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COEFFICIENT ESTIMATES FOR NEW SUBCLASSES OF

ANALYTIC FUNCTIONS WITH RESPECT TO OTHER POINTS

HUO TANG AND GUAN-TIE DENG

Abstract. The main purpose of this paper is to derive coefficient estimates for new sub-

classes of analytic functions with respect to symmetric and conjugate points.

1. Introduction

Let U be the class of functions which are analytic and univalent in the open unit disk

D = {z : |z| < 1} given by

ω(z) =
∞
∑

k=1

bk zk (1.1)

and satisfying the conditions ω(0) = 0, |ω(z)| ≤ 1, z ∈ D.

Let S denote the class of functions f which are analytic and univalent in D of the form

f (z) = z +
∞
∑

n=2

an zn (z ∈ D). (1.2)

Let S∗
s be the subclass of S consisting of functions given by (1.2) and satisfying the condi-

tion

Re

(

z f ′(z)

f (z)− f (−z)

)

> 0 (z ∈ D).

These functions are called starlike with respect to symmetric points and were introduced by

Sakaguchi [1].

Also, let S∗
c be the subclass of S consisting of functions given by (1.2) and satisfying the

condition

Re

(

z f ′(z)

f (z)+ f (z̄)

)

> 0 (z ∈ D).

These functions are called starlike with respect to conjugate points and were introduced by

Ashwah and Thomas [2].
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Motivated by the class S∗
s , Das and Singh [3] discussed the following class Cs , namely

convex functions with respect to symmetric points.

Let Cs be the subclass of S consisting of functions given by (1.2) satisfying the condition

Re

(

(z f ′(z))′

( f (z)− f (−z))′

)

> 0 (z ∈ D).

Suppose that f and g are two analytic functions in U . Then, we say that the function g is

subordinate to the function f , and we write

g (z) ≺ f (z) (z ∈ D),

if there exists a Schwarz function ̟(z) with ̟(0) = 0 and |̟(z)| < 1 such that

g (z) = f (̟(z)) (z ∈ D).

By applying the above subordination definition, Goel and Mehrok [4] introduced a sub-

class of S∗
s denoted by S∗

s (A,B ).

Let S∗
s (A,B ) be the class of functions of the form (1.2) and satisfying the condition

2z f ′(z)

f (z)− f (−z)
≺

1+ Az

1+B z
(−1 ≤ B < A ≤ 1; z ∈ D).

Also, in the same manner, we give the analogue definitions by extension as follows.

Definition 1.1.

(i) Let S∗
c (A,B ) be the subclass of S consisting of functions given by (1.2) satisfying the con-

dition
2z f ′(z)

f (z)+ f (z̄)
≺

1+ Az

1+B z
(−1 ≤ B < A ≤ 1, z ∈ D).

(ii) Let Cs (A,B ) be the subclass of S consisting of functions given by (1.2) satisfying the con-

dition
2(z f ′(z))′

( f (z)− f (−z))′
≺

1+ Az

1+B z
(−1 ≤ B < A ≤ 1, z ∈ D).

(iii) Let Cc (A,B ) be the subclass of S consisting of functions given by (1.2) satisfying the con-

dition
2(z f ′(z))′

( f (z)+ f (z̄))′
≺

1+ Az

1+B z
(−1 ≤ B < A ≤ 1, z ∈ D).

In this paper, we introduce the class Ms (α,µ, A,B ) consisting of analytic functions f of

the form (1.2) and satisfying

2αµz3 f ′′′(z)+2(2αµ+α−µ)z2 f ′′(z)+2z f ′(z)

αµz2( f (z)− f (−z))′′+ (α−µ)z( f (z)− f (−z))′+ (1−α+µ)( f (z)− f (−z))
≺

1+ Az

1+B z
, (1.3)
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where −1 ≤B < A ≤ 1, 0 ≤µ≤α≤ 1 and z ∈ D.

In addition, we introduce the class Mc (α,µ, A,B ) consisting of analytic functions f of the

form (1.2) and satisfying

2αµz3 f ′′′(z)+2(2αµ+α−µ)z2 f ′′(z)+2z f ′(z)

αµz2( f (z)+ f (z̄))′′+ (α−µ)z( f (z)+ f (z̄))′+ (1−α+µ)( f (z)+ f (z̄))
≺

1+ Az

1+B z
, (1.4)

where −1 ≤B < A ≤ 1, 0 ≤µ≤α≤ 1 and z ∈ D.

We note that

(i) for µ = 0, Ms (α,0, A,B ) = Ms (α, A,B ) and Mc (α,0, A,B ) = Mc (α, A,B ), which were intro-

duced and studied by Selvaraj and Vasanthi [5];

(ii) for µ=α= 0, Ms(0,0, A,B ) = S∗
s (A,B ) and Mc(0,0, A,B ) = S∗

c (A,B );

(iii) for µ= 0 and α= 1, Ms (1,0, A,B ) =Cs (A,B ) and Mc (1,0, A,B ) =Cc (A,B ).

