FEKETE-SZEGÖ PROBLEM FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION

S. SIVAPRASAD KUMAR AND VIRENDRA KUMAR

Abstract

Let g and h be two fixed normalized analytic functions and ϕ be starlike with respect to 1 , whose range is symmetric with respect to the real axis. Let $\mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$ be the class of analytic functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$, satisfying the subordination $$
\left(\frac{(f * g)(z)}{z}\right)^{\alpha}\left(\frac{(f * h)(z)}{z}\right)^{\beta}<\phi(z),
$$ where α and β are real numbers and are not zero simultaneously. In the present investigation, sharp upper bounds of the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for functions belonging to the class $\mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$ are obtained and certain applications are also discussed.

1. Introduction

Let \mathscr{A} denote the class of functions f analytic in $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)-1=0$. Thus, if $f \in \mathscr{A}$, then

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots . \tag{1.1}
\end{equation*}
$$

We denote by \mathscr{S} the subclass of \mathscr{A} consisting of univalent functions. For two functions f and g analytic in \mathbb{D}, we say that f is subordinate to g, denoted by $f<g$, if there is an analytic function w with $|w(z)| \leq|z|$ such that $f(z)=g(w(z))$. If g is univalent, then $f<g$ if and only if $f(0)=g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$.

Let ϕ be an analytic univalent function with positive real part in \mathbb{D} and $\phi(\mathbb{D})$ be symmetric with respect to the real axis, starlike with respect to $\phi(0)=1$ and $\phi^{\prime}(0)>0$. Let $\mathscr{P}(\phi)$ be the class of analytic functions p in \mathbb{D} with $p(0)=1$ and $p(\mathbb{D}) \subset \phi(\mathbb{D})$ or equivalently $p<\phi$. Let $\mathscr{P}=$ $\mathscr{P}((1+z) /(1-z))$ is the class of analytic functions with positive real part in the unit disk \mathbb{D}. Let $\mathscr{S}^{*}(\phi)$ be the class of functions $f \in \mathscr{S}$ such that $z f^{\prime}(z) / f(z) \in \mathscr{P}(\phi)$ and $\mathscr{C}(\phi)$ be the class of

[^0]2010 Mathematics Subject Classification. 30C45, 30C80.
Key words and phrases. Analytic functions, Starlike functions, Convex functions, Subordination, Fekete-Szegö problem.
functions $f \in \mathscr{S}$ such that $1+z f^{\prime \prime}(z) / f^{\prime}(z) \in \mathscr{P}(\phi)$. These classes were introduced and studied by Ma and Minda [6]. The classes $\mathscr{S}^{*}(\phi)$ and $\mathscr{C}(\phi)$ reduce to several well-known classes. For example, the class $\mathscr{S}^{*}((1+A z) /(1+B z))=: \mathscr{S}^{*}[A, B](-1 \leq B<A \leq 1)$ was introduced by Janowski [4]; $\mathscr{S}^{*}((1+z) /(1-z))=: \mathscr{S}^{*}$ and $\mathscr{C}((1+z) /(1-z))=: \mathscr{C}$ are the well-known classes of starlike and convex functions respectively.

Ali et al. [1] introduced the class $\mathscr{M}(\alpha, \phi)$ of α-convex function with respect to ϕ consisting of functions f in \mathscr{A}, satisfying

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\phi(z)
$$

The class $\mathscr{M}(\alpha, \phi)$ includes several known classes namely $\mathscr{S}^{*}(\phi), \mathscr{C}(\phi)$ and $\mathscr{M}(\alpha,(1+(1-$ $2 \alpha) z) /(1-z))=: \mathscr{M}(\alpha)$. The class $\mathscr{M}(\alpha)$ is the class of α-convex functions, introduced and studied by Miller and Mocanu [8].

