A NOTE ON AN OPEN PROBLEM

MIAO-QING AN

Abstract

The function $\frac{\Gamma(x+1)^{\frac{1}{x}}}{(x+\beta)^{\alpha}}$ is logarithmically completely monotonic on $(0, \infty)$ for $\alpha \geq$ 1 and $0 \leq \beta \leq 1$, and is logarithmically completely monotonic in $(-1,0)$ for $0<\alpha \leq \frac{2 \beta}{1+2 \beta}$ and $\beta>1$. This give an answer to an open problem proposed by Feng Qi.

1. Introduction

The classical gamma function

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t \quad(x>0) \tag{1}
\end{equation*}
$$

is one of the most important functions in analysis and its applications. The history and development of this function are described in detail [2]. The psi or digamma function $\psi(x)=$ $\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$, the logarithmic derivative of the gamma function, and the polygamma functions can be expressed[6, p.16] as

$$
\begin{align*}
\psi(x) & =-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} \mathrm{~d} t \tag{2}\\
\psi^{(k)}(x) & =(-1)^{k+1} \int_{0}^{\infty} \frac{t^{k} e^{-x t}}{1-e^{-t}} \mathrm{~d} t \tag{3}
\end{align*}
$$

for $x>0$ and $k=1,2, \ldots$, where $\gamma=0.57721566490153286 \ldots$ is the Euler-Mascheroni constant.
We recall that a function $f:(0, \infty) \longrightarrow \mathbf{R}$ is said to be completely monotonic if f has derivatives of all orders and

$$
\begin{equation*}
(-1)^{n} f^{(n)}(x) \geq 0 \tag{4}
\end{equation*}
$$

for $x>0$ and $\mathrm{n}=0,1,2, \ldots$ If f is nonconstant and completely monotonic, then the inequality (4) is strict, see [3]. Let \mathscr{C} denote the set of completely monotonic functions.

A function f is said to be logarithmically completely monotonic on $(0, \infty)$ if f is positive and, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
0 \leq(-1)^{n}[\log f(x)]^{(n)}<\infty, \tag{5}
\end{equation*}
$$

2010 Mathematics Subject Classification. 33B15, 26A48.
Key words and phrases. Gamma function, psi function, polygamma function, complete monotonicity, logarithmically complete monotonicity.
see[1, 7]. If inequality (5) is strict for all $x \in(0, \infty)$ and for all $n \geq 1$, then f is said to be strictly logarithmically completely monotonic. Let \mathscr{L} on $(0, \infty)$ stand for the set of logarithmically completely monotonic functions.

The notion that logarithmically completely monotonic function was posed explicitly in [8] and published formally in [7] and a much useful and meaningful relation $\mathscr{L} \subset \mathscr{C}$ between the completely monotonic functions and the logarithmically completely monotonic functions was proved in[7, 8].

In [5], H. Minc and L. Sathre proved that, if n is a positive integer and $\phi(n)=(n!)^{\frac{1}{n}}$, then

$$
\begin{equation*}
1<\frac{\phi(n+1)}{\phi(n)}<\frac{n+1}{n}, \tag{6}
\end{equation*}
$$

which can be rearranged as

$$
[\Gamma(n+1)]^{1 / n}<[\Gamma(n+2)]^{1 /(n+1)}
$$

and

$$
\frac{[\Gamma(n+1)]^{1 / n}}{n}>\frac{[\Gamma(n+2)]^{1 /(n+1)}}{n+1}
$$

since $\Gamma(n+1)=n!$.
In [4], the following monotonicity results for the Gamma function were established. The function $\left[\Gamma\left(1+\frac{1}{x}\right)\right]^{x}$ decreases with $x>0$ and $x\left[\Gamma\left(1+\frac{1}{x}\right)\right]^{x}$ increases with $x>0$, which recover the inequalities in (6) which refer to integer values of n. These are equivalent to the function $[\Gamma(1+x)]^{1 / x}$ being increasing and $\frac{[\Gamma(1+x)]^{1 / x}}{x}$ being decreasing on $(0, \infty)$, respectively. In addition, it was proved that the function $x^{1-\gamma}\left[\left[\Gamma\left(1+\frac{1}{x}\right)^{x}\right]\right.$ decreases for $0<x<1$, which is equivalent to $\frac{[\Gamma(1+x)]^{1 / x}}{x^{1-\gamma}}$ being increasing on $(1, \infty)$.

