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ON SECOND- ORDER SYMMETRIC DUALITY FOR A CLASS OF
MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEM

DEO BRAT OJHA

Abstract. This article is concerned with a pair of second-order symmetric duals in the
context of non-differentiable multiobjective fractional programming problems. We es-
tablish the weak and strong duality theorems for the new pair of dual models. Discussion
on some special cases shows that results in this paper extend previous work in this area.

1. Introduction

Symmetric duality in non-linear programming was introduced by Dorn [11], who de-
fined a mathematical programming problem in which the dual of the dual is primal. Sub-
sequently, Dantzig, Eisenberg and Cottle [10] and Mond [19] formulated a pair of symmetric
dual programs for scalar function f(x, y) that is convex in the first variable and is concave in
the second variable. then Weir and Mond [27] give another different pair of symmetric dual
non-linear programs in which a weaker convexity assumptions was imposed on f. Chandra,
Craven and Mond [6] formulated a pair of symmetric dual fractional programs with certain
convexity hypothesis. Weir and Mond discuused symmetric duality in multiobjective pro-
gramming, Weir presented a pair of symmetric dual multiobjective fractional programming
problems and proved symmetric duality theorems under convexity and concavity assump-
tions. Recently, Yang, Wang and Deng [28] presented symmetric duality for a class of mul-
tiobjective fractional programming problem in first order. On the other hand , Mond [19],
Bector and Chandra [3], studied second order primal and dual non-linear programs. Later
on, Wang [25], generalized the results of Bector and Chandra [3] to non-linear programs in-
volving second order pseudo-convex functions. Then Mond and Schechter [21] constructed
two new symmetric dual pairs in which the objectives contain a support function and are
therefore non-differentiable .Then Hou and Yang[14] presented second order symmetric du-
ality in non-differentiable programming in which objectives contain a support function and
are therefore non-differentiable. In this paper we are motivated to extend the work of Yang,
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Wang and Deng [28] in the light of Hou and Yang [14] multiobjective fractional program-
ming with symmetric duality in second-order. For more details interested reader may consult
1,2,5,8,9,12,13, 15, 16, 17, 18, 20, 22, 24, 26].

2. Notations and preliminaries

The following conventions for vectors in Rn will be used :

x>yifandonlyif x; > y;, i=1,2,...,n;
x=2yifandonlyifx; =2 y;, i=1,2,...,nm;

xzyifandonlyifx;=zy;, i=12,...,n;

let f(x, y) be a real-valued continuously twice differentiable function defined on an open set
in R" x R™ — R. Let V f(x,y) and V, f (x, y) denote gradient (column) vectors of f with re-
spect to x and y respectively and V,, f and V,, f denote (m x m) and (m x n) matrices of

second order partial derivatives respectively.

If f is a twice differentiable function from R" x R"™ — Ry, then V, f(x, y) and vV, f(x,y)
denote respectively the (n x k) and (m x k) matrices of first - order partial derivatives.

Definition 2.1. Let C be a compact convex set in R", the support function of C is defined by

S(x/C) =Max.{x’ y,ye C}.

Definitions 2.2. Let D be a nonempty convex set in R”, and let f: D — R be convex. Then z
is called subgradient of f at u€ D if f(x) = f(u) +z” (x— u) for all x € D.

A support function, being convex and everywhere finite has a subdifferential in the sense
of convex analysis, that is there exist z such that

S(y/C)=S(x/C) + 2zt (y-x),
for all x € C. The set of all subdifferential S(x/C) is given by
0S(x/C) ={z€ C:z"x=S(x/C)}.
For a set S, the normal cone to S at a point x € S is defined by
Ns(x)={y: yT(z— x)<0forall z€ S}.

Where C is a compact convex set, y is in N¢(x) if and only if S(y/C) = x” y i.e., x is a subdif-
ferential of S at y.
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Consider the following multiobjective programming problem

Min f(x) subjectto x€ X - - - --- - - - (P) Where f:R" — R¥ and x < R™.

