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ANOTE ON AN OPEN PROBLEM

MIAO-QING AN

1
r((ﬁé))ax is logarithmically completely monotonic on (0, 00) for a =
2p

1and 0 < B < 1, and is logarithmically completely monotonic in (-1,0) for 0 < a < 535
and 8 > 1. This give an answer to an open problem proposed by Feng Qi.

Abstract. The function

1. Introduction
The classical gamma function
(o0]
I'(x) :f e tdr (x>0) 1
0

is one of the most important functions in analysis and its applications. The history and de-
velopment of this function are described in detail [2]. The psi or digamma function w(x) =

%, the logarithmic derivative of the gamma function, and the polygamma functions can be
expressed[6, p.16] as
[ole] e—t _ e—xt
w(x) = —y+f0 = dt, )
w(k)(x):(—l)k+1foo Kot dr 3)
o l—et

forx>0and k=1,2,..., wherey = 0.57721566490153286... is the Euler-Mascheroni constant.

We recall that a function f : (0,00) — R is said to be completely monotonic if f has
derivatives of all orders and
D"fPx)=0 @)

forx>0andn=0,1,2,.... If fisnonconstant and completely monotonic, then the inequality
(4) is strict, see [3]. Let € denote the set of completely monotonic functions.

A function f is said to be logarithmically completely monotonic on (0,00) if f is positive
and, forall ne N,
0= (=1)"[log f()]" < o0, (5)
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see[l, 7]. If inequality (5) is strict for all x € (0,00) and for all n = 1, then f is said to be strictly
logarithmically completely monotonic. Let £ on (0,00) stand for the set of logarithmically
completely monotonic functions.

The notion that logarithmically completely monotonic function was posed explicitly in
[8] and published formally in [7] and a much useful and meaningful relation £ < € be-
tween the completely monotonic functions and the logarithmically completely monotonic
functions was proved in[7, 8].

In [5], H. Minc and L. Sathre proved that, if n is a positive integer and ¢(n) = (n!) %, then

< pn+l) < n_+1’ (6)

¢(n) n

which can be rearranged as
[C(n+ D]V < [T(n+2) 0D

and

[F(n+1)]1/” g [F(n+2)]1/(”+1)
n n+l
since'(n+1) = nl.

In [4], the following monotonicity results for the Gamma function were established. The
function [['(1+ 1)]" decreases with x > 0 and x [['(1 + 1)]" increases with x > 0, which recover
the inequalities in (6) which refer to integer values of n. These are equivalent to the func-
tion [['(1 + x)]'/* being increasing and M being decreasing on (0,00), respectively. In
addition, it was proved that the function x1-r [[F(l + %)x ] decreases for 0 < x < 1, which is

1/x
equivalent to 21— being increasing on (1,00).

1/x
In[9], Qi and Chen showed that the function % is strictly decreasing and strictly
[Cee+D]M*

logarithmically convex in (0,00), and the function Vi is strictly increasing and strictly
logarithmically concave in (0,00). Using the monotonicity of above functions, Qi and Chen

presented the following double inequality

x+1 - [[(x+1)]* x+1
y+1  [T(y+D1Vy y+1

for 0 < x < y, see Corollary 1 of [9].

In [8], Qi and Guo proposed an open problem
Open Problem 1. Find conditions about a and 3 such that the ratio

pog < DI -
C (x+ P

is completely (absolutely, regularly) monotonic (convex) with x > —1.
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In this paper, we give an answer to this problem and establish new inequalities.

Theorem 1. The function F(x) defined by (7) is strictly logarithmically completely monotonic
in (0,00) fora =1 and0 < < 1. Moreover, the function F(x) is strictly completely monotonic
in(0,00) fora=1and0< f<1.

Proof. Taking the logarithm of F(x) defined by (7),

B logT'(x+1)

logF(x) = — —alog(x+ )
= g(x)—alog(x+ p). (8)
Using Leibnitz’ rule
() v]™ =3 (")u(’“)(x)v(""‘) (x), €)
i=o\k
we have e ety
" 1 & D" nlx*y*V(x+1) o hyx)
g( )(x) - xhtl kgo k! = xn+l’ (10)

h(x) = x"y" (x+1)

>0, ifnisoddand x € (0,00), an
<0, ifinisodd and x€ (-1,0) andnis even and x € (—1,00),
where U (x+1) =logl'(x+1) and @ (x + 1) = yw(x + 1).
w1 (n—1lax"*!
(-n" (logF(x)) = (=D"h,(x)+ W
A Ua,ﬁ(x)
T xntl
Using the representations
-1! o0
Uink) :f " eIy x> 0,n=1,2,..., (12)
(x+D"  Jo

and (3), we conclude

nx"af (n-1Dx"a
(x+’6)n+1 (x_,_ﬂ)n

n—le—(x+ﬁ)t

= x" m[a(ef—1)+aﬁt(ef—1)—teﬁ’ e’
0 el -1

Vo p®) = (D" "y (x+ 1)+

tn—l e—(x+ﬁ) t

2 x"f P ————dr (13)
0

el—1
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where

o) =afrle’-1) - rePl + ae! = 1)
=(@-Dr+ ) [a+m,6(a—,6m_2)]%,

m=2 !