In[9], Qi and Chen showed that the function $\frac{[\Gamma(x+1)]^{1 / x}}{x+1}$ is strictly decreasing and strictly logarithmically convex in $(0, \infty)$, and the function $\frac{[\Gamma(x+1)]^{1 / x}}{\sqrt{x+1}}$ is strictly increasing and strictly logarithmically concave in $(0, \infty)$. Using the monotonicity of above functions, Qi and Chen presented the following double inequality

$$
\frac{x+1}{y+1}<\frac{[\Gamma(x+1)]^{1 / x}}{[\Gamma(y+1)]^{1 / y}}<\sqrt{\frac{x+1}{y+1}}
$$

for $0<x<y$, see Corollary 1 of [9].
In [8], Qi and Guo proposed an open problem
Open Problem 1. Find conditions about α and β such that the ratio

$$
\begin{equation*}
F(x)=\frac{[\Gamma(x+1)]^{\frac{1}{x}}}{(x+\beta)^{\alpha}} \tag{7}
\end{equation*}
$$

is completely (absolutely, regularly) monotonic (convex) with $x>-1$.

In this paper, we give an answer to this problem and establish new inequalities.
Theorem 1. The function $F(x)$ defined by (7) is strictly logarithmically completely monotonic in $(0, \infty)$ for $\alpha \geq 1$ and $0 \leq \beta \leq 1$. Moreover, the function $F(x)$ is strictly completely monotonic in $(0, \infty)$ for $\alpha \geq 1$ and $0 \leq \beta \leq 1$.

Proof. Taking the logarithm of $F(x)$ defined by (7),

$$
\begin{align*}
\log F(x) & =\frac{\log \Gamma(x+1)}{x}-\alpha \log (x+\beta) \\
& \triangleq g(x)-\alpha \log (x+\beta) . \tag{8}
\end{align*}
$$

Using Leibnitz' rule

$$
\begin{equation*}
[u(x) v(x)]^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(k)}(x) v^{(n-k)}(x) \tag{9}
\end{equation*}
$$

we have

$$
\begin{align*}
& g^{(n)}(x)=\frac{1}{x^{n+1}} \sum_{k=0}^{n} \frac{(-1)^{n-k} n!x^{k} \psi^{(k-1)}(x+1)}{k!} \triangleq \frac{h_{n}(x)}{x^{n+1}} . \tag{10}\\
h_{n}^{\prime}(x)= & x^{n} \psi^{(n)}(x+1) \\
& \begin{cases}>0, & \text { if } \mathrm{n} \text { is odd and } x \in(0, \infty), \\
\leq 0, & \text { if in is odd and } x \in(-1,0) \text { and } \mathrm{n} \text { is even and } x \in(-1, \infty),\end{cases} \tag{11}
\end{align*}
$$

where $\psi^{(-1)}(x+1)=\log \Gamma(x+1)$ and $\psi^{(0)}(x+1)=\psi(x+1)$.

$$
\begin{aligned}
(-1)^{n}(\log F(x))^{(n)} & =\frac{1}{x^{n+1}}\left[(-1)^{n} h_{n}(x)+\frac{(n-1)!\alpha x^{n+1}}{(x+\beta)^{n}}\right] \\
& \triangleq \frac{v_{\alpha, \beta}(x)}{x^{n+1}}
\end{aligned}
$$