Definition 2.3. (a) A feasible point xj is said to be an efficient solution of (P) if for any feasible
X.
filxo) = filx) foralli=1,2,...,k, and x € X = fi(x) = fi(x) foralli=1,2,..., k.

(b) A feasible point x is said to be properly efficient [14] if it is an efficient solution of (P) and
if there exist a scalar M > 0 such that for all i, j, fi(xo) — fi(x) < M(f;(x0) — fj(x)) for some j
such that f;j(x) > fj(xo), whenever x is feasible for (P) and f;(x) < f;(xo).

(c) A feasible point xg is said to be weak efficient solution of (P) [14] if there exist no other

feasible point x for which f(xg) > f(x).

If a feasible point x is efficient solution then it is clear that it is also a weak efficient
solution.
Definition 2.4. Letn: C x C — R (a, b, p, q are defined on same as 1))

(a) A differentiable function ¢ defined on set C < R" is said to be invex in second- order with
respectton at u e C [14] if p(x) —p(w) + 347 VuupW) g = n(x, w) T [V, (1) + V 4y () p] for
allxeC.

If —¢ is invex in second-order with respect to n at u € C, then ¢ is said to be incave in second
- order with respectton at u e C.

(b) A differentiable function ¢ defined on set C < R" is said to be pseudo- invex in second

order with respect ton at u € C [14] ifforall x € C,

1
n(x, T (Vo) + V@) pl = 0= @(x) = ¢(u) - 54, W Vel qx, w).

If —¢ is pseudo-invex in second-order with respect to i at u € C, then ¢ is said to be pseudo -
incave in second - order with respectton at u € C.

3. Symmetric duality
Consider the following pair of symmetric dual problems.
Primal (FP):

(fitx, )+ S(x/C) = yT 21— 3a [Vyy fi(x, )] @)
(g1, 1) = SCX/ED) + yTr + 36TV g1 (x, 1)
(fieC6, )+ Sx/Cr) = yT 2 = 3a” [V fie(x, )] @)
(8k(x, y) = SCx/E) + y i+ 30T [V, g1 (x, )1D)

Minimize
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In order to simplify the notation, we introduce

,_ Fitoy) _ [ Uity +S&iC) ~y'zi-3a IV, filx, p)la)
Gi(x,y) | (8i(x,y)—S(x/E)) +yTri+3bT[V,,gi(x,y)b)
_ Fi(u,v) _{(ﬁ(u, v) = Sw/Dy) +u' wi —5p" Vuufi(u, v)]p)}

C Gilu,v) (gi(u, v)+S(v/H,-)—uTti+%qT[Vuugi(u, lq)
(MFP)
Min. I = (I3, L, ..., L) T (1
Subject to
(Fi(x,y)=1;Gi(x,y) =0 2)
k
Y AilVy(Fi(x, ) = LiGi(x, ) = 2i + V (Fi(x, y) = ;G (x, y))] < 0 ©)
i=1
k
YUY AV (Fi(x, ) = LiGi(x, 1)) = zi + YV (Fi(x, ) = 1;Gi (x, )] = 0 @)
i=1
zieDj,r;eF;, 1<i<k 5)
A>0, ATe=1,x=0 (6)
(MFD)
Maximize L = (Ly, Ly, ..., L) @)
Subject to
(Fi(u,v) - L;G;(u,v)) =0 (8)
k
Z AilVy(Fi(u,v) = LiGi(u, v)) + w; + Vy, (Fi(u, v) = L; G (1, v))] 2 0 9)
i=1
k
u Y Ai[Vu(Fi(u,v) = LiGi (1, ) + w; + Vo (Fi (1, v) = LGy (1, )] < 0 (10)
i=1
w;eCi,tieE;, 1<i<k an
A>0, ATe=1,v>0 (12)

Where e(1,1,1,...,1)T € R¥; F;,G; (i = 1,2,..., k) are thrice differentiable function from R" x
R™toR,C;,E; (i=1,2,...,k) are compact convex sets in R” and D;, H; (i = 1,2,..., k) are com-
pact convex sets in R". It is assumed through that in the feasible regions the denominator of

the objective function is nonnegative and the numerator is positive.

