COMPREHENSIVE FAMILY OF UNIFORMLY ANALYTIC FUNCTIONS

B. A. FRASIN

Abstract. We introduce the subclass $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, \beta)$ of analytic functions with negative coefficients. Coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, and convexity for functions belonging to the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, \beta)$ are obtained. We also determine integral operators for functions in this class and some properties involving modified Hadamard products of several functions belonging to the class $\mathcal{U}^*_{\mathcal{T}}(\Phi, \Psi, \alpha, \beta)$.

1. Introduction and Definitions

Let \mathcal{A} denote the class of functions of the form :

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the open unit disc $\Delta = \{z : |z| < 1\}$. Further, let \mathcal{S} denote the subclass of \mathcal{A} consisting of univalent functions in Δ . We define the family $\mathcal{U}(\Phi, \Psi; \alpha, k)$ consisting of the functions $f \in \mathcal{A}$ so that

$$\operatorname{Re}\left\{\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - \alpha\right\} > k \left| \frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1 \right|, \qquad (z \in \Delta)$$
(1.2)

where $-1 \le \alpha < 1$, $k \ge 0$, $\Phi(z) = z + \sum_{n=2}^{\infty} \lambda_n z^n$ and $\Psi(z) = z + \sum_{n=2}^{\infty} \mu_n z^n$ are analytic in Δ with the conditions $\lambda_n \ge 0$, $\mu_n \ge 0$, $\lambda_n \ge \mu_n$ for $n \ge 2$, and $f(z) * \Psi(z) \ne 0$.

The operator "*" stands for the Hadamard product or convolution of two power series

The operator "*" stands for the Hadamard product or convolution of two power series $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} c_n z^n$ given by $f(z) * g(z) = z + \sum_{n=2}^{\infty} a_n c_n z^n$. The family $\mathcal{U}(\Phi, \Psi; \alpha, k)$ is of special interest because it reduces to various classes of

The family $\mathcal{U}(\Phi, \Psi; \alpha, k)$ is of special interest because it reduces to various classes of well-known functions as well as many new ones. For example

$$\mathcal{U}\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}; 0, k\right) = k - \mathcal{ST} \equiv \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > k \left|\frac{zf'(z)}{f(z)} - 1\right|$$

Received May 20, 2004; revised December 2, 2004.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic and univalent functions, Hadamard product, uniformly convex and uniformly starlike functions.

and

$$\mathcal{U}\left(\frac{z+z^2}{(1-z)^3}, \frac{z}{(1-z)^2}; 0, k\right) = k - \mathcal{UCV} \equiv \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > k \left|\frac{zf''(z)}{f'(z)}\right|.$$

are, respectively, the subclasses of S consisting of functions which are k-starlike and k-uniformly convex in Δ introduced by Kanas and Winsiowska [1, 2](see also the work of Kanas and Srivastava [3] and Gangadharan et al.[4]). In particular, when k = 1, we obtain $1-ST \equiv SP$ and $1-UCV \equiv UCV$, where SP and UCV are the familiar classes of uniformly convex functions and parabolic starlike functions in Δ , respectively (see, for details, [5-8]). Another subclass is the subclass

$$\mathcal{U}\left(\frac{z+z^2}{(1-z)^3}, \frac{z}{(1-z)^2}; \alpha, 1\right) = \mathcal{UCV}(\alpha) \equiv \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) - \alpha > k \left|\frac{zf''(z)}{f'(z)}\right|.$$

of uniformly convex functions of order α which is defined by Rønning [9].

Let \mathcal{T} denotes the subclass of \mathcal{S} consisting of functions of the form:

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$$
 $(a_n \ge 0)$ (1.3)

Further, let

$$\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, \beta) = \mathcal{U}(\Phi, \Psi, \alpha, \beta) \cap \mathcal{T}$$
(1.4)

In the present paper, we prove various coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, and convexity for functions belonging to the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. We also determine some properties involving modified Hadamard products and integral operator of several functions in this class.

