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COMPREHENSIVE FAMILY OF UNIFORMLY ANALYTIC
FUNCTIONS

B. A. FRASIN

Abstract. We introduce the subclass U7 (P, ¥; o, 3) of analytic functions with negative coeffi-
cients. Coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity,
starlikeness, and convexity for functions belonging to the class U7 (P, ¥; a, 3) are obtained. We
also determine integral operators for functions in this class and some properties involving mod-

ified Hadamard products of several functions belonging to the class U3 (®, ¥, a, 3).

1. Introduction and Definitions

Let A denote the class of functions of the form :

z):erZanz" (1.1)
n=2

which are analytic in the open unit disc A={z:|z| < 1}. Further, let S denote the
subclass of A consisting of univalent functions in A. We define the family U(®, ¥; o, k)
consisting of the functions f € A so that

R[S 1O ey

where —1 < a <1,k >0, ®(z )—z—l—Z)\ 2" and ¥(z) =z 4+ Y, pn,2™ are analytic in
n=2

A with the conditions A\, > 0, u, > 0, )\ > tp form > 2, and f(z) * U(z) # 0.
The operator “x” stands for the Hadamard product or convolution of two power series

f(z)=2z+ Zanz and g(z )—Z—i—chz given by f(z) * ()-z—i—Zancnz

The famlly U(P,T;a,k) is of spe01a1 interest because it reduces to various classes of
well-known functions as well as many new ones. For example

u <ﬁ ﬁ;o,k) = k—ST = Re <Z}f;§)> >k
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and

z+ 22 z B zf"(2) z2f"(2)

U <(1 o —z)Q’O’k) =k—UCV =Re <1+ 70 > >k |
are, respectively, the subclasses of S consisting of functions which are k- starlike and
k-uniformly convex in A introduced by Kanas and Winsiowska [1, 2]( see also the work
of Kanas and Srivastava [3] and Gangadharan et al.[4]). In particular, when k& = 1, we
obtain 1-87 = SP and 1-UCY = UCV, where SP and UCYV are the familiar classes of
uniformly convex functions and parabolic starlike functions in A, respectively (see, for
details, [5-8]). Another subclass is the subclass

z+2° z ) ( 2f" (= )) 2f"(z)
Uu =, ;a1 | =UCV(a) =Re |1+ —a>k )
(s @ ) 72
of uniformly convex functions of order o which is defined by Rgnning [9].
Let 7 denotes the subclass of S consisting of functions of the form:
z)=1z— Z anz" (an > 0) (1.3)
n=2
Further, let
Ur(®,V50,0) = U®,V,0,0)N T (1.4)

In the present paper, we prove various coefficient inequalities, distortion theorems,
closure theorems, radii of close-to-convexity, starlikeness, and convexity for functions be-
longing to the class Uz (P, ¥; o, k). We also determine some properties involving modified
Hadamard products and integral operator of several functions in this class.

2. Coefficient Inequalities
Theorem 1. Given a(l <a <1),k>0. If

oo
Z [(1+E)An — (a4 k) pin] Jan] <1 —a (2.1)
n=

then f(z) e U(D, T; o, k).
Proof. It suffices to show that

[ 0() | [FE)() »
o) 4 R‘{ﬂ@*ww> 1}§1
We have
(2) x ®(2) Re fR)*x2(2) ®(2)
fz*ww> 4 R’{ﬂ@*ww>'% 1+k‘f (2) 4
L48) S = pin) anl 2] (L4 5) 3 (O — i) [
S n=2 S n

=2
oo n o0
= 2 pnfan 2] L= 3 pnan

n=2 n=2
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The last expression is bounded above by 1 — « if

oo

DI+ kA — (a+ k)ua] lan] < (1 - a)

n=2
which is equivalent to (2.1).
Now we prove that the condition (2.1) is also necessary for f(z) € Uz (P, V; o, k).
Theorem 2. f(z) eUr (P, ¥, a,k) fora(-1<a<l)andk >0, iff

oo

DI+ k) = (@ + k)pmlan <1-a. (2.2)

n=2
The result (2.2) is sharp.