By the definition of subordination, it follows that f ∈ Ms (α,µ, A,B ) if and only if

2αµz3 f ′′′(z)+2(2αµ+α−µ)z2 f ′′(z)+2z f ′(z)

αµz2( f (z)− f (−z))′′+ (α−µ)z( f (z)− f (−z))′+ (1−α+µ)( f (z)− f (−z))

=
1+ Aω(z)

1+Bω(z)
= p(z), ω(z) ∈U (1.5)

and that f ∈ Mc (α,µ, A,B ) if and only if

2αµz3 f ′′′(z)+2(2αµ+α−µ)z2 f ′′(z)+2z f ′(z)

αµz2( f (z)+ f (z̄))′′+ (α−µ)z( f (z)+ f (z̄))′+ (1−α+µ)( f (z)+ f (z̄))

=
1+ Aω(z)

1+Bω(z)
= p(z), ω(z) ∈U (1.6)

where

p(z) = 1+
∞
∑

n=1

pn zn . (1.7)

In the next section, we obtain the coefficient estimates for functions belonging to the

classes Ms (α,µ, A,B ) and Mc(α,µ, A,B ).

2. Main results

In order to prove our main results, we shall require the following lemma due to Goel and

Mehrok [4].

Lemma 2.1. If p(z) is given by (1.7), then

|pn| ≤ (A−B ), n = 1,2, . . . . (2.1)
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Unless otherwise mentioned, we shall assume in the reminder of this paper that−1 ≤ B <

A ≤ 1, 0 ≤µ≤α≤ 1 and z ∈ D.

Theorem 2.1. Let f ∈ Ms (α,µ, A,B ). Then, for n ≥ 1, we have

|a2n| ≤
(A−B )

2n ·n![1+ (2n −1)(α−µ+2nαµ)]

n−1
∏

j=1

(A−B +2 j ), (2.2)

|a2n+1| ≤
(A−B )

2n ·n![1+2n(α−µ+ (2n +1)αµ)]

n−1
∏

j=1

(A−B +2 j ). (2.3)

Proof. From (1.5) and (1.7), we have

[

z +2a2z2
+3a3z3

+4a4z4
+5a5z5

+·· ·+2na2n z2n
+·· ·

]

+(2αµ+α−µ)[2a2z2
+6a3z3

+12a4z4
+20a5z5

+·· ·+ (2n −1)2na2n z2n
+·· · ]

+αµ[6a3z3
+24a4z4

+60a5z5
+·· ·+ (2n −1)2n(2n +1)a2n+1z2n+1

+·· · ]

=

[

(1+α−µ)[z +a3z3
+a5z5

+·· ·+a2n−1z2n−1
+a2n+1z2n+1

+·· · ]

+(α−µ)[z +3a3z3
+5a5z5

+·· ·+ (2n −1)a2n−1z2n−1
+ (2n +1)a2n+1z2n+1

+·· · ]

+αµ[6a3z3
+20a5z5

+·· ·+2n(2n +1)a2n+1z2n+1
+·· · ]

]

·[1+p1z +p2z2
+p3z3

+p4z4
+p5z5

+·· ·+p2n−1z2n−1
+p2n z2n

+·· · ].

Equating the coefficients of like powers of z, we obtain

2[1+ (α−µ+2αµ)]a2 = p1, 2[1+2(α−µ+3αµ)]a3 = p2 (2.4)

4[1+3(α−µ+4αµ)]a4 = p3 + [1+2(α−µ+3αµ)]a3 p1 (2.5)

4[1+4(α−µ+5αµ)]a5 = p4 + [1+2(α−µ+3αµ)]a3 p2 (2.6)

2n[1+ (2n −1)(α−µ+2nαµ)]a2n = p2n−1 + [1+2(α−µ+3αµ)]a3 p2n−3 +·· ·

+[1+ (2n −2)(α−µ+ (2n −1)αµ)]a2n−1 p1 (2.7)

(2n +1)[1+2n(α−µ+ (2n +1)αµ)]a2n+1 = p2n + [1+2(α−µ+3αµ)]a3 p2n−2 +·· ·

+[1+ (2n −2)(α−µ+ (2n −1)αµ)]a2n−1 p2 (2.8)

By using Lemma 2.1 and (2.4), we get

|a2| ≤
A−B

2[1+ (α−µ+2αµ)]
, |a3| ≤

A−B

2[1+2(α−µ+3αµ)]
. (2.9)

Again, making use of (2.1), in conjunction with (2.9), we find from (2.5) and (2.6) that

|a4| ≤
(A−B )(A−B +2)

2 ·4 · [1+3(α−µ+4αµ)]
,
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|a5| ≤
(A−B )(A−B +2)

2 ·4 · [1+4(α−µ+5αµ)]
.

