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OSCILLATORY BEHAVIOR OF SOLUTIONS OF CERTAIN THIRD

ORDER MIXED NEUTRAL DIFFERENTIAL EQUATIONS

ETHIRAJU THANDAPANI AND RENU RAMA

Abstract. The objective of this paper is to study the oscillatory and asymptotic properties

of third order mixed neutral differential equation of the form

(a(t)[x(t)+b(t)x(t −τ1)+c(t)x(t +τ2)]′′)′+q(t)xα(t −σ1)+p(t)xβ(t +σ2) = 0

where a(t),b(t),c(t), q(t) and p(t) are positive continuous functions, α and β are ratios

of odd positive integers, τ1,τ2,σ1 and σ2 are positive constants. We establish some suffi-

cient conditions which ensure that all solutions are either oscillatory or converge to zero.

Some examples are provided to illustrate the main results.

1. Introduction

In this paper, we are concerned with the following third order mixed neutral type differ-

ential equation of the form

(a(t )[x(t )+b(t )x(t −τ1)+c(t )x(t +τ2)]′′)′+q(t )xα(t −σ1)+p(t )xβ(t +σ2) = 0, (1.1)

for t ≥ t0. Throughout this paper, we assume that the following hypotheses hold.

(H1) a(t ) is a positive nondecreasing continuous function for all t ≥ t0 with

∫

∞

t0

1

a(t )
d t =∞;

(H2) b(t ),c(t )∈C ([t0,∞), (0,∞)) and there exist b and c such that b(t )≤ b,c(t )≤ c with b+c <

1;

(H3) p(t ), q(t )∈C ([t0,∞), (0,∞));

(H4) τ1,τ2,σ1 and σ2 are nonnegative constants and α and β are ratios of odd positive inte-

gers.

Let θ = max{τ1,σ1}. By a solution of equation (1.1), we mean a real continuous function

x(t ) defined for all t ≥ t0 −θ and satisfying the equation (1.1) for all t ≥ t0. A solution of equa-

tion (1.1) is called oscillatory if it has large zeros on [t0,∞), otherwise it is called nonoscilla-

tory.
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Recently there has been a great interest in studying the oscillatory and asymptotic be-

havior of differential equations, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24] and the references cited therein. Especially the equation (1.1)

with c(t ) ≡ 0 and p(t ) ≡ 0 have been the subject of intensive research. In [1, 4, 5, 6, 9, 10, 11,

16, 21, 24], the authors studied the oscillatory behavior of solutions of equation (1.1) when

b(t ) ≡ 0, c(t ) ≡ 0 and p(t ) ≡ 0. In [7, 8, 12, 13, 17, 18, 19, 20, 22], the authors studied the oscil-

latory behavior of solutions of equation (1.1) when c(t ) ≡ 0 and p(t ) ≡ 0. In [2, 14, 15, 23], the

authors discussed the oscillatory behavior of all solutions of equation (1.1) when α=β= 1.

It is interesting to study the equation (1.1) under the conditions α= β and α 6= β. To the

best of our knowledge, there are no results regarding the oscillation of equation (1.1) under

the assumption α 6= β. So the purpose of this paper is to present some new oscillatory and

asymptotic criteria for equation (1.1). In Section 2, we present criteria for equation (1.1) to be

oscillatory or for all its nonoscillatory solutions tend to zero as t →∞. Examples are provided

in Section 3 to illustrate the results presented in Section 2.

2. Oscillatory results

In this section, we present some new oscillation criteria for equation (1.1). For the sake of

convenience, when we write a functional inequality without specifying its domain of validity,

we assume that it holds for all large t .

We begin with the following lemmas which are crucial in the proof of the main results.

For simplicity, we use the following notations, without further mention:

z(t ) = x(t )+b(t )x(t −τ1)+c(t )x(t +τ2),

Q(t ) = min{q(t ), q(t −τ1), q(t +τ2)}, P(t ) = min{p(t ), p(t −τ1), p(t +τ2)},

R(t ) = Q(t )+P(t ),

η(t ) =

(

d

4

)β−1 k(t −σ)β

2β
R(t ) for some k ∈ (0,1), σ= max(σ1,σ2) and d > 0.

Lemma 2.1. Assume A ≥ 0,B ≥ 0. If δ≥ 1, then

(A+B )δ ≤ 2δ−1(Aδ
+Bδ).