Using the representations

$$
\begin{equation*}
\frac{(n-1)!}{(x+1)^{n}}=\int_{0}^{\infty} t^{n-1} e^{-(x+1) t} \mathrm{~d} t, x>0, n=1,2, \ldots \tag{12}
\end{equation*}
$$

and (3), we conclude

$$
\begin{align*}
v_{\alpha, \beta}^{\prime}(x) & =(-1)^{n} x^{n} \psi^{(n)}(x+1)+\frac{n!x^{n} \alpha \beta}{(x+\beta)^{n+1}}+\frac{(n-1)!x^{n} \alpha}{(x+\beta)^{n}} \\
& =x^{n} \int_{0}^{\infty}\left[\alpha\left(e^{t}-1\right)+\alpha \beta t\left(e^{t}-1\right)-t e^{\beta t}\right] \frac{t^{n-1} e^{-(x+\beta) t}}{e^{t}-1} d t \\
& \triangleq x^{n} \int_{0}^{\infty} \phi(t) \frac{t^{n-1} e^{-(x+\beta) t}}{e^{t}-1} d t \tag{13}
\end{align*}
$$

where

$$
\begin{aligned}
\phi(t) & =\alpha \beta t\left(e^{t}-1\right)-t e^{\beta t}+\alpha\left(e^{t}-1\right) \\
& =(\alpha-1) t+\sum_{m=2}^{\infty}\left[\alpha+m \beta\left(\alpha-\beta^{m-2}\right)\right] \frac{t^{m}}{m!}
\end{aligned}
$$

If $\alpha \geq 1$ and $0 \leq \beta \leq 1$, then $\phi(t)>0$ and $v_{\alpha, \beta}^{\prime}(x)>0$. Hence, $v_{\alpha, \beta}(x)>v_{\alpha, \beta}(0)=0$ and $(-1)^{n}(\log F(x))^{(n)}>0$, and thus, the function $F(x)$ is strictly logarithmically completely monotonic. The proof of Theorem 1 is complete.

Corollary 1. For $\alpha \geq 1$ and $0 \leq \beta \leq 1$,

$$
\begin{equation*}
\frac{\Gamma(x+1)^{\frac{1}{x}}}{\Gamma(y+1)^{\frac{1}{y}}}>\left(\frac{x+\beta}{y+\beta}\right)^{\alpha} \tag{14}
\end{equation*}
$$

in which $0<x<y$.
Theorem 2. The function $F(x)$ defined by (7) is strictly logarithmically completely monotonic in $(-1,0)$ for $0<\alpha \leq \frac{2 \beta}{1+2 \beta}$ and $\beta>1$. Moreover, the function $F(x)$ is strictly completely monotonic in $(-1,0)$ for $0<\alpha \leq \frac{2 \beta}{1+2 \beta}$ and $\beta>1$.

Proof. By (13),

$$
\begin{aligned}
\phi(t) & =\alpha \beta t\left(e^{t}-1\right)-t e^{\beta t}+\alpha\left(e^{t}-1\right) \\
\phi(0) & =0 \\
\phi^{\prime}(t) & =e^{t}(\alpha+\alpha \beta+\alpha \beta t)-\alpha \beta-e^{\beta t}(1+\beta t) \\
\phi^{\prime}(0) & =\alpha-1 \\
\phi^{\prime \prime}(t) & =e^{t}\left[\alpha+2 \alpha \beta+\alpha \beta t-\beta e^{(\beta-1) t}(2+\beta t)\right] \\
& \triangleq e^{t} u(t) \\
u(0) & =\alpha+2 \alpha \beta-2 \beta \\
u^{\prime}(t) & =\alpha \beta-\beta(\beta-1) e^{(\beta-1) t}(2+\beta t)-\beta^{2} e^{(\beta-1) t} \\
u^{\prime}(0) & =-3 \beta^{2}+\alpha \beta+2 \beta \\
u^{\prime \prime}(t) & =e^{(\beta-1) t}\left[-\beta^{2}(\beta-1)^{2} t-2 \beta(\beta-1)(2 \beta-1)\right]
\end{aligned}
$$

If $0<\alpha \leq \frac{2 \beta}{1+2 \beta}$ and $\beta>1$, then $u^{\prime \prime}(t)<0$ and $u^{\prime}(t)$ is strictly decreasing. So $u^{\prime}(t)<u^{\prime}(0)<0$ and $u(t)$ is strictly decreasing. Hence, $u(t)<u(0)<0$ and $\phi^{\prime \prime}(t)<0$. Since $0<\alpha \leq \frac{2 \beta}{1+2 \beta}$, we have $\phi^{\prime}(t)<\phi^{\prime}(0)<0$. So we conclude that $\phi(t)<\phi(0)=0$.