2. Coefficient Inequalities

Theorem 1. Given $\alpha(1 \le \alpha < 1)$, $k \ge 0$. If

$$\sum_{n=2}^{\infty} \left[(1+k)\lambda_n - (\alpha+k)\mu_n \right] |a_n| \le 1 - \alpha \tag{2.1}$$

then $f(z) \in \mathcal{U}(\Phi, \Psi; \alpha, k)$.

Proof. It suffices to show that

$$k \left| \frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1 \right\} \le 1 - \alpha$$

We have

$$k \left| \frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1 \right\} \le (1+k) \left| \frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1 \right|$$

$$\le \frac{(1+k) \sum_{n=2}^{\infty} (\lambda_n - \mu_n) |a_n| |z|^n}{1 - \sum_{n=2}^{\infty} \mu_n |a_n| |z|^n} \le \frac{(1+k) \sum_{n=2}^{\infty} (\lambda_n - \mu_n) |a_n|}{1 - \sum_{n=2}^{\infty} \mu_n |a_n|}.$$

The last expression is bounded above by $1 - \alpha$ if

$$\sum_{n=2}^{\infty} \left[(1+k)\lambda_n - (\alpha+k)\mu_n \right] |a_n| \le (1-\alpha)$$

which is equivalent to (2.1).

Now we prove that the condition (2.1) is also necessary for $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$.

Theorem 2. $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi, \alpha, k)$ for $\alpha(-1 \le \alpha < 1)$ and $k \ge 0$, iff

$$\sum_{n=2}^{\infty} [(1+k)\lambda_n - (\alpha+k)\mu_n]a_n \le 1 - \alpha.$$
(2.2)

The result (2.2) is sharp.

Proof. In view of Theorem 1, we need only to prove the necessity. Let $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$ and z is real then

$$\frac{1 - \sum_{n=2}^{\infty} \lambda_n a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \mu_n a_n z^{n-1}} - \alpha \ge \frac{1 - \sum_{n=2}^{\infty} (\lambda_n - \mu_n) a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \mu_n a_n z^{n-1}}.$$

Letting $z \to 1$ along the real axis, we obtain the inequality (2.2).

The result (2.2) is sharp for the function

$$f(z) = z - \frac{1 - \alpha}{(1 + \beta)\lambda_n - (\alpha + \beta)\mu_n} z^n \qquad (n \ge 2).$$
 (2.3)

For the notational convenience we shall henceforth denote

$$\sigma_n(\alpha, k) = (1+k)\lambda_n - (\alpha+k)\mu_n \qquad (n \ge 2). \tag{2.4}$$

3. Growth and Distortion Theorems

Theorem 3. Let the function $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. If $\{\sigma_n(\alpha, k)\}_{n=2}^{\infty}$ is a non-decreasing sequence, then, for |z| = r < 1

$$r - \frac{1 - \alpha}{\sigma_2(\alpha, k)} r^2 \le |f(z)| \le r + \frac{1 - \alpha}{\sigma_2(\alpha, k)} r^2$$
(3.1)

and if $\{\sigma_n(\alpha,k)/n\}_{n=2}^{\infty}$ is a non-decreasing sequence, then, for |z|=r<1

$$1 - \frac{2(1-\alpha)}{\sigma_2(\alpha,\beta)}r \le |f'(z)| \le 1 + \frac{2(1-\alpha)}{\sigma_2(\alpha,\beta)}r.$$
 (3.2)

The results (3.1) and (3.2) are sharp for the function f(z) given

$$f(z) = z - \frac{1 - \alpha}{\sigma_2(\alpha, k)} z^2$$
 $(z = \pm r).$ (3.3)

Proof. In view of Theorem 2, we note that $\sigma_2(\alpha, k) \sum_{n=2}^{\infty} a_n \leq \sum_{n=2}^{\infty} \sigma_n(\alpha, k) a_n \leq 1 - \alpha$. Thus

$$|f(z)| \ge |z| - \sum_{n=2}^{\infty} a_n |z|^n \ge r - r^2 \sum_{n=2}^{\infty} a_n \ge r - \frac{1-\alpha}{\sigma_2(\alpha, k)} r^2$$
 (3.4)