Bieberbach, in 1916, proved that if $f \in \mathscr{S}$, then $\left|a_{2}^{2}-a_{3}\right| \leq 1$. In 1933, Fekete and Szegö [3] proved that

$$
\left|a_{2}^{2}-\mu a_{3}\right| \leq \begin{cases}4 \mu-3 & (\mu \geq 1) \\ 1+\exp \left(-\frac{2 \mu}{1-\mu}\right) & (0 \leq \mu \leq 1) \\ 3-4 \mu & (\mu \leq 0)\end{cases}
$$

holds for the functions $f \in \mathscr{S}$ and the result is sharp. The problem of finding the sharp bounds for the non-linear functional $\left|a_{3}-\mu a_{2}^{2}\right|$ of any compact family of functions is popularly known as the Fekete-Szegö problem. For related results, refer [1, 2, 10, 13, 14, 17] and the references cited therein.

Obradović [10] introduced the class of functions $f \in \mathscr{A}$ satisfying

$$
\operatorname{Re}\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\lambda+1}\right\}>0 \quad(0<\lambda<1)
$$

Tuneksi and Darus [17] obtained Fekete-Szegö inequality for the class of functions $f \in \mathscr{A}$ satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\lambda+1}\right\}>\alpha \quad(0 \leq \alpha<1,0<\lambda<1) \tag{1.2}
\end{equation*}
$$

The Hadamard product (or convolution) of $f(z)$, given by (1.1) and

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n} \tag{1.3}
\end{equation*}
$$

is defined by $(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} g_{n} z^{n}=:(g * f)(z)$. Using the Hadamard product, Murugusundaramoorthy et al. [9] introduced a class $\mathscr{M}_{g, h}(\phi)$ of functions f in \mathscr{A} satisfying

$$
\frac{(f * g)(z)}{(f * h)(z)}<\phi(z) \quad\left(g_{n}>0, h_{n}>0, g_{n}-h_{n}>0\right)
$$

where $g, h \in \mathscr{A}, g(z)$ is given by (1.3) and $h(z)=z+\sum_{n=2}^{\infty} h_{n} z^{n}$ and obtained the Fekete-Szegö inequality for the class $\mathscr{M}_{g, h}(\phi)$. More information on related works can be found in [1, 2, 11, 16] and references cited therein.

Motivated by the works of Ma and Minda [6] and others [9, 13, 17], in the present paper, we investigate Fekete-Szegö problem for a more general class $\mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$ defined using convolution and subordination. Earlier results in [6, 9, 17] shown to be special case of our results.

Definition 1.1. Let α and β are real numbers. Assume that $g(z)$ given by (1.3) and $h(z)=$ $z+\sum_{n=2}^{\infty} h_{n} z^{n}$ with $g_{n}>0, h_{n}>0$ and $\alpha g_{n}+\beta h_{n}>0$. A function $f \in \mathscr{A}$ is said to be in the class $\mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$, if it satisfies

$$
\left(\frac{(f * g)(z)}{z}\right)^{\alpha}\left(\frac{(f * h)(z)}{z}\right)^{\beta}<\phi(z)
$$

where the powers are principle one.
For appropriate functions g, h, ϕ and constants α and β, the class $\mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$ reduces to the following classes:
$\mathscr{M}_{g, h}^{1,-1}(\phi)=: \mathscr{M}_{g, h}(\phi)$.
(2) $\mathscr{M}_{\frac{z}{(1-z)^{2}}, \frac{z}{1-z}}^{1,-1}(\phi)=: \mathscr{S}^{*}(\phi)$
(3)

$$
\mathscr{M}_{\frac{z+z^{2}}{1,-z)^{3}} \frac{z}{(1-z)^{2}}}(\phi)=: \mathscr{C}(\phi)
$$

(4) With $g(z)=z /(1-z)^{2}, h(z)=z /(1-z)$ and $\phi(z)=(1+z) /(1-z)$, the class $\mathscr{M}_{g, h}^{1,-(\lambda+1)}(\phi), 0<$ $\lambda<1$ reduces to the class introduced by Obradović [10].