If 0 <δ≤ 1, then (A+B )δ ≤ Aδ+Bδ.

Proof. Proof can be found in [22]. ���

Lemma 2.2. Let x(t ) be a positive solution of equation (1.1). Then there are only two cases for

z(t ) for all sufficiently large t ≥ t1.

(I) z(t )> 0, z ′(t )> 0, z ′′(t ) > 0, (a(t ) z ′′(t ))′ ≤ 0;

(II) z(t )> 0, z ′(t )< 0, z ′′(t ) > 0, (a(t ) z ′′(t ))′ ≤ 0.
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Proof. Let x(t ) be a positive solution of equation (1.1). Then there exists a t1 ≥ t0 such that

x(t ) > 0, x(t −σ1) > 0 and x(t −τ1) > 0 for all t ≥ t1. Then z(t ) > 0 for all t ≥ t1. It follows from

equation (1.1) that

(a(t ) z ′′(t ))′ =−q(t )xα(t −σ1)−p(t )xβ(t +σ2) < 0, t ≥ t1. (2.1)

Hence a(t )z ′′(t ) is strictly decreasing for all t ≥ t1. We claim that z ′′(t ) > 0 for all t ≥ t1. If not,

then there is a t2 ≥ t1 and M < 0 such that

a(t ) z ′′(t )≤ a(t2) z ′′(t2) ≤ M for all t ≥ t2.

Integrating the last inequality from t2 to t , we have

z ′(t )≤ z ′(t2)+M

∫t

t2

1

a(s)
d s.

Letting t → ∞, and using (H1) we see that z ′(t ) → −∞. Thus there exists a t3 ≥ t2 such that

z ′(t ) < 0 for all t ≥ t3. This implies that z(t ) →−∞ as t →∞, a contradiction. Hence z ′′(t ) > 0

for all t ≥ t1. This completes the proof. ���

Lemma 2.3. Let z(t ) > 0, z ′(t ) > 0, z ′′(t ) > 0 and z ′′′(t )≤ 0 for all t ≥ t0. Then for some k ∈ (0,1)

and for some t1
z(t )

z ′(t )
≥

(t − t0)

2
≥

k t

2
for t ≥ t1 ≥ t0. (2.2)

Proof. Since z ′′(t ) is nonincreasing and

z ′(t ) = z ′(t0)+

∫t

t0

z ′′(s)d s,

we have

z ′(t )≥ (t − t0)z ′′(t ).

Integrating the last inequality from t0 to t , we have

z(t )≥ z(t0)+ (t − t0)z ′(t )− z(t )+ z(t0)

or

z(t )≥

(

t − t0

2

)

z ′(t ) ≥
k t

2
z ′(t ) for some k ∈ (0,1).

The proof is now complete. ���

Lemma 2.4. Let x(t ) be a positive solution of equation (1.1), α= β ≥ 1 and the corresponding

z(t ) satisfies Lemma 2.2 (II). If

∫

∞

t0

(
∫

∞

t

(

1

a(s)

∫

∞

s
(q(u)+p(u))du

)

d s

)

d t =∞ (2.3)

holds, then lim
t→∞

x(t )= 0.
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Proof. Let x(t ) be a positive solution of equation (1.1). Then z(t ) > 0 and z ′(t ) < 0, we have

lim
t→∞

z(t )= l ≥ 0 exists. We shall prove that l = 0. Assume that l > 0. Then for any ǫ> 0, we have

l +ǫ> z(t ) eventually. Choose

0 < ǫ<
l (1−b −c)

b +c
.

It is easy to verify that

x(t ) = z(t )−b(t )x(t −τ1)−c(t )x(t +τ2)

> l − (b +c)z(t −τ1)

> l − (b +c)(l +ǫ)

= k(l +ǫ) > k z(t ),

where k =
l − (b +c)(l +ǫ)

l +ǫ
> 0. Using the above inequality, we obtain from (2.1)

(a(t ) z ′′(t ))′ ≤ −q(t )kβzβ(t −σ1)−p(t )kβzβ(t +σ2)

≤ −kβ(q(t )+p(t ))zβ(t −σ1).

Integrating the above inequality from t to ∞ and using z(t )> l , we obtain

z ′′(t )≥ (kl )β
[

1

a(t )

∫

∞

t
(p(s)+q(s))d s

]

.