Similarly,

$$|f(z)| \le |z| + \sum_{n=2}^{\infty} a_n |z|^n \le r + r^2 \sum_{n=2}^{\infty} a_n \le r + \frac{1-\alpha}{\sigma_2(\alpha, k)} r^2.$$
 (3.5)

Also from Theorem 2, we have $\frac{\sigma_2(\alpha,\beta)}{2}\sum_{n=2}^{\infty}na_n\leq\sum_{n=2}^{\infty}n\sigma_n(\alpha,\beta)a_n\leq 1-\alpha$. Thus

$$|f'(z)| \ge 1 - \sum_{n=2}^{\infty} na_n |z|^{n-1} \ge 1 - r \sum_{n=2}^{\infty} na_n \ge 1 - \frac{2(1-\alpha)}{\sigma_2(\alpha, k)} r.$$

On the other hand,

$$|f'(z)| \le 1 + \sum_{n=2}^{\infty} na_n |z|^{n-1} \le 1 + r \sum_{n=2}^{\infty} na_n \le 1 + \frac{2(1-\alpha)}{\sigma_2(\alpha, k)} r.$$

This completes the proof.

Corollary 1. The disk |z| < 1 is mapped onto a domain that contains the disk $|w| < \frac{\sigma_2(\alpha,k) - (1-\alpha)}{\sigma_2(\alpha,k)}$ by any $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi,\Psi;\alpha,k)$. The theorem is sharp with external function f(z) given by (3.3).

Proof. The proof follow upon letting $r \to 1$ in (3.1).

4. Closure Theorems

In this section, we shall prove that the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$ is closed under convex linear combinations.

Theorem 4. Let the function $f_i(z)$, i = 1, 2, ..., m, defined by

$$f_i(z) = z - \sum_{n=2}^{\infty} a_{n,i} z^n \qquad (a_{n,i} \ge 0)$$
 (4.1)

for $z \in \Delta$, be in the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. Then the function h(z) defined by

$$h(z) = z - \sum_{n=2}^{\infty} \left(\frac{1}{m} \sum_{i=1}^{m} a_{n,i} \right) z^{n}$$
(4.2)

also belongs to the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi, \alpha, k)$.

Proof. Let $f_i(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$, it follows from Theorem 2 that

$$\sum_{n=2}^{\infty} \sigma_n(\alpha, k) a_{n,i} \le 1 - \alpha \qquad (i = 1, 2, \dots, m).$$

$$(4.3)$$

Therefore,

$$\sum_{n=2}^{\infty} \sigma_n(\alpha, k) \left(\frac{1}{m} \sum_{i=1}^{m} a_{n,i} \right)$$
 (4.4)

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{n=2}^{\infty} \sigma_n(\alpha, k) a_{n,i} \right) \le 1 - \alpha. \tag{4.5}$$

Hence by Theorem 2, $h(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$.

With the aid of Theorem 2, we can prove the following

Theorem 5. Let the functions $f_i(z)$ be defined by (4.1) be in the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi, \alpha, k)$ for every i = 1, 2, ..., m. Then the functions

$$h(z) = \sum_{i=1}^{m} c_i f_i(z) \qquad (c_i \ge 0)$$
(4.6)

is also in the same class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi, \alpha, k)$ where $\sum_{i=1}^{m} c_i = 1$.

Theorem 6. Let $f_1(z) = z$ and

$$f_n(z) = z - \frac{1 - \alpha}{\sigma_n(\alpha, k)} z^n \qquad (n \ge 2).$$
(4.7)

Then $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$ if and only if it can be expressed in the form:

$$f(z) = \sum_{n=1}^{\infty} \delta_n f_n(z)$$
 (4.8)

where

$$\delta_n \ge 0 \quad (n \ge 1)$$
 and $\sum_{n=1}^{\infty} \delta_n = 1$.