We need the following results:
Lemma 1.2 ([6]). If $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \in \mathscr{P}$, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2 & (v \leq 0) \\ 2 & (0 \leq v \leq 1) \\ 4 v-2 & (v \geq 1)\end{cases}
$$

When $v<0$ or $v>1$, equality holds if and only if $p(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then equality holds if and only if $p(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $\nu=0$, equality holds if and only if

$$
\begin{equation*}
p(z)=\left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1, z \in \mathbb{D}) \tag{1.4}
\end{equation*}
$$

or one of its rotations. While for $v=1$, equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that equality holds in the case of $v=0$.

Although the above upper bound is sharp, it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 \quad(0<v \leq 1 / 2)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 \quad(1 / 2 \leq v<1) .
$$

Lemma 1.3 ([5](see also [15])). If $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \in \mathscr{P}$. Then for any complex number v,

$$
\left|c_{2}-v c_{1}^{2}\right| \leq 2 \max \{1 ;|2 v-1|\}
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}} \text { and } p(z)=\frac{1+z}{1-z} .
$$

Lemma 1.4 ([12]). If the function $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \in \mathscr{P}$, then $\left|c_{n}\right| \leq 2$ for $n \geq 1$.

2. The Fekete-Szegö problem

We begin with the following result.
Theorem 2.1. $\operatorname{Let} \phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f(z)$ given by (1.1) belongs to the class $\mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$, then, for any real number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1} A}{\left(\alpha g_{3}+\beta h_{3}\right)} & \left(\mu \leq \sigma_{1}\right), \\ \frac{B_{1}}{\left(\alpha g_{3}+\beta h_{3}\right)} & \left(\sigma_{1} \leq \mu \leq \sigma_{2}\right), \\ -\frac{B_{1} A}{\left(\alpha g_{3}+\beta h_{3}\right)} & \left(\mu \geq \sigma_{2}\right),\end{cases}
$$

where

$$
\begin{aligned}
A & :=\frac{B_{2}}{B_{1}}-\frac{\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}+2 \mu\left(\alpha g_{3}+\beta h_{3}\right)\right] B_{1}}{2\left(\alpha g_{2}+\beta h_{2}\right)^{2}}, \\
\sigma_{1} & :=\frac{2\left(B_{2}-B_{1}\right)\left(\alpha g_{2}+\beta h_{2}\right)^{2}-\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}\right] B_{1}^{2}}{2\left(\alpha g_{3}+\beta h_{3}\right) B_{1}^{2}}
\end{aligned}
$$

and

$$
\sigma_{2}:=\frac{2\left(B_{2}+B_{1}\right)\left(\alpha g_{2}+\beta h_{2}\right)^{2}-\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}\right] B_{1}^{2}}{2\left(\alpha g_{3}+\beta h_{3}\right) B_{1}^{2}}
$$

Proof. Let $f \in \mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$. Then the function p defined by

$$
\begin{align*}
p(z) & =\left(\frac{(f * g)(z)}{z}\right)^{\alpha}\left(\frac{(f * h)(z)}{z}\right)^{\beta} \tag{2.1}\\
& =1+b_{1} z+b_{2} z^{2}+\cdots
\end{align*}
$$

is analytic. By a computation, we get

$$
\left(\frac{(f * g)(z)}{z}\right)^{\alpha}=1+\alpha a_{2} g_{2} z+\left(\alpha a_{3} g_{3}+\frac{\alpha(\alpha-1)}{2} a_{2}^{2} g_{2}^{2}\right) z^{2}+\cdots
$$

and

$$
\left(\frac{(f * h)(z)}{z}\right)^{\beta}=1+\beta a_{2} h_{2} z+\left(\beta a_{3} h_{3}+\frac{\beta(\beta-1)}{2} a_{2}^{2} h_{2}^{2}\right) z^{2}+\cdots .
$$

Substituting these in (2.1) and comparing coefficients, we have

$$
\begin{equation*}
b_{1}=\left(\alpha g_{2}+\beta h_{2}\right) a_{2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2}=\left(\alpha g_{3}+\beta h_{3}\right) a_{3}+\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}\right] \frac{a_{2}^{2}}{2} \tag{2.3}
\end{equation*}
$$