If n is odd, then $v_{\alpha, \beta}^{\prime}(x)>0$ on $(-1,0)$, and then, $v_{\alpha, \beta}(x)>v_{\alpha, \beta}(0)=0$ and $(-1)^{n}(\log F(x))^{(n)}>$ 0 . If n is even, then $v_{\alpha, \beta}^{\prime}(x)<0$ on $(-1,0)$, and then, $v_{\alpha, \beta}(x)<v_{\alpha, \beta}(0)=0$ and $(-1)^{n}(\log F(x))^{(n)}>$ 0 on ($-1,0$).

This means that the function $F(x)$ is strictly logarithmically completely monotonic on $(-1,0)$. The proof of Theorem 2 is complete.

Corollary 2. For $0<\alpha \leq \frac{2 \beta}{1+2 \beta}$ and $\beta>1$,

$$
\begin{equation*}
\frac{\Gamma(x+1)^{\frac{1}{x}}}{\Gamma(y+1)^{\frac{1}{y}}}>\left(\frac{x+\beta}{y+\beta}\right)^{\alpha} \tag{15}
\end{equation*}
$$

in which $-1<x<y<0$.
Motivated by the open problem, we established a new function

$$
\begin{equation*}
G(x)=\frac{[\Gamma(x+\alpha)]^{\frac{1}{x}}}{(x+\beta)^{\gamma}} \tag{16}
\end{equation*}
$$

in which α, β, γ are nonnegative. Our Theorem 3 consider its logarithmically completely monotonicity.

Theorem 3. The function $G(x)$ defined by (16) is strictly logarithmically completely monotonic in $(0, \infty)$ for $\alpha \in(0,1] \cup[2, \infty), \alpha-1 \leq \beta \leq \alpha$ and $\gamma \geq \max \left\{\frac{1}{\beta}, 1\right\}$. Moreover, the function $G(x)$ is strictly completely monotonic in $(0, \infty)$ for $\alpha \in(0,1] \cup[2, \infty), \alpha-1 \leq \beta \leq \alpha$ and $\gamma \geq \max \left\{\frac{1}{\beta}, 1\right\}$.

Proof. Using (9), we obtain

$$
\begin{aligned}
(\log G(x))^{(n)} & =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{x}\right)^{(n-k)}[\log \Gamma(x+\alpha)]^{(k)}-\frac{(-1)^{n-1} \gamma(n-1)!}{(x+\beta)^{n}} \\
& =\left(\frac{1}{x}\right)^{(n)} \log \Gamma(x+\alpha)+\sum_{k=1}^{n}\binom{n}{k}\left(\frac{1}{x}\right)^{(n-k)} \psi^{(k-1)}(x+\alpha)+\frac{(-1)^{n} \gamma(n-1)!}{(x+\beta)^{n}} \\
& =\frac{(-1)^{n} n!}{x^{n+1}} \log \Gamma(x+\alpha)+\sum_{k=1}^{n} \frac{n!}{k!} \frac{(-1)^{n-k}}{x^{n-k+1}} \psi^{(k-1)}(x+\alpha)+\frac{(-1)^{n} \gamma(n-1)!}{(x+\beta)^{n}} \\
& \triangleq(-1)^{n} \frac{1}{x^{n+1}} \delta(x),
\end{aligned}
$$

and

$$
\delta^{\prime}(x)=x^{n}\left((-1)^{n} \psi^{(n)}(x+\alpha)+\frac{n!\beta \gamma}{(x+\beta)^{n+1}}+\frac{(n-1)!\gamma}{(x+\beta)^{n}}\right) .
$$

