oscillation criteria for third order nonlinear delay differential equations, Arch. Math., 45, (2009), 1-18.
[2] R. P. Agarwal, B. Baculáková, J. Džurina and T.Li, Oscillation of third-order nonlinear functional differential equations with mixed arguments, Acta Math. Hungar., 134(2011), 54-67.
[3] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[4] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation criteria for certain nth order differential equations with devating arguments, J. Math. Anal. Appl. 262(2001), 601-622.
[5] R. P. Agarwal, S. R. Grace and D. O'Regan, The oscillation of certain higherorder functional differential equations, Math. Comput. Modelling, 37(2003), 705-728.
[6] B. Baculíková and J. Džurina, Oscillation of third-order functional differential equations, Elec. J. Qual. Theo. Diff. Equ. 43(2010), 1-10.
[7] B. Baculíková and J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Modelling, 52(2010), 215-226.
[8] B. Baculíková and J. Džurina, On the aymptotic behavior of a class of third order nonlinear neutral differential equations, Cent. European J. Math. 8(2010), 1091-1103.
[9] B. Baculíková and J. Džurina, Oscillation of third-order nonlinear differential equations, Appl. Math. Lett. (2011), 466-470.
[10] B. Baculíková, E. M. Elabbasy, S. H. Saker, and J. Džurina, Oscillation criteria for third-order non-linear differential euqations, Math. Slovaca, 58(2008), 201220.
[11] T. Candan and R. S. Dahiya, Functional differential equations of third order, Elec. J. Diff. Equ. 12(2005), 47-56.
[12] P. Das, Oscillation criteria for odd order neutral equations, J. Math. Anal. Appl. 188(1994),245-257.
[13] K. Gopalsamy, B. S. Lalli and B. G. Zhang, Oscillation of odd order neutral differential equations, Czech. Math. J. 42(1992),313-323.
[14] S. R. Grace, On oscillation of mixed neutral equations, J. Math. Anal. Appl. 194(1995),377-388.
[15] S. R. Grace, Oscillation of mixed neutral fractional differential equations, Appl. Math. Comp. 68(1995),1-13.
[16] S. R. Grace, R. P. Agarwal, R. Pavani, and E. Thandapani, On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput. 202, (2008), 102-112.
[17] J. R. Graef, R. Savithri, and E. Thandapani, Oscillatory properties of third order neutral delay differential equations, Disc. Cont. Dyn. Sys. A, 2003, 342350.
[18] Z.Har, T.Li, S.Sun and W.Chen, On the oscillation of second order neutral delay differential equations, Adv.Diff.Eqns. Vol(2010) Article ID 289340, 8pages, 2010.
[19] T. Li and E. Thandapani, Oscillation of solutions to odd-order nonlinear neutral functional differential equations, Elec. J. Diff. Equ. 2011(2011), 23, 1-12.
[20] T.Li, C.Zhang and G.Xing, Oscillation of third order neutral delay differential equations, Abstract and Applied Analysis, 2012 (2012), 1-11.
[21] S. H. Saker and J. Džurina, On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohemica, 135, (2010), 225-237.
[22] E. Thandapani and T. Li, On the oscillation of third-order quasi-linear neutral functional differentiall equations, Arch. Math. 47 (2011), 181-199.
[23] J. R. Yau, Oscillation of higher order neutral differential equations of mixed type, Israel J. Math. 115 (2000), 125-136.
[24] C. Zhang, T. Li, B. Sun and E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett. 24, (2011), 1618-1621.

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai -600 005, India.

E-mail address: ethandapani@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 34C15.
 Key words and phrases. Third order, neutral differential equations, oscillation, Asymptotic behavior.