Since ϕ is univalent and $p<\phi$, the function $p_{1}(z)$ defined by

$$
\begin{equation*}
p_{1}(z)=\frac{1+\phi^{-1}(p(z))}{1-\phi^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2}+\cdots, \tag{2.4}
\end{equation*}
$$

is analytic with positive real part in \mathbb{D}. Further from (2.4), we have

$$
\begin{aligned}
p(z) & =\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \\
& =\phi\left(\frac{c_{1} z+c_{2} z^{2}+\cdots}{2+c_{1} z+c_{2} z^{2}+\cdots}\right) \\
& =1+\frac{1}{2} B_{1} c_{1} z+\left[\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right] z^{2}+\cdots .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
b_{1}=\frac{1}{2} B_{1} c_{1} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} . \tag{2.6}
\end{equation*}
$$

Using (2.5) in (2.2), we obtain

$$
\begin{equation*}
a_{2}=\frac{B_{1} c_{1}}{2\left(\alpha g_{2}+\beta h_{2}\right)} . \tag{2.7}
\end{equation*}
$$

The equations (2.3) and (2.6), lead to

$$
\begin{equation*}
a_{3}=\frac{2\left(\alpha g_{2}+\beta h_{2}\right)^{2}\left[2\left(c_{2}-\frac{1}{2} c_{1}^{2}\right) B_{1}+B_{2} c_{1}^{2}\right]-\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}\right] B_{1}^{2} c_{1}^{2}}{8\left(\alpha g_{3}+\beta h_{3}\right)\left(\alpha g_{2}+\beta h_{2}\right)^{2}} . \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8), we have

$$
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{B_{1}}{2\left(\alpha g_{3}+\beta h_{3}\right)}\left[c_{2}-v c_{1}^{2}\right]
$$

where

$$
\begin{equation*}
\nu:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\frac{\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}+2 \mu\left(\alpha g_{3}+\beta h_{3}\right)\right] B_{1}}{2\left(\alpha g_{2}+\beta h_{2}\right)^{2}}\right] . \tag{2.9}
\end{equation*}
$$

The result now follows by an application of Lemma 1.2.
If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then the above result can be improved by bifurcating the interval as follows:

Remark 2.2. Let

$$
\sigma_{3}:=\frac{2 B_{2}\left(\alpha g_{2}+\beta h_{2}\right)^{2}-\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}\right] B_{1}^{2}}{2\left(\alpha g_{3}+\beta h_{3}\right) B_{1}^{2}}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+R_{1} \leq \frac{B_{1}}{\alpha g_{3}+\beta h_{3}}
$$

where

$$
R_{1}:=\frac{\left[2\left(B_{1}-B_{2}\right)\left(\alpha g_{2}+\beta h_{2}\right)^{2}+\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}+2 \mu\left(\alpha g_{3}+\beta h_{3}\right)\right] B_{1}^{2}\right]}{2\left(\alpha g_{3}+\beta h_{3}\right) B_{1}^{2}}\left|a_{2}\right|^{2}
$$

Similarly if $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+R_{2} \leq \frac{B_{1}}{\alpha g_{3}+\beta h_{3}}
$$

where

$$
R_{2}:=\frac{\left[2\left(B_{2}+B_{1}\right)\left(\alpha g_{2}+\beta h_{2}\right)^{2}+\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}+2 \mu\left(\alpha g_{3}+\beta h_{3}\right)\right] B_{1}^{2}\right]}{2\left(\alpha g_{3}+\beta h_{3}\right) B_{1}^{2}}\left|a_{2}\right|^{2}
$$

Remark 2.3. For $\alpha=1$ and $\beta=-1$, Theorem 2.1 reduces to [9, Theorem 2.1] due to Murugusundaramoorthy et al. [9].

