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OSCILLATION CRITERION FOR TWO-DIMENSIONAL
DYNAMIC SYSTEMS ON TIME SCALES

TAHER S. HASSAN

Abstract. The purpose of this paper is to prove oscillation criterion for dynamic system

uA:pv, vA:—qu”,

where p >0 and q are rd-continuous functions on a time scale such that sup T = co with-
out explicit sign assumptions on g and also without restrictive conditions on the time
scale T.

1. Introduction
We consider the linear dynamic system

u® = p, v =—qu°, (1.1)

where p > 0 and g are rd-continuous functions on a time scale such that sup T = co. A solution
(u(t),v (1) of system (1.1) is called oscillatory if both u () and v (¢) are oscillatory functions,
and otherwise it will be called nonoscillatory. System (1.1) is called oscillatory if its solutions
are oscillatory.

In [6, 1], the following oscillation theorem is obtained.

Theorem 1.1. Assume that q (t) = 0 is rd-continuous function and

:Op(t)At:oo and }L@o% =0. 1.2)
If there exists A € (0,1) such that
ftwﬁ‘(t)q(tmh o0,
0
where .
p):=| p(s)As, (1.3)

fo

then system (1.1) is oscillatory.
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Recently, Baoguo [5] proved above theorem when ¢ (1) is allowed to take on negative val-
ues and established the following theorem.

Theorem 1.2. Assume that T satisfies condition (C) and (1.2). If there exists A € [0,1) such that

(e 0]

plo(1))qg(H)At = oo, (1.4)
to

where p (t) is defined by (1.3), then system (1.1) is oscillatory.

To be precise, we say T satisfies condition (C), that is there is an M > 0 such that y () <
Mu(t), t € T, where y is the characteristic function of the set T= {t eT:u()> 0}. We note
that if T satisfies condition (C), then the subset T of T defined by

T={reT:>0isright-scattered or left-scattered},
is necessarily countable and T  T. Then, we can rewrite T by
T={tieT:0<t1i<tr<..<tp<.l,

and so
—l]— = TU [UneA (tn_], tn)] )

where A is the set of all integers for which the real open interval (#,-1, t,) is contained in T.
There are several time scales do not satisfy condition (C), for example

{k+n+1}’
n=1 n

Therefore it will be of great interest to prove Theorems 1.1 and 1.2 without explicit sign

It is easy to see the time scale in the form

T:= Tk, where Ty =

1

Tce
1Cg

does not satisfy condition (C).

assumption on g and also without condition (C) to the same dynamic system (1.1), so our
work improves and generalizes those established in [6, 5].

2. Main results

Before stating the main results, we start with the following lemmas which will play an
important role in the proofs of the main results.

Lemma 2.1. Forall A€ [0,1) and for sufficiently large T = ty, we have, for t € [T,00)1

— A-1
_[pm)]

! — A-2
fT pes)[Plos)])” "As< T

where p (t) is defined by (1.3).
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Proof. By Potzsche chain rule ([3, Theorem 1.90]), we have
_1\A 1 _ _ _
— (o) = fo [(A-mPp©+hp@ )] dhp(s)

1
2/0 [(A-mP o) +hp )] > dhp(s)

= [Blon] P p.

which yields
fp(s) B )] f [p(s)“ As
—{po)" - [
s—[p(T)] . O
1-1

Lemma 2.2. Ify and x are differentiableon T and x #0 on T, then

2
5 A xAya A
A(V_) = ()’ - x oA
x = (") +\[1+e—y
X /1+u% X

Proof. From the quotient rule, we get

2\ A

ol -4
X

x(?) -y ] b
xx%

[#0)° -]

xx%

since (y2)* = (yy)* = ¥ (7 +y) = y* (2y + uy>), then

2 xA 2
xA(y;) = |2yt e () -2y
x8 A0 A A2
= 5 |2 ) () (1 ) -5t
x A2 A2 (02 oA AY 4 40 A
= [t (P 2y P () ) + 2y
x8 A M2 oA A, O N[O A
= S [ T () T (0 - )]
K8 2
= [ 2y - ()]
By x 2k o opx e
(5] Ee -0

xAya 2
2x8 xA 2
:—( - ) +TJ’AJ/U—IJ—(J’A)
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2
xAya A
X X7 A A2
=- —A+\/1+IJ7)’ +(J/)»
\1+p
x(f

since1+u%=—;é0. a

X

From above lemmas and motivated by the proof of Theorem 3.1 in [5], we can prove

Theorem 1.1 without condition (C).

Theorem 2.3. Assume that

« . p@p®
HNAt= d lim ————=0. 2.1
/to p(1) oo and lim =0 2.1
If there exists A € [0,1) such that
ZACIONIGIYEL 2.2)

Ty

where p (t) is defined by (1.3), then system (1.1) is oscillatory.