Integrating again from t to ∞, we have

−z ′(t ) ≥ (kl )β
∫

∞

t

1

a(s)

(
∫

∞

s
(p(t )+q(t ))d t

)

d s.

Integrating from t1 to ∞, we obtain

z(t1) ≥ (kl )β
∫

∞

t=t1

(
∫

∞

t

(

1

a(s)

∫

∞

s
(p(u)+q(u))du

)

d s

)

d t .

This contradicts (2.3). Hence l = 0, moreover the inequality 0 ≤ x(t ) ≤ z(t ) implies that lim
t→∞

x(t )= 0 and the proof is complete. ���

Next, we establish some oscillation results which ensure that every solution of equation

(1.1) either oscillates or converges to zero.

Theorem 2.5. Assume that condition (2.3) holds, σ1 ≥ τ1, and α= β≥ 1. If there exists a posi-

tive real valued function ρ(t ) and t1 > 0 with

lim
t→∞

sup

∫t

t1



ρ(s)η(s)−
(1+bβ+

cβ

2β−1 )

4

a(s −σ1)(ρ′(s))2

ρ(s)



d s =∞ (2.4)

holds, then every solution x(t ) of equation (1.1) either oscillates or lim
t→∞

x(t )= 0.
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Proof. Let x(t ) be a nonoscillatory solution of equation (1.1). Without loss of generality, we

may assume that there exists a t1 ≥ t0 such that x(t ) > 0, x(t −σ1) > 0 and x(t −τ1) > 0 for all

t ≥ t1. Then we have z(t )> 0 and (2.1) for all t ≥ t1.

From the equation (1.1), we have

(a(t ) z ′′(t ))′+q(t )xβ(t −σ1)+p(t )xβ(t +σ2)+bβ(a(t −τ1)z ′′(t −τ1))′

+bβq(t −τ1)xβ(t −τ1 −σ1)+bβp(t −τ1)xβ(t −τ1 +σ2)+
cβ

2β−1
(a(t +τ2)z ′′(t +τ2))′

+
cβ

2β−1
q(t +τ2)xβ(t +τ2 −σ1)+

cβ

2β−1
p(t +τ2)xβ(t +τ2 +σ2) = 0 (2.5)

That is,

(a(t ) z ′′(t ))′+bβ(a(t −τ1)z ′′(t −τ1))′+
cβ

2β−1
(a(t +τ2)z ′′(t +τ2))′

+Q(t )

[

xβ(t −σ1)+bβxβ(t −τ1 −σ1)+
cβ

2β−1
xβ(t +τ2 −σ1)

]

+P(t )

[

xβ(t +σ2)+bβxβ(t −τ1 +σ2)+
cβ

2β−1
xβ(t +τ2 +σ2)

]

≤ 0.

Applying Lemma 2.2 twice, the above inequality becomes

(a(t ) z ′′(t ))′+bβ(a(t −τ1)z ′′(t −τ1))′+
cβ

2β−1
(a(t +τ2)z ′′(t +τ2))′

+
Q(t )

4β−1
zβ(t −σ1)+

P(t )

4β−1
zβ(t +σ2) ≤ 0. (2.6)

By Lemma 2.2, there are two cases for z(t ). First let us assume that Lemma 2.2(I) holds for all

t ≥ t1 ≥ t0. Then z ′(t ) > 0 implies z(t +σ2) > z(t −σ1). Thus from (2.6), we obtain

(a(t ) z ′′(t ))′+bβ(a(t −τ1)z ′′(t −τ1))′+
cβ

2β−1
(a(t +τ2)z ′′(t +τ2))′+

R(t )

4β−1
zβ(t −σ1) ≤ 0. (2.7)

Define a function w1(t ) by

w1(t )=
ρ(t )a(t )z ′′(t )

z ′(t −σ1)
for all t ≥ t1. (2.8)

Then w1(t )> 0 for all t ≥ t1. Differentiating (2.8), we obtain

w ′
1(t )= ρ′(t )

a(t )z ′′(t )

z ′(t −σ1)
+ρ(t )

(a(t )z ′′(t ))′

z ′(t −σ1)
−ρ(t )

a(t )z ′′(t )

(z ′(t −σ1))2
z ′′(t −σ1).

