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FEKETE-SZEGO PROBLEM FOR A CLASS OF ANALYTIC FUNCTIONS
DEFINED BY CONVOLUTION

S. SIVAPRASAD KUMAR AND VIRENDRA KUMAR
Abstract. Let g and & be two fixed normalized analytic functions and ¢ be starlike with

respect to 1, whose range is symmetric with respect to the real axis. Let Jlgf&m be the
class of analytic functions f(z) = z+ a» 2% + azz> + ..., satisfying the subordination

((f*g)(z))“((f*:)(Z))ﬁ

z

<¢(2),

where a and f are real numbers and are not zero simultaneously. In the present inves-
tigation, sharp upper bounds of the Fekete-Szego functional |a3 — pagl for functions be-

longing to the class M;’f(cp) are obtained and certain applications are also discussed.

1. Introduction

Let o/ denote the class of functions f analytic in D := {z € C: |z| < 1} and normalized by
the conditions f(0) =0and f'(0) — 1 = 0. Thus, if f € o/, then

f(z):z+azzz+a3z3+---. (1.1)

We denote by .# the subclass of «f consisting of univalent functions. For two functions f and
g analytic in D, we say that f is subordinate to g, denoted by f < g, if there is an analytic
function w with |w(z)| < |z| such that f(z) = g(w(z)). If g is univalent, then f < g if and only
if £(0) = g(0) and f(D) < g(D).

Let ¢ be an analytic univalent function with positive real partin D and ¢(D) be symmetric
with respect to the real axis, starlike with respect to ¢(0) = 1 and ¢'(0) > 0. Let 2(¢) be the
class of analytic functions p in D with p(0) = 1 and p(D) < ¢(D) or equivalently p < ¢. Let & =
2((1+2)/(1-2)) is the class of analytic functions with positive real part in the unit disk D. Let
F*(¢) be the class of functions f € % such that zf'(z)/ f(z) € (¢p) and € (¢p) be the class of
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functions f € % such that 1+zf"(z)/ f'(z) € 22(¢). These classes were introduced and studied
by Ma and Minda [6]. The classes .#* (¢) and € (¢) reduce to several well-known classes. For
example, the class #*((1+ Az)/(1 + Bz)) =: #*[A,B] (-1 < B < A < 1) was introduced by
Janowski [4]; £* (1 +2)/(1—2)) =: " and € ((1 + 2)/(1 — z)) =: € are the well-known classes

of starlike and convex functions respectively.

Ali et al. [1] introduced the class .4 («, ¢) of a-convex function with respect to ¢ consist-
ing of functions f in </, satisfying

1-o

zf'(2) zf"(2)
7@ +“(1+ @

The class .# (a,¢) includes several known classes namely . *(¢p), € (¢p) and 4 (a, (1 + (1 —
2a)2)/ (1 — z)) =: 4 (a). The class . («) is the class of a-convex functions, introduced and
studied by Miller and Mocanu [8].

Bieberbach, in 1916, proved thatif f € .%, then Iag —az| < 1. In 1933, Fekete and Szego (3]
proved that

) < P(2).

4l.l_3 (HZ].),
a5 — pag| < 1+exp(—12_—““) O=sus<1),
3-4u (L=0),

holds for the functions f € . and the result is sharp. The problem of finding the sharp bounds
for the non-linear functional |as — uagl of any compact family of functions is popularly known
as the Fekete-Szego problem. For related results, refer [1, 2, 10, 13, 14, 17] and the references

cited therein.

Obradovi¢ [10] introduced the class of functions f € «f satisfying

z A+1
Re{f’(z)(%) }>o 0<A<]1).

Tuneksi and Darus [17] obtained Fekete-Szego inequality for the class of functions f € «f

satisfying

z A+l
Re '(z)(—) >a 0<sa<l,0<A<]). 1.2)
{f (@)
The Hadamard product (or convolution) of f(z), given by (1.1) and
g)=z+)_ gnz" (1.3)
n=2

is defined by (f * g)(2) ;== z+ X5, angnz" =: (g * f)(2). Using the Hadamard product, Muru-
gusundaramoorthy et al. [9] introduced a class .#g j,(¢) of functions f in </ satistying

(f *8)(2)

@ " b(2) (§n>0,hy>0,8n~hn>0),
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where g, h € &/, g(z) is given by (1.3) and h(z) = z+ Z‘:f:z h,z" and obtained the Fekete-Szeg6
inequality for the class .4 ;,(¢p). More information on related works can be found in [1, 2, 11,
16] and references cited therein.

Motivated by the works of Ma and Minda [6] and others [9, 13, 17], in the present paper,
we investigate Fekete-Szego problem for a more general class /%;',f«p) defined using convo-

lution and subordination. Earlier results in [6, 9, 17] shown to be special case of our results.