Proof. In view of Theorem 1, we need only to prove the necessity. Let f(z) €
Ur (P, P;, k) and z is real then

o0 o0
1— 3 Apagz™t 1— > (A — pin)anz™t
n=2 —a> n=2

o0 o0
1= > ppapznt 1— > ppapzn—1
n=2 n=2

Letting z — 1 along the real axis, we obtain the inequality (2.2).
The result (2.2) is sharp for the function

l1-«a n
&= = @ w2 23

For the notational convenience we shall henceforth denote

on(a, k) = (1 + k)N, — (@4 k)pn (n >2). (2.4)

3. Growth and Distortion Theorems

Theorem 3. Let the function f(z) € Ur(®,V;a.k). If {on(a, k)} oy is a non-
decreasing sequence, then, for |z| =r <1

11—«
02(a7k)

1-a » (3.1)

SEUCIE P

r—
and if {on (o, k)/n}," 4is a non-decreasing sequence, then, for |z| =r <1

7))7’ <|f'(2)| <14+ —=r. (3.2)
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The results (3.1) and (3.2) are sharp for the function f(z) given

l—a 4

fz)=2z—- mz (z = +r). (3.3)

Proof. In view of Theorem 2, we note that oa(a, k) > an < Y op(a,k)a, <1—a
n=2

n=2
Thus
l1-a
2 2
1£(2)] > |2] - ZanIZI >r—r Zan_ el (3.4)
Similarly,
n 2 — 2
IFEI< 21+ anlz" <r+7r Zan§7"+a2(a7k)r. (3.5)
n=2 n=2
Also from Theorem 2, we have 02(3’6) > nan < Y nop(a, B)a, <1—a . Thus
n=2 n=2

n—1 170‘)
|>1—Znan|z| >1—r2nan21 (o) k)

On the other hand,

FEI=1 +§:”an 2" < 1+T§:nan <20z
- a - oa(a, k)

n=2
This completes the proof.

Corollary 1. The disk |z| < 1 is mapped onto a domain that contains the disk

lw| < % by any f(z) € Ur (D, V;a, k). The theorem is sharp with extermal

function f(z) given by (3.3).

Proof. The proof follow upon letting » — 1 in (3.1).

4. Closure Theorems

In this section, we shall prove that the class Uz (P, U;a, k) is closed under convex
linear combinations.

Theorem 4. Let the function f;(z), i =1,2,...,m, defined by

z)=2z— Z Q2" (an,; > 0) (4.1)
n=2
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for z € A, be in the class Ur (P, ¥; o, k). Then the function h(z) defined by

h(z)=z— Z (% Zami) z" (4.2)

also belongs to the class Ur (P, U, a, k).

Proof. Let f;(z) € Ur (P, ¥; o, k),it follows from Theorem 2 that

(o)
Zan(a,k)an,i <l-« (i=1,2,...,m). (4.3)
n=2
Therefore,
i on(a, k) <i ian ) (4.4)
K m : 9
n=2 i=1

[
S=
1

<§: on(a, k;)an,l) <1-a. (4.5)

1 \n=2

Hence by Theorem 2, h(z) € Uz (P, T; o, k).
With the aid of Theorem 2, we can prove the following

Theorem 5. Let the functions f;(z) be defined by (4.1) be in the class Ur (P, ¥, a, k)

for everyi=1,2,... m. Then the functions
m
h(z) = cifi(z) (¢ =0) (4.6)

i=1

m
is also in the same class Ur (P, U, «, k) where Y ¢; = 1.
i=1

Theorem 6. Let f1(z) = z and

l—a
fa(z)=2— mz (n>2). (4.7

Then f(z) € Ur (P, ¥;a, k) if and only if it can be expressed in the form:

F(2) =) 0nfa(2) (4.8)

where

0n >0 (n>1)and Z5n:1~

n=1
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Proof. Assume that

o

1- n
Zénfn _Z—ZWJ‘MW .

n=2

Then it follows that

L on(,k) 1—a
. = =1- <
> — o) On Zan 1—-6, <1.

n=2 Jn( n=2

So by Theorem 1, f(z) € Ur (P, ¥; a, k).
Conversely, assume that the function f(z) € Ur (P, ¥; o, k). Then

l—«
n< — > 2).
¢ _Un(a7k) (n22)
Setting
on(a, k
=00 z)
and
o0
Sr=1- 6y
n=2

we can see that f(z) can be expressed in the form (4.8). This completes the proof of the
Theorem 6.