Ifa=1and 0 < f <1, then ¢(¢) > 0 and v;ﬁ(x) > 0. Hence, v4,5(x) > v45(0) =0

and (-1)" (log F(x))"”
monotonic . The proof of Theorem 1 is complete.

> 0, and thus, the function F(x) is strictly logarithmically completely

Corollary 1. Fora=1and0<pf<1,

T+ 1) >(x+ﬂ) : (14)

T(y+1)y \V+P
inwhich0<x<y.
Theorem 2. The function F(x) defined by (7) is strictly logarithmically completely monotonic

in(-1,0) for0<a< % and > 1. Moreover, the function F(x) is strictly completely mono-
2p

tonicin (—1,0) for0< a < T+2p and 3> 1.
Proof. By (13),

o) = apre’ —1) - reP +ale’ 1)

$(0) =0
¢ () =e'(a+af+aft)—af-eP 1+ pr)
dO)=a-1

¢ (t)=e'|a+2af+apt—pPePVi2+p0)

éetu(t)

u0) =a+2ap-2p

u'(1)=ap-pB-DeP N2+ pr—pref D!
U (0) = -3+ af +2

u”(t) = pB-11 [—,62(,6— 1)%—2/3(/3- 1Ep- 1)]

Ifo<a< % and > 1, then u' (1) <0and u (1) is strictly decreasing . So u () <u (0)<0
2p

and u(t) is strictly decreasing. Hence, u(f) < u(0) <0 and (/)H(t) <0. Since0< a < Tap We
have ¢ (£) < ¢ (0) < 0. So we conclude that ¢(£) < ¢(0) = 0.
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If nis odd, then v’a’ﬁ(x) >0o0n (-1,0), and then, vg,g(x) > v4,(0) = 0and (-1)" (logF(x))(n) >
0. If nis even, then v’a ﬁ(x) <0on (-1,0), and then, vg,g(x) < v4,(0) = 0and (-1)" (logF(x))(n) >
Oon (-1,0).

This means that the function F(x) is strictly logarithmically completely monotonic on
(=1,0). The proof of Theorem 2 is complete.

Corollary 2. For0<a < andpf>1,

1+2ﬁ

1
[(x+1)x “
(x+ )1 >(x+,6) (15)
Ty+ny \V+P
inwhich-1<x<y<Q0.
Motivated by the open problem , we established a new function
1
'x+a)lx
Gl = Lxralx 16)
(x+p)Y

inwhich a, B,y are nonnegative. Our Theorem 3 consider its logarithmically completely mono-

tonicity.

Theorem 3. The function G(x) defined by (16) is strictly logarithmically completely monotonic
in (0,00) fora € (0,1]1U[2,00), a—1<f<aandy= max{%, 1}. Moreover, the function G(x) is

strictly completely monotonic in (0,00) fora € (0,1]U [2,00),a—1<f<a andy = max{%, 1}.

Proof. Using (9), we obtain

L (n—k) _1yn-1 ERTY
(logG(x) ™ = Y (n)(i) [logT(x+a)] ™ - GOyl =y

i—o\k (x+pB)n
(1) 2o (n) (100 g =D"*y(n-1)!
_(x) logl"(x+a)+k2::1(k)(x) 1/ (x+a)+—(x+,6)"
_ = 1)" nonp! (-1 -1 (=1D)"y(n-1)!
———logl'(x+a)+ Z e 1// (x+a)+w
= (D" o),

and

n!By . (n—1ly

/ _ | _1\n,, (1)
O(x)=x"|(-D"y (x+a)+(x+,6)”+1 G )
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Using (3) and (12) for x > 0 and n € N, we conclude

n!By . (n—-Dly
(x+’6)n+1 (x+ﬁ)n

%5’(;@ = (D)"Y (x+a)+

le'9) , ; (B-a+Dt tn—le—(x+ﬁ)t
_jov [y(e —1)+ﬂ}’t(€ —-1)—te Tdt
00 tn—l —(x+p)t
éf w() ————dt,
0 et—-1

where
u(t) = Pyrle’ —1)— teP=Dl Ly (el —1)

o0 tm
=(y-Dt+ Y {y+m[py-B-a+ l)m_l]}%.
m=2 :

Ifa-1<f<aandy= max{%, 1}, then u(t) > 0 and 6'(x) > 0. Notice that I'(a) =1 for
a € (0,11U[2,00) . Hence, 5(x) > §(0) = n!logT'(a) = 0 and (-1)" (log G(x))"™ > 0 in (0,00) ,
and thus, the function G(x) is strictly logarithmically completely monotonic. The proof of

Theorem 3 is complete. O

Corollary 3. Fora € (0,1]U[2,00),a—1<fB<aandy= max{%,l} ,

T Y
I'x+a) >(x+,3) ’ 17

Ty+a)yr \V+P

inwhich0<x<y.
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