Now we can prove weak and strong duality theorems for (MFP) and (MFD).

Theorem 3.1.(Weak Duality)



A CLASS OF MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEM

Let (x,y,A,21,22,...,2k,T1,T2,..., k) be feasible to (MFP) and let (u, v, A, wy, wo, ..

f, b,..., ;) be feasible to (MFD). Let

AilfiG )+ O wi = Li(gi ¢ v) - O )]

M=

i=1

be second-order pseudoinvex with respect to n; at u and

M=

Ailfix,) =Tz = Li(gi(x, )+ O T )]
i=1

be second- order pseudoincave with respect to 1, at y. If

mx,u)+u=0andn.(v,y)+y=0thenl; £ L;.

Proof. From 71 (x, u) + u = 0, and (10) we have

k
mew" Y A Vu(Fi(u, v) = LiGi(u, v) + w; + Vo (Fi (u, v) = LiGi (1, )] = 0.
i=1

Second- order pseudoinvexity with respect to 7 at u of (13), it follows that

k
Y Ailfie, v) + ()T wi = Li(gi(x, v) + S(w/ Hy) — ()" 1;)]
i=1

L 1
2 Y Ai fitw,v)+ @0 wi= 2 p" Vuulfitu, vl p
i=1

1
~Li(gi(u,v) + S/ H) - @) 1 - 5" Vuulgi(w, v)i)]

k
= Y Ailfie, v) = SW/Dy) + ()" wi — Li(gi(x, v) + S(w/ Hy) — ()" £:)] = 0.
i=1

Since x” w; < S(x/C;), w; € C; (1<i<k),by(11) and (16), we have
k
Y Ailfi(x,v) + S(x/C;) — S(v/D;) - Li(gi(x,v) + S(v/ Hy) - @ t)1=0.
i=1

From
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o W,

(13)

(14)

(15)

(16)

a7

1
xTSS(x/Ei); t,€E;, vTrisS(v/Hi), ri€ H;, fi(u, v)—S(v/Di)+uTwi—EpT[Vuufi(u, V)p=0,

and )
(gi(u,v) +S(w/Hy) —u’ t; + EqT[vuug,-(u, 1)1q) =0,

by (17), we obtain

Ailfi(x,v) + S(x/C;) — S(vID;) - Li(gi (x,v) = S(x/E;) — (1) T r)] = 0.

k
=1

1

(18)
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By (3), 4) and n2(v, ¥) + ¥y = 0, we have

k
2, MY AilVy(Fi(x,y) = LiGi(x, ¥)) — 2i + Vyy (Fi(x, ) = 1; G (x, )] < 0.
i=1

Second- order pseudoincavity with respect to 1), at y of (14), it follows that

k
Y Ailfite,v) = )"z = 1i(gi (x, v) = S(x/E) + () 1]
i=1

k 1
< YA [fi(x,y) -z EaTVyyfi(x,y)a
i=1

1
~1i(gi 6, ) = S/ E) = (1) ri = 57V 1, )b
k

= Y Ailfilx, v) + S(x/Cy) — ()" zi = 1;(gi(x, v) = S(x/E) + () T )] < 0.
i=1

Since vTz; < S(v/D;), Zie D; 1 <i<k)and by (20), we obtain

k

Z )Li[fi(x, V) +S(x/Cl~) = S(U/Di) = li(gl-(x, V) — S(x/E,-) + (U)Tri)] <0.
i=1

Combining (18) and (21), we have
k
> Ailli— Lil(gi(x,v) = S(x, E) + () ) = 0.
i=1

Since A >0 and (g;(x, v) — S(x, E;) + WTr)>03G=1,2,...,k), (22) implies

(fitx, )+ S(xIC) = yTz1) - 3a” [V, fi(x, y)la

(g1(x, ) = S(x/ED) +yTr) + 36T [V, g1 (x, 10
(fe(x, )+ Sx/C) =y z1) = 3aT [V fi(x, a
(8k(x, ) = S(x/Ep) + yTri) + 3BTV 81 (x, )1b