It follows that (2.2) and (2.3) hold for n = 1,2. Next, we prove (2.2) by induction.

Equation (2.7) together with Lemma 2.1 yields

|a2n | ≤
(A−B )

2n[1+ (2n −1)(α−µ+2nαµ)]

{

1+
n−1
∑

k=1

[1+2k(α−µ+ (2k +1)αµ)]|a2k+1|

}

. (2.10)

We suppose that (2.2) holds for k = 3,4, . . . , (n −1).

Then from (2.10), we have

|a2n| ≤
(A−B )

2n[1+ (2n −1)(α−µ+2nαµ)]

[

1+
n−1
∑

k=1

A−B

2k k !

k−1
∏

j=1

(A−B +2 j )

]

. (2.11)

In order to complete the proof, it is sufficient to show that

(A−B )

2m[1+ (2m −1)(α−µ+2mαµ)]

[

1+
m−1
∑

k=1

A−B

2k k !

k−1
∏

j=1

(A−B +2 j )

]

=
(A−B )

2m ·m![1+ (2m −1)(α−µ+2mαµ)]

m−1
∏

j=1

(A−B +2 j ) (m = 3,4, . . . ,n), (2.12)

which is valid for m = 3.

Let us assume that (2.12) is true for all m, 3 < m ≤ (n −1). Then from (2.11), we get

(A−B )

2n[1+ (2n −1)(α−µ+2nαµ)]

[

1+
n−1
∑

k=1

A−B

2k k !

k−1
∏

j=1

(A−B +2 j )

]

=

(

n −1

n

)

(

(A−B )

2(n −1)[1+ (2n −1)(α−µ+2nαµ)]

(

1+
n−2
∑

k=1

(A−B )

2k k !

k−1
∏

j=1

(A−B +2 j )

))

+
(A−B )

2n[1+ (2n −1)(α−µ+2nαµ)]
·

(A−B )

2n−1 · (n −1)!

n−2
∏

j=1

(A−B +2 j )

=

(

n −1

n

)

(A−B )

2n−1 · (n −1)![1+ (2n −1)(α−µ+2nαµ)]

n−2
∏

j=1

(A−B +2 j )

+
(A−B )

2n[1+ (2n −1)(α−µ+2nαµ)]
·

(A−B )

2n−1 · (n −1)!

n−2
∏

j=1

(A−B +2 j )

=
(A−B )

2n(n −1)!2n−1[1+ (2n −1)(α−µ+2nαµ)]

n−2
∏

j=1

(A−B +2 j )(A−B +2(n −1))

=
(A−B )

2n ·n![1+ (2n −1)(α−µ+2nαµ)]

n−1
∏

j=1

(A−B +2 j ).

Thus (2.12) holds for m = n and hence (2.2) follows. Similarly, we can prove (2.3).
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Theorem 2.2. Let f ∈ Mc (α,µ, A,B ). Then, for n ≥ 1, we have

|a2n| ≤
(A−B )

(2n −1)![1+ (2n −1)(α−µ+2nαµ)]

2n−2
∏

j=1

(A−B + j ), (2.13)

|a2n+1| ≤
(A−B )

(2n)![1+2n(α−µ+ (2n +1)αµ)]

2n−1
∏

j=1

(A−B + j ). (2.14)

Proof. From (1.6) and (1.7), we have

[z +2a2z2
+3a3z3

+4a4z4
+5a5z5

+·· ·+2na2n z2n
+·· · ]

+(2αµ+α−µ)[2a2z2
+6a3z3

+12a4z4
+20a5z5

+·· ·+ (2n −1)2na2n z2n
+·· · ]

+αµ[6a3z3
+24a4z4

+60a5z5
+·· ·+ (2n −1)2n(2n +1)a2n+1z2n+1

+·· · ]

=

[

(1+α−µ)[z +a2z2
+a3z3

+a4z4
+a5z5

+·· ·+a2n z2n
+·· · ]

+(α−µ)[z +2a2z2
+3a3z3

+4a4z4
+5a5z5

+·· ·+2na2n z2n
+·· · ]

+αµ[2a2z2
+6a3z3

+12a4z4
+20a5z5

+·· ·+ (2n −1)2na2n z2n
+·· · ]

]

·[1+p1z +p2z2
+p3z3

+p4z4
+p5z5

+·· ·+p2n−1z2n−1
+·· · ]

Equating the coefficients of like powers of z, we obtain

[1+ (α−µ+2αµ)]a2 = p1, 2[1+2(α−µ+3αµ)]a3 = p2 + [1+ (α−µ+2αµ)]a2 p1 (2.15)