Proof. Assume that

$$f(z) = \sum_{n=1}^{\infty} \delta_n f_n(z) = z - \sum_{n=2}^{\infty} \frac{1-\alpha}{\sigma_n(\alpha,k)} \delta_n z^n.$$

Then it follows that

$$\sum_{n=2}^{\infty} \frac{\sigma_n(\alpha, k)}{1 - \alpha} \cdot \frac{1 - \alpha}{\sigma_n(\alpha, k)} \delta_n = \sum_{n=2}^{\infty} \delta_n = 1 - \delta_1 \le 1.$$

So by Theorem 1, $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$.

Conversely, assume that the function $f(z) \in \mathcal{U}_T(\Phi, \Psi; \alpha, k)$. Then

$$a_n \le \frac{1-\alpha}{\sigma_n(\alpha,k)}$$
 $(n \ge 2).$

Setting

$$\delta_n = \frac{\sigma_n(\alpha, k)}{1 - \alpha} a_n \qquad (n \ge 2),$$

and

$$\delta_1 = 1 - \sum_{n=2}^{\infty} \delta_n$$

we can see that f(z) can be expressed in the form (4.8). This completes the proof of the Theorem 6.

5. Radii of Close-to-convexity, Starlikeness and Convexity

Theorem 7. Let the function $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. Then f(z) is close-to-convex of order $\rho(0 \le \rho < 1)$ in $|z| < r_1$, where

$$r_1 = \inf_{n} \left[\frac{\sigma_n(\alpha, k)(1 - \rho)}{n(1 - \alpha)} \right]^{1/(n-1)} \quad (n \ge 2).$$
 (5.1)

The result is sharp, the external function f(z) being given by (2.3).

Proof. Let $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$, then the function f(z) defined by (1.3) is close-to-convex of order ρ in $|z| < r_1$, provided that

$$|f'(z) - 1| = \left| \sum_{n=2}^{\infty} n a_n z^{n-1} \right|$$

$$\leq \sum_{n=2}^{\infty} n a_n |z|^{n-1} \leq 1 - \rho, \qquad (|z| < r_1; \ 0 \leq \rho < 1), \tag{5.2}$$

where r_1 is given by (5.1). But, by Theorem 2, (5.2) will be true if

$$\left(\frac{n}{1-\rho}\right)|z|^{n-1} \le \frac{\sigma_n(\alpha,k)}{1-\alpha},$$

that is, if

$$|z| \le \left\lceil \frac{\sigma_n(\alpha, k)(1-\rho)}{n(1-\alpha)} \right\rceil^{1/(n-1)} \quad (n \ge 2). \tag{5.3}$$

Theorem 7 follows easily from (5.3).

Theorem 8. Let the function $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. Then f(z) is starlike of order $\rho(0 \le \rho < 1)$ in $|z| < r_2$, where

$$r_2 = \inf_{n} \left[\frac{\sigma_n(\alpha, k)(1 - \rho)}{(n - \rho)(1 - \alpha)} \right]^{1/(n - 1)} \quad (n \ge 2).$$
 (5.4)

The result is sharp, with the external function f(z) given by (2.3).

Proof. It is sufficient to show that $\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \rho$ for $|z| < r_2$, where r_2 is given by (5.4). From (1.3) we find that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \frac{\sum_{n=2}^{\infty} (n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}.$$

Thus $\left| \frac{zf'(z)}{f(z)} - 1 \right| \le 1 - \rho$ if

$$\sum_{n=2}^{\infty} \left(\frac{n-\rho}{1-\rho} \right) a_n \left| z \right|^{n-1} \le 1 \tag{5.5}$$

But, by Theorem 2, (5.5) will be true if

$$\left(\frac{n-\rho}{1-\rho}\right)|z|^{n-1} \le \frac{\sigma_n(\alpha,k)}{1-\alpha}$$

that is, if

$$|z| \le \left[\frac{\sigma_n(\alpha, k)(1-\rho)}{(n-\rho)(1-\alpha)} \right]^{1/(n-1)} \quad (n \ge 2).$$
 (5.6)

Theorem 8 follows easily from (5.6).