_ (Yitw,v) = SwiDy + u wi) = 3p" Vuufilu, v)lp
(g1, )+ SW/H) —uT 1)+ 34T [Vuugiw, v)lg

(fie(u, v) = S(WIDK) + u wi) = 3 p [V fi (w, v)1p
(8, v) + S/ HY) — uT 1) + 347 [Vyugi(w, v)1q )

(19)

(20)

21)

(22)

(23)

Theorem. (Strong Duality) Let (x', y', 1/, 2}, 2}, ..., Z;C) be a properly efficient solution to (FP) and
fix A = A in (FD). Suppose that all the condition in Theorem 3.1 are satisfied, furthermore

assume that

B v f.(x/,y/)_z.
’ WO N yJt !
@M ;Ai{vyyfl(x’y) [(gi(x’,y’)—S(x’/Ei)+yTrz/')
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-( (Vy&i, ¥+ (i, y) + S('1Ci) - y,TZ;))
(8i (', ) = SGEp) +y' T r))?

fi, Y +Sic) -y Tz,
[ T ,]( yygz(x .V))}

(Vygi(x, ¥ +r)T

g, y)=-SX'/E)+y
is positive or negative definite.

filx, ¥V +S(x'1Cy) -y
gi(x', y’)—S(x’/E)+y’T !

an {(vyfi(x/,y/)— - [ ]( L8,y )+ i=1,2,. k}

is linearly independent.

Then there exist w;. € R", t; €R™, i=1.2,...,k suchthat (x',y', ', w}, ws,..., w;c, oty t;c) is
a properly efficient solution of (FD).

Proof. Since (x',y, 1, z},2,... zk,rl, Ty ;C) be a properly efficient solution to (FP), it is
weak minimum of (FP). Hence, there exist a,f,s,u€ Rk, neR, w;. € R", and t; €ER™ (i =
1,2,...,k) such that following Fritz-John optimality condition [23] is satisfied at (x',y’, A/,

! ! Iy.
zl,zz,...,zk),

(i, ¥+ S 1C) -y " 2)

(8i(x',y) = S('IE) +y'Tr))
Vifilx',y) - w;

g,y -S(X'/E))+y

i|Vefitx, )+ wi— (Vegi(x', ¥y — 1)

k
Y a
iz

k
+(B _/vty,)T Z A/l‘{vyxfi(x,,y,)
i=1

1Tyl
_(ngi(xl,y/) - tl/)(ﬁ(x/’y/) +S(x /Cl) _le /)
(8i(x', ¥ = S/ IE) +y'Trl)?

AW Y +SWIC) - vz,
/T/ xygz(x )/)_S]}

Vg, Yy +r)T

gi(x',y)-S(X'/E))+y

+Vx{ Y A
i=1

_((Vygi(x’,y’)+r,f)(fi(x’,y’)+8(x’/C,-)— ’Tz;))
(gi(x,y) =S/ Ep) + y' Trl)?
[fi (', y) +S(x'1C) — y' T 2]

g,y - S(E)+y'Tr 1

Vyfi(x/; y/) —Zj )

Vi 3 /, N
J’J’fl(x J/) (gi(x’,y’)—S(x’/EiHyTr’

Vygix, ¥+’

v yygl(x J/))(a+b)}

1
[,B—Ea(c'H b)—pj/] =s (24)
i€ E;, wieCi, Yiell,2,..., k} (25)

Tos//E), X Tw,=S&1C), Vie(,2,... K (26)
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‘ (i, Y+ S 1C) -y T 2)
/ 1 / . ,
i:Zl(ai—uAi) VY ) = i e TS E %y T S Vrgit )+

Vy_fl(xl yl)_zl
g, y) =S IE)+y'"r!