5. Radii of Close-to-convexity, Starlikeness and Convexity

Theorem 7. Let the function f(z) € Ur (P, ¥;a, k). Then f(z) is close-to-convex of
order p(0 < p < 1) in |z| < r1, where

=in M 1/(n-1) )
ry = nf [ n(l — ) } (n>2). 51)

The result is sharp, the extermal function f(z) being given by (2.3).

Proof. Let f(z) € Ur(®,T;a, k), then the function f(z) defined by (1.3) is close-to-
convex of order p in |z| < r1, provided that

E nanpz
n=2
o0

< Znan 2" < 1—p, (lz2| <r1; 0< p< 1), (5.2)
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where 7, is given by (5.1). But, by Theorem 2, (5.2) will be true if
n |z|"_1 < Un(oz,k:),
1—0p 1l-«a

2] < [%Tﬂn—u

Theorem 7 follows easily from (5.3).

that is, if

(n>2). (5.3)

Theorem 8. Let the function f(z) € Ur(®,V;a, k). Then f(z) is starlike of order
p(0 < p <1)in |z| < rq, where

The result is sharp, with the extermal function f(z) given by (2.3).

To = inf
n

(n >2). (5.4)

ZJ{;S) - 1‘ < 1-—pfor |z| < ry, where 7y is given

Proof. It is sufficient to show that
by (5.4). From (1.3) we find that

& . n—1
JCRNE o e
f(Z) - 1— § an|z|n71
n=2

Thus

zf'(2) :
) —1‘ <1l-—pif

(oo} n—
> (—”) a2 <1 (5.5)
I—p
n=2
But, by Theorem 2, (5.5) will be true if
(n - P) |Z|n—1 < on(a k)
1—p 1-«a
that is, if

1/(n—1)
[M} (n>2). (5.6)

(n—p)(1—a)
Theorem 8 follows easily from (5.6).

Corollary 2. Let the function f(z) € Ur (D, ¥;a, k). Then f(z) is convex of order
p(0 < p<1)inl|z| < rs, where

[ an(a, k)(1 = p) ] YD

= - =)

n

(n>2). (5.7)



250 B. A. FRASIN
The result is sharp, with the extermal function f(z) given by (2.3).

6. Integral Operators

Theorem 9. Let the functions f(z) defined by (1.3) be in the class Ur (P, ;o k),
and let ¢ be real number such that ¢ > —1. Then the function F(z) € Ur (D, T;a, k),
where

F(z) = c“/tc ()t (6.1)

z¢
0

Proof. From (6.1), it follows that

5 (e

n=2

\_/

Therefore,

S (520) (i) m = o (B s

n=2

since f(z) € Ur (P, ¥; o, k). Hence, by Theorem 2, F(z) € Ur (P, ¥; a, k)

Theorem 10. Let the function F(z) = Z 2" (an > 0) be in the class

Ur (P, T;a, k) and let ¢ be a real number such that c > —1. Then the function given by
(6.1) is univalent in |z| < ra, where

a_n(a, k)(c n 1):| 1/(n—1)

e :i“f[ n(ct n) 10

n

(n>2). (6.2)

The result is sharp.

Proof. From (6.1), we have

- R () e

In order to obtain the required result, it suffices to show that |f/(z) — 1| < 1 whenever
|z| < 74, where 74 is given by (6.2). Now

If'(z) —1] < Zn (Zi?) an |Z|n—1

n=2

Thus |f'(z) — 1] < 1 if

- c+n n—1
n L. .
Zn<c+1)a |z < (6.3)

n=2
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But from Theorem 2, (6.3) will be satisfied if

n(c+n)
c+1

Un(avk)
1—a’

|Z|n71 <

that is, if

an<a,k><c+1>r/‘"‘” (n>2).