Corollary 2. Let the function $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. Then f(z) is convex of order $\rho(0 \le \rho < 1)$ in $|z| < r_3$, where

$$r_3 = \inf_{n} \left[\frac{\sigma_n(\alpha, k)(1 - \rho)}{n(n - \rho)(1 - \alpha)} \right]^{1/(n - 1)} \quad (n \ge 2).$$
 (5.7)

The result is sharp, with the external function f(z) given by (2.3).

6. Integral Operators

Theorem 9. Let the functions f(z) defined by (1.3) be in the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$, and let c be real number such that c > -1. Then the function $F(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$, where

$$F(z) = \frac{c+1}{z^c} \int_{0}^{z} t^{c-1} f(t) dt$$
 (6.1)

Proof. From (6.1), it follows that

$$F(z) = z - \sum_{n=2}^{\infty} \left(\frac{c+1}{c+n}\right) a_n z^n.$$

Therefore,

$$\sum_{n=2}^{\infty} \left(\frac{\sigma_n(\alpha, k)}{1 - \alpha} \right) \left(\frac{c}{n + c + 1} \right) a_n \le \sum_{n=2}^{\infty} \left(\frac{\sigma_n(\alpha, k)}{1 - \alpha} \right) a_n \le 1$$

since $f(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. Hence, by Theorem 2, $F(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$

Theorem 10. Let the function $F(z) = z - \sum_{n=2}^{\infty} a_n z^n$ $(a_n \ge 0)$ be in the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$ and let c be a real number such that c > -1. Then the function given by (6.1) is univalent in $|z| < r_4$, where

$$r_4 = \inf_{n} \left[\frac{\sigma_n(\alpha, k)(c+1)}{n(c+n)|\beta|} \right]^{1/(n-1)} \qquad (n \ge 2).$$
 (6.2)

The result is sharp.

Proof. From (6.1), we have

$$f(z) = \frac{z^{1-c}(z^c F(z))'}{c+1} = z - \sum_{n=2}^{\infty} \left(\frac{c+n}{c+1}\right) a_n z^n.$$

In order to obtain the required result, it suffices to show that |f'(z) - 1| < 1 whenever $|z| < r_4$, where r_4 is given by (6.2). Now

$$|f'(z)-1| \le \sum_{n=0}^{\infty} n\left(\frac{c+n}{c+1}\right) a_n |z|^{n-1}.$$

Thus |f'(z) - 1| < 1 if

$$\sum_{n=2}^{\infty} n \left(\frac{c+n}{c+1} \right) a_n |z|^{n-1} < 1.$$
 (6.3)

But from Theorem 2, (6.3) will be satisfied if

$$\frac{n(c+n)}{c+1} |z|^{n-1} < \frac{\sigma_n(\alpha, k)}{1-\alpha},$$

that is, if

$$|z| \le \left[\frac{\sigma_n(\alpha, k)(c+1)}{n(c+n)(1-\alpha)}\right]^{1/(n-1)} \qquad (n \ge 2).$$

Therefore, f(z) is univalent in $|z| < r_4$.

The result is sharp for the function

$$f(z) = z - \frac{(c+n)(1-\alpha)}{\sigma_n(\alpha, k)(c+1)} z^n \qquad (n \ge 2).$$
 (6.4)

7. Modified Hadamard Product

Let the functions $f_i(z)$ (i = 1, 2) be defined by (4.1), then we define the modified Hadamard product of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) = z - \sum_{n=2}^{\infty} a_{n,1} a_{n,2} z^n.$$
(7.1)

Employing the technique used earlier by Schild and Silverman [10], we prove the following