Since a(t )z ′′(t ) is strictly decreasing, we have a(t −σ1)z ′′(t −σ1) ≥ a(t ) z ′′(t ). Therefore,

w ′
1(t ) ≤ ρ′(t )

a(t )z ′′(t )

z ′(t −σ1)
+ρ(t )

(a(t )z ′′(t ))′

z ′(t −σ1)
−ρ(t )

a(t )z ′′(t )

(z ′(t −σ1))2

a(t )z ′′(t )

a(t −σ1)
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≤ ρ′(t )
a(t )z ′′(t )

z ′(t −σ1)
+ρ(t )

(a(t )z ′′(t ))′

z ′(t −σ1)
−ρ(t )

(a(t )z ′′(t ))2

(z ′(t −σ1))2 a(t −σ1)

w ′
1(t ) ≤

ρ′(t )w1(t )

ρ(t )
+
ρ(t )(a(t )z ′′(t ))′

z ′(t −σ1)
−

w 2
1(t )

ρ(t )a(t −σ1)
. (2.9)

Next, we define a function w2(t ) by

w2(t ) =
ρ(t )a(t −τ1)z ′′(t −τ1)

z ′(t −σ1)
for all t ≥ t1. (2.10)

Then w2(t ) > 0 for all t ≥ t1. Differentiating (2.10), and similar to (2.9) we have

w ′
2(t ) ≤

ρ′(t )w2(t )

ρ(t )
+
ρ(t )(a(t −τ1)z ′′(t −τ1))′

z ′(t −σ1)
−

w 2
2(t )

ρ(t )a(t −σ1)
. (2.11)

Define a function w3(t ) by

w3(t ) =
ρ(t )a(t +τ2)z ′′(t +τ2)

z ′(t −σ1)
for all t ≥ t1. (2.12)

Then w3(t ) > 0 for all t > t1. Differentiating (2.12),and similar to (2.9) we have

w ′
3(t ) ≤

ρ′(t )w3(t )

ρ(t )
+
ρ(t )(a(t +τ2)z ′′(t +τ2))′

z ′(t −σ1)
−

w 2
3(t )

ρ(t )a(t −σ1)
. (2.13)

From (2.9), (2.11) and (2.13), we have

w ′
1(t )+bβw ′

2(t )+
cβ

2β−1
w ′

3(t ) ≤
ρ′(t )w1(t )

ρ(t )
+
ρ(t )(a(t )z ′′(t ))′

z ′(t −σ1)
−

w 2
1(t )

ρ(t )a(t −σ1)

+bβ

[

ρ′(t )w2(t )

ρ(t )
+
ρ(t )(a(t −τ1)z ′′(t −τ1))′

z ′(t −σ1)

−
w 2

2(t )

ρ(t )a(t −σ1)

]

+
cβ

2β−1

[

ρ′(t )w3(t )

ρ(t )

+
ρ(t )(a(t +τ2)z ′′(t +τ2))′

z ′(t −σ1)
−

w 2
3(t )

ρ(t )a(t −σ1)

]

=
ρ(t )

z ′(t −σ1)

[

(a(t ) z ′′(t ))′+bβ(a(t −τ1)z ′′(t −τ1))′

+
cβ

2β−1
(a(t +τ2)z ′′(t +τ2))′

]

+

[

ρ′(t )w1(t )

ρ(t )

−
w 2

1(t )

ρ(t )a(t −σ1)

]

+bβ

[

ρ′(t )w2(t )

ρ(t )
−

w 2
2(t )

ρ(t )a(t −σ1)

]

+
cβ

2β−1

[

ρ′(t )w3(t )

ρ(t )
−

w 2
3(t )

ρ(t )a(t −σ1)

]]
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≤
ρ(t )

z ′(t −σ1)

[

−kβ(q(t )+p(t ))zβ(t −σ1)−bβkβ(q(t −τ1)

+p(t −τ1))zβ(t −τ1 −σ1)−
cβ

2β−1
kβ(q(t +τ2)

+p(t +τ2))zβ(t +τ2 −σ1)+

[

ρ′(t )w1(t )

ρ(t )

−
w 2

1(t )

ρ(t )a(t −σ1)

]

+bβ

[

ρ′(t )w2(t )

ρ(t )
−

w 2
2(t )

ρ(t )a(t −σ1)

]