Theorem 2.4. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$ be analytic in \mathbb{D} and $B_{1}>0, B_{2} \in \mathbb{R}$. If $f(z)$ given by (1.1) belongs to the class $\mathscr{M}_{g, h}^{\alpha, \beta}(\phi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1}}{\alpha g_{2}+\beta h_{2}} \tag{2.10}
\end{equation*}
$$

and for any complex number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{2\left(\alpha g_{2}+\beta h_{2}\right)} \max \{1 ;|R|\}
$$

where

$$
R:=\frac{\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}+2 \mu\left(\alpha g_{3}+\beta h_{3}\right)\right] B_{1}}{2\left(\alpha g_{2}+\beta h_{2}\right)^{2}}-\frac{B_{2}}{B_{1}} .
$$

Proof. The inequality (2.10) follows from (2.7) and Lemma 1.4. Using (2.9) one can easily verify that

$$
2 v-1=\frac{B_{1}\left[\alpha(\alpha-1) g_{2}^{2}+\beta(\beta-1) h_{2}^{2}+2 \alpha \beta g_{2} h_{2}+2 \mu\left(\alpha g_{3}+\beta h_{3}\right)\right]}{2\left(\alpha g_{2}+\beta h_{2}\right)^{2}}-\frac{B_{2}}{B_{1}} .
$$

Now an application of Lemma 1.3 completes the proof.
Here below, we discuss some applications of Theorem 2.1:
Theorem 2.5. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$ be analytic in \mathbb{D} and $B_{1}>0, B_{2} \in \mathbb{R}$. Assume that

$$
g(z)=z+\sum_{n=2}^{\infty} \frac{n \Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n-\delta+1)} z^{n} \text { and } h(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n-\delta+1)} z^{n} .
$$

If $f(z)$ given by (1.1) belongs to the class $M_{g, h}^{\alpha, \beta}(\phi)$, then for any real number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{(2-\delta)(3-\delta) A B_{1}}{6(3 \alpha+\beta)} & \left(\mu \leq \sigma_{1}\right) \\ \frac{(2-\delta)(3-\delta) B_{1}}{6(3 \alpha+\beta)} & \left(\sigma_{1} \leq \mu \leq \sigma_{2}\right), \\ -\frac{(2-\delta)(3-\delta) A B_{1}}{6(3 \alpha+\beta)} & \left(\mu \geq \sigma_{2}\right)\end{cases}
$$

where

$$
\begin{aligned}
A & :=\frac{B_{2}}{B_{1}}-\frac{[(4 \alpha(\alpha-1)+\beta(\beta-1)+4 \alpha \beta)(3-\delta)+3 \mu(2-\delta)(3 \alpha+\beta)] B_{1}}{(2 \alpha+\beta)^{2}(3-\delta)}, \\
\sigma_{1} & :=\frac{(3-\delta)\left[2\left(B_{1}-B_{2}\right)(2 \alpha+\beta)^{2}-(4 \alpha(\alpha-1)+\beta(\beta-1)+4 \alpha \beta) B_{1}^{2}\right]}{3(2-\delta)(3 \alpha+\beta) B_{1}^{2}}
\end{aligned}
$$

and

$$
\sigma_{2}:=\frac{(3-\delta)\left[2\left(B_{1}+B_{2}\right)(2 \alpha+\beta)^{2}-(4 \alpha(\alpha-1)+\beta(\beta-1)+4 \alpha \beta) B_{1}^{2}\right]}{3(2-\delta)(3 \alpha+\beta) B_{1}^{2}}
$$

Remark 2.6. If we set $\alpha=1$ and $\beta=-1$ in Theorem 2.5, it reduces to [9, Corollary 3.2] of Murugusundaramoorthy et al. For $\alpha=1, \beta=-1, B_{1}=\frac{8}{\pi^{2}}, B_{2}=\frac{16}{3 \pi^{2}}$ and $\delta=1$, Theorem 2.5 reduces to the result [7, Theorem 2] of Ma and Minda.