3[1+3(α−µ+4αµ)]a4 = p3 + [1+ (α−µ+2αµ)]a2 p2 + [1+2(α−µ+3αµ)]a3 p1 (2.16)

4[1+4(α−µ+5αµ)]a5 = p4 + [1+ (α−µ+2αµ)]a2 p3 + [1+2(α−µ+3αµ)]a3 p2

+[1+3(α−µ+4αµ)]a4 p1 (2.17)

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]a2n = p2n−1 + [1+ (α−µ+2αµ)]a2p2n−2 +·· ·

+[1+ (2n −2)(α−µ+ (2n −1)αµ)]a2n−1 p1 (2.18)

(2n)[1+2n(α−µ+ (2n +1)αµ)]a2n+1 = p2n + [1+ (α−µ+2αµ)]a2 p2n−1 +·· ·

+[1+ (2n −1)(α−µ+2nαµ)]a2n p1 (2.19)

By using Lemma 2.1 and (2.15), we obtain

|a2| ≤
A−B

[1+ (α−µ+2αµ)]
, |a3| ≤

(A−B )(A−B +1)

2[1+2(α−µ+3αµ)]
. (2.20)

Again, making use of (2.1), in conjunction with (2.20), we find from (2.16) and (2.17) that

|a4| ≤
(A−B )(A−B +1)(A−B +2)

2 ·3 · [1+3(α−µ+4αµ)]
,

|a5| ≤
(A−B )(A−B +1)(A−B +2)(A−B +3)

2 ·3 ·4 · [1+4(α−µ+5αµ)]
.
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It follows that (2.13) and (2.14) hold for n = 1,2. Next, we prove (2.13) by induction.

Equation (2.18) together with Lemma 2.1 yields

|a2n | ≤
(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]

{

1+
n−1
∑

k=1

[1+ (2k −1)(α−µ+2kαµ)]|a2k |

+

n−1
∑

k=1

[1+2k(α−µ+ (2k +1)αµ)]|a2k+1|

}

. (2.21)

We suppose that (2.13) holds for k = 3,4, . . . , (n −1).

Then from (2.21), we obtain

|a2n| ≤
(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]

[

1+
n−1
∑

k=1

(A−B )

(2k −1)!

2k−2
∏

j=1

(A−B + j )

+

n−1
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )
]

. (2.22)

In order to complete the proof, it is sufficient to show that

(A−B )

(2m −1)[1+ (2m −1)(α−µ+2mαµ)]

·

[

1+
m−1
∑

k=1

(A−B )

(2k −1)!

2k−2
∏

j=1

(A−B + j )+
m−1
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )

]

=
(A−B )

(2m −1)![1+ (2m −1)(α−µ+2mαµ)]

2m−2
∏

j=1

(A−B + j ) (m = 3,4, . . . ,n), (2.23)

which is valid for m = 3.

Let us assume that (2.23) is true for all m, 3 < m ≤ (n −1). Then from (2.22), we get

(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]

·

[

1+
n−1
∑

k=1

(A−B )

(2k −1)!

2k−2
∏

j=1

(A−B + j )+
n−1
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )

]

=

(

2n −3

2n −1

)

[ (A−B )

(2(n −1)−1)[1+ (2n −1)(α−µ+2nαµ)]

·

(

1+
n−2
∑

k=1

(A−B )

(2k −1)!

2k−2
∏

j=1

(A−B + j )+
n−2
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )
)]

+
(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]
·

(A−B )

(2(n −1)−1)!

2n−4
∏

j=1

(A−B + j )

+
(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]
·

(A−B )

(2(n −1))!

2n−3
∏

j=1

(A−B + j )
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=

(

2n −3

2n −1

)

(A−B )

(2(n −1)−1)![1+ (2n −1)(α−µ+2nαµ)]

2n−4
∏

j=1

(A−B + j )

+
(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]
·

(A−B )

(2(n −1)−1)!

2n−4
∏

j=1

(A−B + j )

+
(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]
·

(A−B )

(2(n −1))!

2n−3
∏

j=1

(A−B + j )

=
(A−B )

(2n −1)(2(n −1)−1)![1+ (2n −1)(α−µ+2nαµ)]

2n−4
∏

j=1

(A−B + j )(A−B +2n −3)

+
(A−B )

(2n −1)[1+ (2n −1)(α−µ+2nαµ)]
·

(A−B )

(2(n −1))!

2n−3
∏

j=1

(A−B + j )

=
(A−B )

(2n −1)![1+ (2n −1)(α−µ+2nαµ)]

2n−2
∏

j=1

(A−B + j ).

Thus (2.23) holds for m = n and hence (2.13) follows. Similarly, we can prove (2.14).

Remark 2.1. Taking µ= 0 in Theorems 2.1 and 2.2, we obtain the results obtained by Selvaraj

and Vasanthi [5, Theorems 3.1 and 3.2, respectively].
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