Definition 1.1. Let a and S are real numbers. Assume that g(z) given by (1.3) and h(z) =
z+Y57, hy2" with g, >0, h, >0and ag, + Bh, > 0. Afunction f € o is said to be in the class
J%gf (¢), if it satisfies

((f* g)(z))“ ((f*:)(z))ﬁ

e <¢p(2),

where the powers are principle one.

For appropriate functions g, i, ¢ and constants a and S, the class ﬂ;f (¢p) reduces to the
following classes:

(1) My, () =2 Mg (D).

@ 4 L (@) =)

(1-22"1-2

@ ) (P =)

z+22
(1-23" (1-2)2

(4) With g(2) = z/(1-2)%, h(z) = z/(1-2) and $(2) = (1+2)/(1-2), the class /%;;,;(“”«p),o <
A <1 reduces to the class introduced by Obradovic [10].

We need the following results:

Lemma 1.2 ([6]). Ifp(z) =1+c12+ 22> +...€ PP, then

—-4v+2(v=<0),
ICZ—vcfls 2 O=sv=<l),
4v-2 (v=1).

When v <0 or v > 1, equality holds if and only if p(z) is (1 + z)/(1 — z) or one of its rotations.
If0 < v < 1, then equality holds if and only if p(z) is (1+ z%)/ (1 — z?) or one of its rotations. If
v =0, equality holds if and only if

147\ 1 1—y\1-
”) +Z+( Y) 2 (0<y<1,zeD) (1.4)

p(Z):(z 1-z \ 2 J1+z
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or one of its rotations. While for v = 1, equality holds if and only if p(z) is the reciprocal of one
of the functions such that equality holds in the case of v = 0.

Although the above upper bound is sharp, it can be improved as follows when0 < v < 1:

and

lco — vcfl + l/|61|2 <2 (0<wv=<1/2)

leo— v+ (1-v)el?<2 A/2<wv<]).

Lemma 1.3 ([5](see also [15])). Ifp(z) =1+c1z+ czz2 +...€ P. Then for any complex number

v,

lco — vcfl <2max{l;|2v -1}

and the result is sharp for the functions given by

2
1
5 and p(z) = _tre

p(z) =

Lemma 1.4 ([12]). Ifthe function p(z) = 1+ c1z+ 2% +...€ P, then|c,| <2 forn = 1.

2. The Fekete-Szego problem

We begin with the following result.

Theorem 2.1. Letp(z) =1+ Biz+Boz?+---. If f (z) given by (1.1) belongs to the class J%;',f((p),

then, for any real number i,

where

and

o1 .=

Og =

B A
(ags+Bh3) (,LLSO'l),

2 B
las — pa;| < m (o1=p=02),

" (ags +ﬁh3) ('u 02),

B, lala-1)g5+p(B- 1)h2+2a,3g2h2+2p(ag3+,6h3)131

B 2(ago + Bhy)?

2(By—Bi1)(ags + Ph)? — [ala—1)g2 + f(B— 1) 5 +2a g2 hy) B?

2(ags +fh3) B}

2(Bo+B1)(ag + fho)* - [ala—1)g2 + B(B— D A5 +2af g, hy) B?

2(ags +fh3) B
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Proof. Let f € Jlgfﬁp). Then the function p defined by

(f*@)\*((f*h(=)\°
pio - (L2810 (L2 ) ”
z z
=1+b1z+byz*+--
is analytic. By a computation, we get
@ -1
(M) =l+aaxgz+ (aa3g3 + a(a2 ) a%gg) 224
z
and 5
h -1
((f*%) =1+ Barhz+|Pashs + ,6(,62 ) aghg) 224
Substituting these in (2.1) and comparing coefficients, we have
by = (ag2+ pfh2)a; 2.2)
and )
a
by = (ags+ Bhs)as+ [a(a—1)g2 + B(B—1)h3 +2afg hy) 72 2.3)
Since ¢ is univalent and p < ¢, the function p; (z) defined by
1+¢7!
P1(2)2M21+01z+0222+---, (2.4)
1-¢~(p(2)
is analytic with positive real part in D. Further from (2.4), we have
p1(2) — 1)
(2) = (—
PE =0\ @+
. ( C12+Crz% +--- )
24zt ezt
= 1+lB c1z+ 1B (c —102)+lB 2l 22+
= ;b1 PRl Rl Rl
Thus, we have
b= 1B 2.5)
= —Bjc .
1=5b1a
and ) ) )
by = 2 Bi(c2 - ch) + ZBch. (2.6)
Using (2.5) in (2.2), we obtain
B161
2.7)

2= 2agy+ Phy)



192 S. SIVAPRASAD KUMAR AND VIRENDRA KUMAR

The equations (2.3) and (2.6), lead to

_ 2(age + Ph2)?[2(c2— 3¢)Bi + Baoct] — [ala— g5 + B(f— DS +2aPgaha) Bi ¢}

2.8

“ 8(ags + Bhs) (ags + fh2)? @8
From (2.7) and (2.8), we have

B
—udd = — 2L e~y
las — pas| 2@z + B [co—vetl,
where
s L], B, lata- 1)g5 + B(B—1)h3 +2afghy +2u(ags + fhs)] By 2.9)
2| B 2(agy + Phy)? '
The result now follows by an application of Lemma 1.2. O