_ k
i=1

(Vygi (', ¥+ (fi (', y) + S('1C) - y' T 2))
) (&, ) = S 1E) + y Ty

[f; (&, YN+ 81 C) =y 2]

&,y = SCTE) +y T

“‘Vy{ > A
izl

(Vygi(x, ¥+ (fi (', y) + S('1C) - y' ' 2))
g (g, y) - SO TEp) + y' T )2 )
iy +swICh - vzl
[gl(x y’)—S(x’/E)+y’T ]

(Vygi(x, ¥ +r)T

yygi (x, y’)}

Vyfi(xl,y/)—zi )
gi(x,y) = SW'IE)+yTr]

vyyfi (-xl; y/) - (

Vg, Yy +r)T

(V yygl(x y))(a+b)}

[,B—Ea(d+b)—uj/] 27

k Vv, fi(x,y)-z
;A;{Vyyfi(x’,y/) - [(gi(x’,yJ’/)f—S(xJ’//Ei)-:-yTr’)
(Vygi (!, ) + (i, ¥) + ST Co) — y' T 2))
_( (gi(x,y) =S 1Ep)+y'Trl)? )
[fi (', y) + S 1C) — ' 2]
g, y’)—S(x’/E)+y’T ]

() +rh)T

(Vyygilx', y))}[a(a+ia)—ﬁ+uy'] =

forallie{1,2,...,k}. (28)
a;y' +A;(B-ny)" € Np,(zpforalli € {1,2,...,k} (29)
il Y+ S IC) -y T 2 v R +SIC) -y 2,
ygl(x’ Y -SIEY+y Tr] gi(x,y) - S(x’/E)+y’T’
x([Vygl(x y)+rl]y’—1)€NH.(r,-), Vie{l,2,..., k} (30)

fix, YV +S1C) -y T2,
gi(x, /)—S(X’/E)+y/T /{ J’gl(x J/)+I’}}

vl Y yfl(xry)_zl
; { nfiey) gi(x,y) - S E)+yTr]
[ (Vy&i(x, )+ ) (fi(x, ) + S 1C) - y' T 2))
(&i (¥, y) = ST E) +y' T r))?

k
,BT.ZA;{Vyfi(x/;y/)_ I _

k

](Vygi(x’,y') +r)’
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[fi (', y) +S(x'1C) -y T 2]
g, y) - S E)+y'Tr ]
d (X, Y) + S IC) -y T 2
TIJ//T;M{Vyfi(xl,y/)— < ;,((x’,y’))_s((x//E))_'_y,T Z{[ y8ix, ¥y +ri]
Vy fitx, ¥~z )
gi(x,y) =S Ej)+yTr]
_((Vygi(x’»J/’)+r§)(fi(x’,y’)+8(x’/C-)—y’T ’))
(gi(x',y) = S IE) +y'Tri)?
[fi (', y) + S 1C) — y' ' 2]
g, y) =S E)+y'Tr ]
sTx'=0
yIA' =0
(a,B,8,1,7)=0
(a,B,s,1,7) #0.

v yygl(x J/))(a+b)}

+|Vyy i,y - [(

Vygix, ¥+’

¢

v yygl(x J/))(a+b)

Since ' > 0 and y = 0, (34) implies y = 0.

Consequently, (28) yields.

Multiplying (27) by [a(a + b) - B+ uyl from left and by (37), we have
Vy filx,yh - z’

gix,y) =S 1E)+y'Tr]

{a(a+Db) —ﬁ+uy)}Ti1)L;{vyyﬁ(x’,y’)—
(Vy8i (', y) + D (fi(x, y) + S C) - y' T 2))

B (g (¥, y) = SWE) +y' 1?2
(fi (e, y) + S 1C) -y 2)
(g, Y - SWIEN+y' )
By assumption (I), yields that § = {a(a+ b) + uj}.

Vygix,y)+r)T

yygi(x’,y’)}{a(m b) - B+ ujyt =

From (27) and (38), we have
fi, YN +S1c) -y 2,

k
i— /1; v ; /’ ! _ /
i:zl(a ! )[ ity gi(x,yN=S(X'E))+y

( Vyfix',y) -z )
gi(x',y)=SWX'IE)+ yTr!

k
+ Z;Ui{vwfi(x,'y,) -
i=1
-( (Vy8i, ¥+ (i, y) + S('1Ci) - y,TZ;))
(& (¥, y) = ST E) +y' T r))?