<
2l < [n(c +n)(1—a)
Therefore, f(z) is univalent in |z| < r4.

The result is sharp for the function

_, letnl-o) ,
O R[S (n > 2). (6.4)

7. Modified Hadamard Product

Let the functions f;(z) (i = 1,2) be defined by (4.1), then we define the modified
Hadamard product of f1(z) and f2(z) by

oo
(f1 = f2)(2) :Z_Zan,lan,2zn- (7.1)
n=2
Employing the technique used earlier by Schild and Silverman [10], we prove the

following

Theorem 11. Let each of the functions fj(z) (j = 1,2) defined by (4.1) be in the
class Ur (P, U; a, k). Let

(on(e k) = (1 = @)?[(1 + k) An — kptn]
(on (e, k))? = (1 — @) pn ’

If A(n) is an increasing function of n(n > 2), then (f1 x f2)(z) € Ur (P, ¥, ~, k), for

A(n) = (7.2)

(o2 k)2 — (1 — )?[(1+ k)As — kpo]
T (02(a, 1) — (1 —a)’na : (7.3)

The result is sharp.

Proof. We need to find the largest v such that

0o

k

Z Jn(ﬁy, )an,lan,2 S 1.
1=y

n=2
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oo oo

From Theorem 2, we have > %a(;k)an,l <1land Y %a&k)an,g < 1, by the Cauchy-
n=2 n=2

Schwarz inequality, we have

2. on(ao, k)
Z ﬁ\/an,lanﬁ <1l

n=2
Thus it is sufficient to show that

on(7, k on(a, k
1(2/7)0%,10%,2 § %OK)V Un,10n,2, (n Z 2)

that is, that

Note that
1l -«

VOn 10n2 < 7(%(0[’@ (n>2).

Consequently, we need only to prove that

11—« < O'n(avk)(lfﬁy)
on(ayk) = on(y, k) (1 — )

(n=2)

or, equivalently

< (on(@k))? = (1= a)*[(1 + k)An — kpn]
- (on (@, k))? = (1 — )2 pin

= A(n) (7.4)

Since A(n) is an increasing function of n(n > 2), letting n = 2 in (7.4), we obtain

_ (o2(a, k))? = (1 = a)?[(1 + k)Ag — kpso]
TSR T e U aP

which proves the main assertion of Theorem 12.

Finally, by taking the functions
(j=12) (7.5)

we can see the result is sharp.

Theorem 12. Let each of the functions fj(z) (j = 1,2) defined by (4.1) be in the
class Ur (D, U; a, k). Let

3(0n(a, k))® — [(1+ k)An — kpa](1 — )

Ton@ k)P —mm—aP

Q(n) = (7.6)
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If Q(n) is an increasing function of n(n > 2), then the function

o

= Z 1t an )2

n=2

belongs to the class Ur (P, V; T, k), where

_ 3020, k) = [(1+ k)Az — kus](1 - a)
5(o2(a, k))? — pa(1 — a)?

The result is sharp for the functions fj(z) (j = 1,2) defined by (7.5).

Proof. From Theorem 1, we have
= on(a, k) ? 2 = on(a, k) ?
S| Heh] w, <y (B, <
n=2
and
5 [ente.5) P 3 [enle0), ‘o
—l l-a n2 = l—a ™ =7
It follows from (7.9) and (7.10) that
00 2
Zl [M} (a2, +a2,) <1

2 1 —«
k=2

Therefore, we need to find the largest 7 such that

ou(r.k) _ 1 {on(a,k)r

-7 72| 1-«a

(n=>2)

that is,
3(0n(a, k))® — [(1+ k) An — kpal(1 — a)?

3(0n (0, k))? = pin (1 — a)?

Since Q(n) is an increasing function of n(n > 2),we readily have

3(02(0, 1))* — [(1+ k) Ao — kpsa] (1 — )
3(02(a, k) — a1~ a)? |

T < ZQ(TL)

T<Q2) =

Hence the result.
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