+
cβ

2β−1

[

ρ′(t )w3(t )

ρ(t )
−

w 2
3(t )

ρ(t )a(t −σ1)

]]

≤ −
ρ(t )R(t )

z ′(t −σ1)4β−1
zβ(t −τ1 −σ1)+

[

ρ′(t )w1(t )

ρ(t )

−
w 2

1(t )

ρ(t )a(t −σ1)

]

+bβ

[

ρ′(t )w2(t )

ρ(t )
−

w 2
2(t )

ρ(t )a(t −σ1)

]

+
cβ

2β−1

[

ρ′(t )w3(t )

ρ(t )
−

w 2
3(t )

ρ(t )a(t −σ1)

]

. (2.14)

Since a(t ) is nondecreasing and z ′′(t ) > 0 for t ≥ t1, it follows from (a(t )z ′′(t ))′ ≤ 0 that z ′′′(t )≤

0 for t ≥ t1 and therefore by Lemma 2.3, there exists a k ∈ (0,1) such that

z(t −σ1)

z ′(t −σ1)
≥

k(t −σ1)

2
. (2.15)

Now z(t )> 0, z ′(t ) > 0 and z ′′(t ) > 0 for t ≥ t1 imply

z(t )= z(t1)+

∫t

t1

z ′(t )d t ≥ (t − t1)z ′(t1) ≥
d t

2
(2.16)

for some d > 0 and for large value of t . From (2.15), (2.16) and β≥ 1, we have

zβ(t −σ1)

z ′(t −σ1)
≥

dβ−1k(t −σ1)β

2β
.

Combining the last inequality with (2.14) and then applying the completing the square in the

right hand side of the resulting inequality, we obtain

w ′
1(t )+bβw ′

2(t )+
cβ

2β−1
w ′

3(t ) ≤ −
ρ(t )R(t )

2β

(

d

4

)β−1

k(t −σ1)β

+(1+bβ
+

cβ

2β−1
)

a(t −σ1)(ρ′(t ))2

4ρ(t )
.

= −η(t )ρ(t )+ (1+bβ
+

cβ

2β−1
)

a(t −σ1)(ρ′(t ))2

4ρ(t )
.
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Integrating the above inequality from t2 ≥ t1 to t , we have

∫t

t2

(

η(s)ρ(s)− (1+bβ
+

cβ

2β−1
)

a(s −σ1)(ρ′(s))2

4ρ(s)

)

d s ≤ w1(t2)+bβw2(t2)+
cβ

2β−1
w3(t2).

Taking limsup in the last inequality, we get a contradiction to (2.4).

Now, let us assume that Lemma 2.2 (II) holds. Then by Lemma 2.4, we can obtain lim
t→∞

x(t )= 0. This completes the proof. ���

Let ρ(t )= t and β= 1. Then we can obtain the following corollary to Theorem 2.5.

Corollary 2.6. Assume that condition (2.3) holds,σ1 ≥ τ1 and there is a t1 ≥ t0 with

limsup
t→∞

∫t

t1

(

sη(s)−
(1+b +c)

4s
a(s −σ1)

)

d s =∞ (2.17)

holds, then every solution x(t ) of equation (1.1)either oscillates or lim
t→∞

x(t )= 0.

Theorem 2.7. Assume that condition (2.3) holds, σ1 ≤ τ1 and α=β≥ 1. If there exists a positive

real valued function ρ(t ) and t1 ≥ t0 with

limsup
t→∞

∫t

t1

(

ρ(s)η(s)− (1+bβ
+

cβ

2β−1
)

a(s −τ1)(ρ′(s))2

4ρ(s)

)

d s =∞ (2.18)

holds, then every solution x(t ) of equation (1.1) either oscillates or lim
t→∞

x(t )= 0.