[fi (', y) + S 1C) — y' T 2]
&L y) - SWE) +yTr /]( yy8i X' J’))}[a(ch) B+ uyl =

/T ,( ygz(x J/)+r)

(Vygi(x, Yy +1))

275

B

(32)

(33)
(34)
(35)
(36)

(37)

(38)

(39)



276 DEO BRAT OJHA
According to assumption (II), (39) implies a; = ,u)t'i, i=12,..., k. (40)

If u=0,thena; =0 (G =1,2,...,k). From (37), f = 0. From (23), s = 0. From (27), y; =0
(i=1,2,...,k). Thus (a, B, s, 1, 7) = 0 contradicting condition (36). Hence, u > 0. From (40)
and A’ >0, we have that a; >0 (i = 1,2,..., k). By (24), (38)and (40), we obtain

filx, yN+S(x'1C) -y
gi(x, y)—S(x’/E)+y’T !
k X _ .
; {Vyyfz(x y) - ( gi(x,’z{)fl_(g(j/)Ei)zi yT,-l{)
_((Vygi(x’,y’)+rlf)(ﬁ(x’,y’)+8(x’/Ci) ¥’z ’))
(g,-(x’,y’)—S(x’/E-)+y’Trlf)2
i) +SWIC) -y )
[8i(x, ) = S(x' | Ep) + y'Tr]]

k
Z/li[vxfi(x’,y’H - ( <8,y —1t)

y&i, ) +rp”

(v yygi(x',y'))}[a(d+ b) - B+ujyl =s/u=0. (41)

From (41) and (33), it follows that

i,y +S1C) -y T2,

x’TZAl[vxfl(x V) + w) - ,T ,( &, Y)— 1))

i-1 g,y -SX''E)+y

k vy fix, ¥ -z
Vo fi - J
g { }’J’f ', J/) (gi(x’,y’)—S(x’/Ei)+yTrl’.)
(( ygi(x’,y’)+rlf)(fi(x’,y’)+S(x’/Cl-)—y’Tz;))
(gi(x,y) = S IEp) +y'Trl)?

(Vygi(x, ¥ +r)"

i I+ S@IC) -y ) o /))}[ (a+b)—f+pyl =0 (42)
) i ’ + —p+ =0.
[gi(x’,y’)—S(x//Ei)er/Trl{] yy8i(x, y)) rlala Wy
By (38), (35) and p > 0, we have that y' = f/u > 0. “

From (25), (41), (42) and (43), (x',y", ', w}, w;,..., w;, t}, 13,..., t;) is feasible for (FD). From
(29), (30) and (38), we obtain

y'Tz' =S(x'/D;), y’Tr’ =S(//H), i=1,2,...,k. (44)
By (26) and (44), we get

fix!, y’)+S(x’/C~)—y’Tz’ fi(x’,y’)—S(y’/Di)+x’Tw;
g, y) = SWIEN+y'Trl g, y)+ S/ H)-x'Tt)

Thus, (x',y', A, w}, wy, ..., wy, t),t;,..., t;) is feasible to (FD) and the objective values of (FP)
and (FD) are equal.
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We claim that (x,y', A, w}, wy,..., w;c, oty t;c) an efficient solution of (FD). If this
would not be the case, there would exist (u, v,, wi, wo, ..., Wi, i, bz, ..., tx) which would be fea-
sible for (FD)and would satisfy

filw,v) = SwIDY + uTw; _ filx,y) =S/ 1D +x' " w)
gi(u,)+SW/E)—ult; gi(x’,y’)+S(y’/Hi)—x’Tt§
and
Fii ) =SWiD;) +uTwy; [, y) =S¢/ 1D +x " w,
gi(u,v)+SwW/Ej)—ult; g gj(x’,y’)+S(y’/Hj)—x’Tt}

Vie{l,2,..., k!

for - some je{l1,2,...,k}.