Theorem 11. Let each of the functions $f_j(z)$ (j = 1, 2) defined by (4.1) be in the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. Let

$$\Delta(n) = \frac{(\sigma_n(\alpha, k))^2 - (1 - \alpha)^2 [(1 + k)\lambda_n - k\mu_n]}{(\sigma_n(\alpha, k))^2 - (1 - \alpha)^2 \mu_n},$$
(7.2)

If $\Delta(n)$ is an increasing function of $n(n \geq 2)$, then $(f_1 * f_2)(z) \in \mathcal{U}_{\mathcal{T}}(\Phi, \Psi, \gamma, k)$, for

$$\gamma = \frac{(\sigma_2(\alpha, k))^2 - (1 - \alpha)^2 [(1 + k)\lambda_2 - k\mu_2]}{(\sigma_2(\alpha, k))^2 - (1 - \alpha)^2 \mu_2}.$$
 (7.3)

The result is sharp.

Proof. We need to find the largest γ such that

$$\sum_{n=2}^{\infty} \frac{\sigma_n(\gamma, k)}{1 - \gamma} a_{n,1} a_{n,2} \le 1.$$

From Theorem 2, we have $\sum_{n=2}^{\infty} \frac{\sigma_n(\alpha,k)}{1-\alpha} a_{n,1} \leq 1$ and $\sum_{n=2}^{\infty} \frac{\sigma_n(\alpha,k)}{1-\alpha} a_{n,2} \leq 1$, by the Cauchy-Schwarz inequality, we have

$$\sum_{n=2}^{\infty} \frac{\sigma_n(\alpha, k)}{1 - \alpha} \sqrt{a_{n,1} a_{n,2}} \le 1.$$

Thus it is sufficient to show that

$$\frac{\sigma_n(\gamma, k)}{1 - \gamma} a_{n,1} a_{n,2} \le \frac{\sigma_n(\alpha, k)}{1 - \alpha} \sqrt{a_{n,1} a_{n,2}}, \qquad (n \ge 2)$$

that is, that

$$\sqrt{a_{n,1}a_{n,2}} \le \frac{\sigma_n(\alpha, k)(1 - \gamma)}{\sigma_n(\gamma, k)(1 - \alpha)} \qquad (n \ge 2).$$

Note that

$$\sqrt{a_{n,1}a_{n,2}} \le \frac{1-\alpha}{\sigma_n(\alpha,k)}$$
 $(n \ge 2).$

Consequently, we need only to prove that

$$\frac{1-\alpha}{\sigma_n(\alpha,k)} \le \frac{\sigma_n(\alpha,k)(1-\gamma)}{\sigma_n(\gamma,k)(1-\alpha)} \qquad (n \ge 2)$$

or, equivalently

$$\gamma \le \frac{(\sigma_n(\alpha, k))^2 - (1 - \alpha)^2 [(1 + k)\lambda_n - k\mu_n]}{(\sigma_n(\alpha, k))^2 - (1 - \alpha)^2 \mu_n} = \Delta(n)$$
(7.4)

Since $\Delta(n)$ is an increasing function of $n(n \geq 2)$, letting n = 2 in (7.4), we obtain

$$\gamma \le \Delta(2) = \frac{(\sigma_2(\alpha, k))^2 - (1 - \alpha)^2 [(1 + k)\lambda_2 - k\mu_2]}{(\sigma_2(\alpha, k))^2 - (1 - \alpha)^2 \mu_2},$$

which proves the main assertion of Theorem 12.

Finally, by taking the functions

$$f_j(z) = z - \frac{1 - \alpha}{\sigma_2(\alpha, k)} z^2$$
 $(j = 1, 2)$ (7.5)

we can see the result is sharp.