Proof. Assume that (u (£), v (#)) is a nonoscillatory solution of system (1.1). We claim that u (1)
is nonoscillatory. If not, we assume u () is oscillatory andv (¢) is nonoscillatory. Without loss
of generality, we let v () > 0 on [ty,00)t . In the view of the first equation of system (1.1), we
have u2 () > 0 on [£p,00) 1. Thus u(t) > 0 or u () < 0 for all large ¢, which is a contradiction.
Thus u (t) is nonoscillatory and without loss of generality, we let 1 () >0 for t = T = t,.

Define, for 1 € [0,1)
AGI0!

w(t):= .
p(6)u(r)
Then, from the product rule, we get (suppressing arguments)
1701 a8 (51101 . (ﬁ/uz)z
g
wh = | P (—uA) +| 2 (—uA) =—(?A) g+— |[u®
u p u p u
Now, by using Lemma 2.2 with replaced x by u and y by EA 12 we get
2
—AI2
. [ 77)

) uA(ﬁMz)a 2
= L (=) u® _y /20
- e (7)) - | e
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—2\?
<—|p"| g+
(7') .
Therefore, )
A
. . . (ﬁ)uz (S))
f w? (s) As< —f Po(s)q(s) As+f i As. 2.3)
T T T p(s)
Using the Potzsche chain rule ([3, Theorem 1.90]), we get
_ A AL _ _ _
(pm(t)) :Efo [A-mPW+hpw )] dhpw. (2.4)
Since lim;_.o, & %)(z;)(t) =0, it implies that
— t o (1)
(8)As+ (8)As t t
tim 2O _ ) JuoP ST PO 14 gim KOPO
i—oo p(1) im0 Ji P($)As t—oo  p(1)

so for given 0 < € < 1, there exists T sufficiently large such that
pt)=A-e)plo(1), fort=T,.

Then, from (2.4), we have

AL _ ! _
(72 0) = Zpw[pem]*? lfo [1-1-RheM " dh

— a1
=pw[pem)]"* - [1-a-0"
Mp (0 [po ], (2.5)

where M := % [1-(1 —6‘);“2]. From (2.3) and (2.5), we get

(E/llz (s))A]Z

p(s)

t t
w(t)—w(T)s—/ o (s)qs) As+f As
T T

t t
< —fT P o(s)qs) As+M2fT p(s) [E(a(s))]/l_z As.

Since

1

_1\A 1 _ _ _
T ([ﬁ(s)]‘ 1) :f [(A-mPE)+hp )] 2 dhp(s)
-1 0

1
2/0 [(A-mP o) +hp )] > dhp(s)

=[] ?ps),
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which yields
, — A-1 — A-1
) (' ([P0 [P(D)]
w(t)—w(T) < pr (@ () q(s) AS+M( 1-1 1-1
t (D!
< —/ ZACAONIO) AS+M2(&)-
. 1-1

In view of condition (2.2), it follows from the last inequality that there exists a sufficiently large
T» = T; such that
u® (1) <0, forte [Ty, 00)7. (2.6)

By using [3, Theorem 4.61], there is a positive solution #, called dominant solution such that
oo
t
/ #At <00,
1, U(t) u°(1)

a® (1) <0, forte[T»,00)7.

and then, from (2.6), we get

This implies
) _ _ (o] l7(t)
(OAt=U(T) 8°(TD) | =g
T P ? 2 @) (1)
~ ~ > p)
<u(T) u’(T —————At<oo,
W) | T T
which is a contradiction. This completes the proof. O

References

[1]1 D.R.Anderson, Oscillation and nonoscillation criteria for two-dimensional time-scale systems of first-order
nonlinear dynamic equations, Electron. J. Diff. Eqns, Vol 2009(2009), No. 24, 1-13.

[2] M. Bohner, L. Erbe, and A. Peterson, Oscillation for nonlinear second order dynamic equations on a time
scale, J. Math. Anal. Appl., 301 (2005), 491-507.

[3] M. Bohner and A. Peterson, Dynamic Equation on Time Scales: An Introduction with Applications,
Birkhé&user, Boston, 2001.

[4] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkhduser, Boston,
2003.

[5] J.Baoguo, A new oscillation criterion for two-dimensional dynamic systems on time scales, Tamkang journal
of Mathematics, 42 (2011), 237-244.

[6] S.Fuand M. Lin, Oscillation and nonoscillation criteria for linear dynamic equations on time scales, Com-
puters and Mathematics with Applications, 59 (2010), 2552-2565.

[7] C.Potzsche, Chain rule and invariance principle on measure chains, in: R. P. Agarwal, M. Bohner, D. O’Regan
(Eds.), special Issue on "Dynamic Equations on Time Scales", J. Comput. Appl. Math., 141 (2002), 249-254.

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Department of Mathematics, Faculty of Science, Hail University, KSA.

E-mail: tshassan@mans.edu.eg


mailto:tshassan@mans.edu.eg

	1. Introduction
	2. Main results
	References