Setting $g(z)=\frac{z}{(1-z)^{2}}, h(z)=\frac{z}{1-z}, \alpha=1$ and $\beta=-\lambda-1, \lambda<1$ in Theorem 2.4, we deduce the following result:

Corollary 2.7. Let $f(z)$ given by (1.1) and satisfies

$$
f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\lambda+1}<\frac{1+C z}{1+D z} \quad(\lambda<1)
$$

then $\left|a_{2}\right| \leq \frac{C-D}{1-\lambda}$ and for any complex number μ, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{C-D}{2-\lambda} \max \left\{1 ;\left|D+\frac{(1+\lambda-2 \mu)(\lambda-2)(C-D)}{(1-\lambda)^{2}}\right|\right\} .
$$

Remark 2.8. For $C=1-2 a, 0 \leq a<1,0<\lambda<1$ and $D=-1$, Corollary 2.7, reduces to the result [17, Theorem 1] of Tuneski and Darus. Note that our proof is quite different from that one given by Tuneski and Darus [17]. It is necessary to make it clear that there was a typographical error in the assertion of [17, Theorem 1]; however the following is the correct one.

Example 2.9 ([17], Theorem 1). Let $0 \leq a<1,0<\lambda<1$. If $f \in \mathscr{A}$ satisfies

$$
\operatorname{Re}\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\lambda+1}\right\}>a
$$

then $\left|a_{2}\right| \leq \frac{2(1-a)}{1-\lambda}$ and for any complex number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-a)}{2-\lambda} \max \left\{1 ;\left|1+\frac{(1+\lambda-2 \mu)(2-\lambda)(1-a)}{(1-\lambda)^{2}}\right|\right\} .
$$

Remark 2.10. For $a=0$, Example 2.9 reduces to [17, Corollary 1] of Tuneski and Darus. Setting $C=k(0<k \leq 1), D=0$, in Corollary 2.7, we obtain the result of Tuneski and Darus [17, Theorem 2].

Acknowledgements

The authors are grateful to the reviewer for his valuable comments.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szego coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc., 35(2009), 119-142.
[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput., 187(2007), 35-46.
[3] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte funktionen, J. London Math. Soc., 8(1933), 85-89.
[4] W. Janowski, Extremal problems for a family offunctions with positive real part and for some related families, Ann. Polon. Math. 23(1970/1971), 159-177.
[5] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[6] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.
[7] W. C. Ma and D. Minda, Uniformly convex functions. II, Ann. Polon. Math. 58 (1993), 275-285.
[8] S. S. Miller and P.T. Mocanu, Differential subordinations. Theory and applications, Monographs and Text Books in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[9] G. Murugusundaramoorthy, S. Kavitha and T. Rosy, On the Fekete-Szegö problem for some subclasses of analytic functions defined by convolution, Proc. Pakistan Acad. Sci. 44 (2007), 249-259.
[10] M. Obradović, A class of univalent functions, Hokkaido Math. J. 27 (1998), 329-335.
[11] R. Parvatham, A study on Reade-Wesolowski class of functions, Math. Inequal. Appl., 8 (2005), 607-618.
[12] C. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[13] D. Răducanu, On the Fekete-Szegö inequality for a class of analytic functions defined by using the generalized Sălăgean operator, Gen. Math. 16 (2008), 19-27.
[14] V. Ravichandran, M. Darus, M. H. Khan and K. G. Subramanian, Fekete-Szego inequality for certain class of analytic functions, Aust. J. Math. Anal. Appl., 1 (2004), Art. 4, 7 pp.
[15] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat., 34 (2005), 9-15.
[16] H. Silverman, K. Suchithra, B. A. Stephen and A. Gangadharan, Coefficient bounds for certain classes of meromorphic functions, J. Inequal. Appl. (2008), Art. ID 931981, 9 pp.
[17] N. Tuneski and M. Darus, Fekete-Szegő functional for non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18 (2002), 63-65.

Department of Applied Mathematics, Delhi Technological University, Delhi-110042, India. E-mail: spkumar@dce.ac.in
Department of Applied Mathematics, Delhi Technological University, Delhi-110042, India. E-mail: vktmaths@yahoo.in

[^0]: Corresponding author: S. Sivaprasad Kumar.