Theorem 12. Let each of the functions $f_j(z)$ (j = 1, 2) defined by (4.1) be in the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \alpha, k)$. Let

$$\Omega(n) = \frac{\frac{1}{2}(\sigma_n(\alpha, k))^2 - [(1+k)\lambda_n - k\mu_n](1-\alpha)^2}{\frac{1}{2}(\sigma_n(\alpha, k))^2 - \mu_n(1-\alpha)^2},$$
(7.6)

If $\Omega(n)$ is an increasing function of $n(n \geq 2)$, then the function

$$h(z) = z - \sum_{n=2}^{\infty} (a_{n,1}^2 + a_{n,2}^2) z^n$$
 (7.7)

belongs to the class $\mathcal{U}_{\mathcal{T}}(\Phi, \Psi; \tau, k)$, where

$$\tau = \frac{\frac{1}{2}(\sigma_2(\alpha, k))^2 - [(1+k)\lambda_2 - k\mu_2](1-\alpha)^2}{\frac{1}{2}(\sigma_2(\alpha, k))^2 - \mu_2(1-\alpha)^2}.$$
 (7.8)

The result is sharp for the functions $f_j(z)$ (j = 1, 2) defined by (7.5).

Proof. From Theorem 1, we have

$$\sum_{n=2}^{\infty} \left[\frac{\sigma_n(\alpha, k)}{1 - \alpha} \right]^2 a_{n,1}^2 \le \sum_{n=2}^{\infty} \left[\frac{\sigma_n(\alpha, k)}{1 - \alpha} a_{n,1} \right]^2 \le 1$$
 (7.9)

and

$$\sum_{n=2}^{\infty} \left[\frac{\sigma_n(\alpha, \beta)}{1 - \alpha} \right]^2 a_{n,2}^2 \le \sum_{k=2}^{\infty} \left[\frac{\sigma_n(\alpha, \beta)}{1 - \alpha} a_{n,2} \right]^2 \le 1.$$
 (7.10)

It follows from (7.9) and (7.10) that

$$\sum_{k=2}^{\infty} \frac{1}{2} \left[\frac{\sigma_n(\alpha, k)}{1 - \alpha} \right]^2 (a_{n,1}^2 + a_{n,2}^2) \le 1$$

Therefore, we need to find the largest τ such that

$$\frac{\sigma_n(\tau, k)}{1 - \tau} \le \frac{1}{2} \left[\frac{\sigma_n(\alpha, k)}{1 - \alpha} \right]^2 \qquad (n \ge 2)$$

that is,

$$\tau \le \frac{\frac{1}{2}(\sigma_n(\alpha, k))^2 - [(1+k)\lambda_n - k\mu_n](1-\alpha)^2}{\frac{1}{2}(\sigma_n(\alpha, k))^2 - \mu_n(1-\alpha)^2} = \Omega(n).$$

Since $\Omega(n)$ is an increasing function of $n(n \ge 2)$, we readily have

$$\tau \le \Omega(2) = \frac{\frac{1}{2}(\sigma_2(\alpha, k))^2 - [(1+k)\lambda_2 - k\mu_2](1-\alpha)^2}{\frac{1}{2}(\sigma_2(\alpha, k))^2 - \mu_2(1-\alpha)^2}.$$

Hence the result.

References

 S. Kanas and A. Wisniowska, Conic domains and k-starlike functions, Rev. Roumaine Math. Pures Appl. 45(2000), 647-657.

- [2] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. App. Math. 105 (1999), 327-336.
- [3] S. Kanas and H.M. Srivastava, *Linear operators associated with k-uniformly convex functions*, Integral Transform. Spec. Funct. **9** (2000), 121-132.
- [4] A. Gangadharan, T.N. Shanmugan and H.M. Srivastava, Generalized hypergeometric functions associated with k-uniformaly convex functions, Comput. Math. App. 44 (2002), 1515-1526.
- [5] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
- [6] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370
- [7] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), 165-175.
- [8] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993),189-196.
- [9] F. Rønning, On starlike functions associated with parabolic regions, Ann Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122.
- [10] A. Schild and Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Scklodowska Sect. A 29 (1975), 99-107.

Department of Mathematics, Al al-Bayt University, P.O.Box: 130095 Mafraq, Jordan. E-mail: bafrasin@yahoo.com