Proof. Proceeding as in the proof of Theorem 2.5, we obtain (2.6). By Lemma 2.2 there are

two cases for z(t ). Assume Lemma 2.2 (I) holds, for all t ≥ t1 ≥ t0. Then we obtain (2.7). By

defining

w1(t )=
ρ(t )a(t )z ′′(t )

z ′(t −τ1)
, w2(t )=

ρ(t )a(t −τ1)z ′′(t −τ1)

z ′(t −τ1)
, w3(t ) =

ρ(t )a(t +τ2)z ′′(t +τ2)

z ′(t −τ1)

for all t ≥ t1, then as in the proof of Theorem 2.5, we obtain

w ′
1(t )+bβw ′

2(t )+
cβ

2β−1
w ′

3(t ) ≤ −
ρ(t )R(t )

z ′(t −τ1)4β−1
zβ(t −τ1)+

ρ′(t )w1(t )

ρ(t )

−
w 2

1(t )

ρ(t )a(t −τ1)
+bβ

[

ρ′(t )w2(t )

ρ(t )
−

w 2
2(t )

ρ(t )a(t −τ1)

]

+
cβ

2β−1

[

ρ′(t )w3(t )

ρ(t )
−

w 2
3(t )

ρ(t )a(t −τ1)

]

. (2.19)

On the otherhand, by Lemma 2.3, for some k ∈ (0,1) and for sufficiently large t , we have

z(t −σ1)

z ′(t −τ1)
≥

z(t −σ1)

z ′(t −σ1)
≥

k(t −σ1)

2
, (2.20)
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since z ′′(t )≥ 0 and τ1 ≥σ1. Combining the inequality (2.20) with (2.19) and then applying the

completing the square in the right hand side of the resulting inequality, we have

w ′
1(t )+bβw ′

2(t )+
cβ

2β−1
w ′

3(t )≤−η(t )ρ(t )+ (1+bβ
+

cβ

2β−1
)

a(t −τ1)(ρ′(t ))2

4ρ(t )
.

Integrating the above inequality from t2 to t , we obtain

∫t

t2

(

η(s)ρ(s)− (1+bβ
+

cβ

2β−1
)

a(s −τ1)(ρ′(s))2

4ρ(s)

)

d s ≤ w1(t2)+bβw2(t2)+
cβ

2β−1
w3(t2).

Taking limsup on both sides of the above inequality, we obtain a contradiction to (2.18). As-

sume that Lemma 2.2 (II) holds. Then by Lemma 2.4 we can obtain lim
t→∞

x(t ) = 0. This com-

pletes the proof. ���

Let ρ(t )= t and β= 1. Then, we can obtain the following corollary to Theorem 2.7.

Corollary 2.8. Assume that condition (2.3) holds, τ1 ≥σ1 and β= 1. If

limsup
t→∞

∫t

t1

(

sη(s)−
1+b +c

4s
a(s −τ1)

)

d s =∞

holds, then every solution x(t ) of equation (1.1) either oscillates or lim
t→∞

x(t )= 0.

Theorem 2.9. Assume that a(t )≡ 1,0 <α< 1 <β and σi > τi for i = 1,2. If

liminf
t→∞

∫t+σ−τ2

t
(s − t )2Pη1 (s)Qη2 (s)d s > 2η

η1

1 η
η2

2

(

4β−1
)η1

(2.21)

where η1 =
1−α

β−α
,η2 =

β−1

β−α
and σ= max(σ1,σ2), then equation (1.1) is oscillatory.

Proof. Let x(t ) be a nonoscillatory solution of equation (1.1). Without loss of generality, we

assume that there exists a t1 ≥ t0 such that x(t )> 0, x(t −σ1)> 0 and x(t −τ1) > 0 for all t ≥ t1.

From equation (1.1), we have

z ′′′(t )=−q(t )xα(t −σ1)−p(t )xβ(t +σ2) < 0 for all t ≥ t1.

Then as in Lemma 2.2, we have z ′′(t )> 0 for all t ≥ t1. Define a function y(t ) by

y(t )= z(t )+bαz(t −τ1)+cαz(t +τ2). (2.22)

Since z(t )> 0 and z ′′(t ) > 0, we have y(t )> 0, y ′′(t ) > 0 and

y ′′′(t ) = z ′′′(t )+bαz ′′′(t −τ1)+cαz ′′′(t +τ2)

= −q(t )xα(t −σ1)−p(t )xβ(t +σ2)
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+bα
[

−q(t −τ1)xα(t −τ1 −σ1)−p(t −τ1)xβ(t −τ1 +σ2)
]

+cα
[

−q(t +τ2)xα(t +τ2 −σ1)−p(t +τ2)xβ(t +τ2 +σ2)
]

y ′′′(t ) + Q(t )
[

xα(t −σ1)+bαxα(t −τ1 −σ1)+cαxα(t +τ2 −σ1)
]

+P(t )
[

xβ(t +σ2)+bαxβ(t −τ1 +σ2)+cαxβ(t +τ2 +σ2)
]

≤ 0.