If 01 < p < 0, then the above result can be improved by bifurcating the interval as fol-

lows:

Remark 2.2. Let

_ 2By(aga+ Pha)® —lala—-1)g5 + B(f—1)h3 +2aBgrhal B

g3 .
’ 2(ags + Bhs) B

If o1 < p <03, then

By

lag —pa3l+ R < ————,
2 ags+phs

where

[2(B1 — By)(agz + Pha)? + [ala—1)g5 + P(B— 1)h5 +2afgs ho +2u(ags + Phs)1Bi] |
1= az

2.
2(ags + ph3)B?

Similarly if 03 < u < 0>, then

By

las — pas) + Ry < ————,
2 ags+Bhs

where

[2(By + B1)(agz + Bho)? + [ala—1)g5 + B(f— V) h5 +2aPgs ho +2pu(ags + fh3)] BS] |
2= az

2.
2(ags +ph3)B;

Remark 2.3. For a =1 and 8 = —1, Theorem 2.1 reduces to [9, Theorem 2.1] due to Muru-
gusundaramoorthy et al. [9].



FEKETE-SZEGO PROBLEM 193

Theorem 2.4. Letp(z) =1+ Biz+ Byz? +--- be analyticinD and By > 0,B, € R. If f(z) given
by (1.1) belongs to the class ﬂ;‘fﬁp), then

papp— 2.10)
a| < .
U7 age+
and for any complex number i
a3 — paj) < —————— max({L;|Rl},
SRR S g + By

where
R [a(a—1)g5 +B(B—1h3+2afgrhy +2u(ags + fhs)]B1 B,

2(agr + Phy)? B

Proof. The inequality (2.10) follows from (2.7) and Lemma 1.4. Using (2.9) one can easily
verify that

_ Bilala—-1)g; +B(B—1h; +2afgahy +2ulags + fhs)] By
- 2(agz + Bhy)? By’

2v—1

Now an application of Lemma 1.3 completes the proof. O

Here below, we discuss some applications of Theorem 2.1:

Theorem 2.5. Letp(z) =1+ Byz+ Byz?+--- be analyticinD and By > 0, B, € R. Assume that

S nl'(n+1DI'2-96) , B S I'(n+1I2-6) ,
g(z)—z+n;2 P ST andh(z)—z+nX::2 T=5+D)

If f(z) given by (1.1) belongs to the class M;‘,f (), then for any real number

(2-8)(3-8)AB;
T6Garp  (H=01)
2 (2-0)(3-0)B
las —pas| < Wﬁ)l (01=p=03),
_ (2-6)3-0)AB,

5Garp  M=02),

where
Ao B Ua@-1)+F(B-1+4af)3-0)+3u2-8)Ba+p)B
T B 2a+p)?B-06) ’
e B-08)[2(B1 - By)Ra+ p)* - (dala—1)+p(—1) +4af)B:]
b 3(2—6)(3a + f) B2
and
B-08)[2(B1 +B)2a+ f)* — dala—1) +p(B—1) +4apf)B:]
Oy = .

32-6)(Ba+p)B?
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Remark 2.6. If we set @ = 1 and = —1 in Theorem 2.5, it reduces to [9, Corollary 3.2] of

Murugusundaramoorthy et al. Fora =1, f=-1, B; = %, B, = % and 6 = 1, Theorem 2.5

reduces to the result [7, Theorem 2] of Ma and Minda.

Setting g(z) = +%,h(z) = %,a =1and f = -1 -1, A < 1 in Theorem 2.4, we deduce

(1-2)2’ 1-z’

the following result:

Corollary 2.7. Let f(z) given by (1.1) and satisfies

z YW 1+Cz
< A<D,

! (Z)(% 1+ Dz

then |ay| < % and for any complex number (1, we have

(1+A—2u)(ﬂt—2)(C—D)H

lag — a2|<gmax{1-‘D+
sTHERI=STY ’ -2

Remark2.8. For C=1-2a,0<a<1,0<A<1and D = -1, Corollary 2.7, reduces to the result
[17, Theorem 1] of Tuneski and Darus. Note that our proof is quite different from that one
given by Tuneski and Darus [17]. It is necessary to make it clear that there was a typographical

error in the assertion of [17, Theorem 1]; however the following is the correct one.

Example 2.9 ([17], Theorem 1). Let0<a<1,0< A< 1. If f € o satisfies

z A+1
Re{f’(z)(%) }>a,
2(1-a)

then |a,| < 5=~ and for any complex number u

2— (1-1)?

L

Remark 2.10. For a =0, Example 2.9 reduces to [17, Corollary 1] of Tuneski and Darus. Set-
ting C =k (0 < k<1), D=0, in Corollary 2.7, we obtain the result of Tuneski and Darus [17,

Theorem 2].
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