Using (3) and (12) for $x>0$ and $n \in \mathbb{N}$, we conclude

$$
\begin{aligned}
\frac{1}{x^{n}} \delta^{\prime}(x) & =(-1)^{n} \psi^{(n)}(x+\alpha)+\frac{n!\beta \gamma}{(x+\beta)^{n+1}}+\frac{(n-1)!\gamma}{(x+\beta)^{n}} \\
& =\int_{0}^{\infty}\left[\gamma\left(e^{t}-1\right)+\beta \gamma t\left(e^{t}-1\right)-t e^{(\beta-\alpha+1) t}\right] \frac{t^{n-1} e^{-(x+\beta) t}}{e^{t}-1} d t \\
& \triangleq \int_{0}^{\infty} u(t) \frac{t^{n-1} e^{-(x+\beta) t}}{e^{t}-1} d t
\end{aligned}
$$

where

$$
\begin{aligned}
u(t) & =\beta \gamma t\left(e^{t}-1\right)-t e^{(\beta-\alpha+1) t}+\gamma\left(e^{t}-1\right) \\
& =(\gamma-1) t+\sum_{m=2}^{\infty}\left\{\gamma+m\left[\beta \gamma-(\beta-\alpha+1)^{m-1}\right]\right\} \frac{t^{m}}{m!}
\end{aligned}
$$

If $\alpha-1 \leq \beta \leq \alpha$ and $\gamma \geq \max \left\{\frac{1}{\beta}, 1\right\}$, then $u(t)>0$ and $\delta^{\prime}(x)>0$. Notice that $\Gamma(\alpha) \geq 1$ for $\alpha \in(0,1] \cup[2, \infty)$. Hence, $\delta(x)>\delta(0)=n!\log \Gamma(\alpha) \geq 0$ and $(-1)^{n}(\log G(x))^{(n)}>0$ in $(0, \infty)$, and thus, the function $G(x)$ is strictly logarithmically completely monotonic. The proof of Theorem 3 is complete.
Corollary 3. For $\alpha \in(0,1] \cup[2, \infty), \alpha-1 \leq \beta \leq \alpha$ and $\gamma \geq \max \left\{\frac{1}{\beta}, 1\right\}$,

$$
\begin{equation*}
\frac{\Gamma(x+\alpha)^{\frac{1}{x}}}{\Gamma(y+\alpha)^{\frac{1}{y}}}>\left(\frac{x+\beta}{y+\beta}\right)^{\gamma} \tag{17}
\end{equation*}
$$

in which $0<x<y$.

References

[1] R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41(1988), 21-23.
[2] P. J. Davis, Leonhard Euler's integral:A historical profile of the gamma functions, Amer. Math. Monthly, 66(1959), 848-869.
[3] J. Dubourdieu, Sur un théorème de M.s. Bernstein relatif á la transformation de Laplace-Stieltjes, Compos. Math. 7(1939), 96-111.
[4] D. Kershaw and A. Laforgia, Monotonicity results for the gamma function, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 119 (1985), pp 127-133.
[5] H. Minc and L. Sathre, Some inequalities involving (r ! $)^{\frac{1}{r}}$, Proc. Edinburgh Math. Soc., 14(1964/65), 41-46.
[6] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin, 1966.
[7] F. Qi and C. P. Chen, A complete monotonicity Properties of the gamma function, J. Math. Anal. Appl., 296 (2004), 603-607.
[8] F. Qi and B. N. Guo, Complete monotonicities of functions involving the gamma and the digamma functions, RGMIA Res. Rep. Coll. 7(2004), no 1, Art. 8. Available online at
http://www.staff.vu.edu.au/rgmia/v7n1.asp.
[9] F. Qi and C. P. Chen, Monotonicity and convexity results for functions involving the gamma function, RGMIA Res. Rep. Coll. 6 (2003), no. 4, Art. 10.available online at: http://www.staff.vu. edu.au/rgmia/v6n4.asp.

College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan 454003, China.
E-mail: anxv1013@126.com; anxv1013@163.com