Using Lemma 2.1 and 0 <α< 1 <β,b < 1 and c < 1, we get

y ′′′(t )+Q(t ) [x(t −σ1)+b x(t −τ1 −σ1)+c x(t +τ2 −σ1)]α

+P(t )
[

xβ(t +σ2)+bβxβ(t −τ1 +σ2)+cβxβ(t +τ2 +σ2)
]

≤ 0.

Now using Lemma 2.1, c < 1 and β> 1, we have

y ′′′(t ) + Q(t )zα(t −σ1)+P(t )

[

1

2β−1
(x(t +σ2)+b x(t +σ2 −τ1))β+

cβ

2β−1
xβ(t +σ2 +τ2)

]

≤ 0

y ′′′(t ) + Q(t )zα(t −σ1)+
P(t )

4β−1
[x(t +σ2)+b x(t +σ2 −τ1))+c x(t +σ2 +τ2)]β ≤ 0

y ′′′
+ Q(t )zα(t −σ1)+

P(t )

4β−1
zβ(t +σ2) ≤ 0

or

y ′′′(t )+Q(t )zα(t −σ)+
P(t )

4β−1
zβ(t −σ) ≤ 0. (2.23)

Define u1 = η−1
1

P(t )

4β−1
zβ(t −σ) and u2 = η−1

2 Q(t )zα(t −σ). Using arithmetic-geometric mean

inequality u1η1 +u2η2 ≥ u
η1

1 u
η2

2 , we have

y ′′′(t ) + η
−η1

1 η
−η2

2

(

P(t )

4β−1

)η1

Qη2 (t ) z(t −σ) ≤ 0. (2.24)

Since z ′(t )> 0, we see that

y(t −σ) = z(t −σ)+bαz(t −τ1 −σ)+cαz(t +τ2 −σ)

≤ (1+bα
+cα) z(t +τ2 −σ). (2.25)

Using the inequality (2.25) in (2.24), we obtain that y(t ) is a positive solution of

y ′′′(t )+
η
−η1

1 η
−η2

2

(1+bα+cα)

(

P(t )

4β−1

)η1

Qη2 (t ) y(t −τ2 +σ) ≤ 0. (2.26)

But by [12, Corollary 1], the condition (2.21) implies that equation (2.26) is oscillatory. This

contradiction completes the proof. ���
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Theorem 2.10. Assume that a(t )≡ 1,0 <β< 1 <α and σi > τi for i = 1,2. If

liminf
t→∞

∫t

t−(σ+τ2)/3
(σ+τ2)2Qη1 (s)Pη2 (s)d s >

1

e

(

3

2

)2

η̇
η1

1 η
η1

2

(

4β−1
)η1

(2.27)

where η1 =
1−β

α−β
,η2 =

α−1

α−β
and σ = max(σ1,σ2) has no increasing solution, then equation

(1.1) is oscillatory.

Proof. Let x(t ) be a nonoscillatory solution of equation (1.1). Without loss of generality, let us

assume that there exists a t1 ≥ t0 such that x(t )> 0, x(t −τ1) > 0 and x(t −σ1) > 0 for all t ≥ t1.

From equation (1.1), we have z ′′′(t ) < 0 for all t ≥ t1 and therefore from Lemma 2.2, we have

z ′′(t )> 0 for all t ≥ t1.

Define a function y(t ) by

y(t )= z(t )+bαz(t −τ1)+cαz(t +τ2).

Then as in the proof of Theorem 2.9, we have y(t )> 0, y ′′(t )> 0 and

y ′′′(t )+
Q(t )

4α−1
zα(t −σ1)+P(t )zβ(t +σ2) ≤ 0

or

y ′′′(t )+
Q(t )

4α−1
zα(t −σ)+P(t )zβ(t −σ) ≤ 0. (2.28)

Define u1 = η−1
1

Q(t )
4α−1 zα(t −σ) and u2 = η−1

2 P(t )zβ(t −σ). Then by using arithmetic-geometric

mean inequality u1η1 +u2η2 ≥ u
η1

1 u
η2

2 , we have

y ′′′(t ) + η
−η1

1 η
−η2

2

(

Q(t )