From inequalities (26) and (44), we get a contradiction to Theorem 3.1. If (x', y', A/, w}, wy, ...,
w;c, oty t;c) was not properly efficient, for each fixed real number M > 0, there would exist
a feasible solution (u, v,, wi, wo,..., Wy, i, by, ..., tx) in (FD) and an index i such that

fitu,v)=SwID) +uTw; fi(x',y)=S(y'ID;) +x'Tw;-
gi(u,v)+SW/E)—ult;  g;(x',y)+S(y'H;) —x’Ttlf

fid, ) =S¢/ 1D+ 2w fiw )= Sw/D)+u" w;

>M T T
g, y)+S(y'/Hj) - x' t} gj(u,v)+SW/Ej)—ult;

for some j satisfying

[y =80 IDR+ X W fi,v) - SwiD) + ul
>
gj(x’,y’)+S(y’/Hj)—x’Tt} gi(u, ) +SW/Ej) —ult;

whenever T
fiw,v)=SwID)+uw; filkx',y)=S('/D)+x"w; 1
gi(u,v)+SW/E)—ult; gi(x’,y’)+8(y’/H,~)—x’Tt§

w; =S(x'/Cy)

and y’Tz;. =S(y'/Dy), i =1,2,..., k. This imply that

fitu,v)=S(w/Dy) +uTw; filx',y) =S/ D;) +x'Tw;
gi(u,v)+SwW/E)—ult; gi(x',y")+S(y'IH)) —x’Ttg

can be made arbitrarily large and hence for A’ with A >0, we have

Xk:/l,f,-(u, V)= Sw/D)+ulwi i,y =Sy 1Dy + X w)
o1 &) +SWIE)-ult; 5 g, y)+ Sy H) - X' e
which contradicts the weak duality Theorem 3.1. This completes the proof.

With a similar technique, we can prove the following theorem.

Theorem 3.4.(Strong Duality) Let (x', ), 1, 2}, 25, ..., Z;C, T Toyees r;c) be a properly efficient so-

lution to (FP) and fix A = A’ in (FD). Suppose that all the conditions in Theorem 3.2 are ful-
filled. Assume that (I) and (II) of Theorem 3.3 are satisfied then there exist w;. € R, t; € R™,



278 DEO BRAT OJHA

i =1,2,...,k, such that (x',y", A/, w}, w,,..., w;c, oty t;c) is properly efficient solution of
(FD).

Remark. In this paper, the same parameter A € R* appeared in both primal and dual. For
a pair of multiobjective Programming problems with A as variable in both programs, some
symmetric duality results were given by Chandra and Prasad [7] and some comments were
presented by Chandra and Abhal[4].

Some Special Cases:

A frequently occurring example of a nondifferentiable support function is (x” Ax)'/?,
where A is positive semidefinite matrix. It can be easily verified that (x” Ax)/? = S(x/C),
where C = {Ay: (yTAy) < 1} and that set C is compact convex.

(i) Ifin the feasible regions k=1, g; =1, (x;TBx)'2 = S(x/C;), where C; = {Bjy: (yTBiy) <
1}, (xTCx)V? = S(x/D;), where D; = {C;y: (y'C;y) < 1}, i = 1,2,..., k, then programs
(FP) and (FD) become a pair of symmetric dual nondifferentiable programs considered
by Chandra, Craven, and Mond [6].

(i) If in (FP) and (FD), B; = {0} and C; = {0}, i = 1,2,..., k, and in the feasible regions g; =
1,i=1,2,...,k, we obtain the symmetric dual multiobjective programming problems
studied by Weir and Mond [18].

(iii) Ifin (FP)and (FD), k=1, g;=1, C; ={0}and D; =1{0}, i =1,2,..., k, we obtain symmetric
dual problems studied by Chandra ,Craven, and Mond [6].

(iv) Ifin (FP) and (FD), k =1, g; = 1, we obtain symmetric dual problems studied by Mond
and Schechter [21].
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