4α−1

)η1

Pη2 (t ) z(t −σ) ≤ 0. (2.29)

Since z ′(t ) > 0, we have

y(t −σ) = z(t −σ)+bαz(t −τ1 −σ)+cαz(t +τ2 −σ)

≤ (1+bα
+cα) z(t +τ2 −σ). (2.30)

Using the inequality (2.30) in (2.29), we obtain that y(t ) is a positive solution of

y ′′′(t )+η
−η1

1 η
−η2

2

(

Q(t )

4α−1

)η1

Pη2 (t ) y(t −τ2 −σ) ≤ 0. (2.31)

But by [12, Corollary 1], the condition (2.27) implies that all solutions of equation (2.31) are

oscillatory. This contradiction completes the proof. ���
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3. Examples

Example 1. Consider the differential equation

[

x(t )+
1

6e
x(t −1)+

e

6
x(t +1)

]′′′

+e2t−6x3(t −2)+
2

3
e2t+3x3(t +1) = 0, t ≥ 0. (3.1)

Here a(t )≡ 1, b =
1

6e
, c =

e

6
and b +c =

1+e2

6e
< 1, τ1 = 1, τ2 = 1, σ1 = 2, σ2 = 2, β= 3, q(t ) =

e2t−6, p(t )=
2

3
e2t+3, σ= max(σ1,σ2).

Q(t )= min(q(t ), q(t −τ1), q(t +τ2)) = e2t−8

P(t ) = min(p(t ), p(t −τ1), p(t +τ2) =
2

3
e2t+1

R(t )=Q(t )+P(t ) = e2t

(

1

e8
+

2e

3

)

η(s) =

(

d

4

)β−1 k(s −σ)β

2β
, R(s)=

(

d

4

)2 k

8
(s −2)3e2s

(

1

e8
+

2e

3

)

By takingρ(t )= 1 one can easily verify that all the conditions of Theorem 2.5 are satisfied.

Therefore all the solutions of equation (3.1) are either oscillatory or tend to zero as t → ∞.

In particular x(t ) = e−t is one solution,since it satisfies equation (3.1), such that x(t ) → 0 as

t →∞.

Example 2. Consider the differential equation

[

x(t )+
1

2
x

(

t −
5π

2

)

+
1

3
x

(

t +
3π

2

)]′′′

+
1

12
x(t −π)+

1

12
x(t +π) = 0, t ≥ 0. (3.2)

Here a(t )≡ 1, β= 1, b = 1/3, c = 1/3, q(t )=
1

12
, p(t )=

1

2
, R(t )=

1

6

σ1 = π, σ2 = π, τ1 =
5π

2
, τ2 =

3π

2
, σ1 ≤ τ1, σ2 ≤ τ2, η(s) =

k(s −π)

12
, k ∈ (0,1). By taking

ρ(t ) = t , it is easy to see that all the conditions of Corollary 2.8 are satisfied. Therefore all the

solutions of equation (3.2) are either oscillatory or tend to zero as t →∞. In particular x(t ) =

cos t is one such solution,since it satisfies equation(3.2), which is an oscillatory solution.

Example 3. Consider the differential equation

[

x(t )+
1

3
x(t −1)+

1

2
x(t +2)

]′′′

+

(

3

8t 3/2(t −1)9/2
+

1

8(t −1)6

)

x3(t −1)

+
3

16(t +2)6
x3(t +2) = 0 (3.3)
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Here a(t )= 1, β= 3 > 1, b =
1

3
, c =

1

2
,

q(t ) =
3

8t 3/2(t −1)9/2
+

1

8(t −1)6
,

p(t ) =
3

16(t +2)6
, R(t )=

3

8(t +2)3/2(t +1)9/2
+

1

8(t +2)6
+

3

16(t +4)6

η(t ) =

(

d

4

)2 k(t −2)3

23

[

3

8(t +2)3/2(t +1)9/2
+

1

8(t +2)6
+

3

16(t +4)6

]

.

By takingρ(t )= 1 one can see that all the conditions of Theorem 2.5 except the conditions

2.3 and 2.4 are satisfied. Therefore all the solutions of equation (3.3) are neither oscillatory

nor tend to zero. In particular x(t ) = t 3/2 is one such solution of equation (3.3) such that

lim
t→∞

x(t )=∞.
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