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OSCILLATION CRITERION FOR TWO-DIMENSIONAL

DYNAMIC SYSTEMS ON TIME SCALES

TAHER S. HASSAN

Abstract. The purpose of this paper is to prove oscillation criterion for dynamic system

u∆ = pv, v∆ =−quσ,

where p > 0 and q are rd-continuous functions on a time scale such that supT=∞ with-

out explicit sign assumptions on q and also without restrictive conditions on the time

scale T.

1. Introduction

We consider the linear dynamic system

u∆ = pv, v∆ =−quσ, (1.1)

where p > 0 and q are rd-continuous functions on a time scale such that supT=∞. A solution

(u (t ) , v (t )) of system (1.1) is called oscillatory if both u (t ) and v (t ) are oscillatory functions,

and otherwise it will be called nonoscillatory. System (1.1) is called oscillatory if its solutions

are oscillatory.

In [6, 1], the following oscillation theorem is obtained.

Theorem 1.1. Assume that q (t )≥ 0 is rd-continuous function and

∫
∞

t0

p (t )∆t =∞ and lim
t→∞

µ (t ) p (t )

p (t )
= 0. (1.2)

If there exists λ∈ (0,1) such that ∫
∞

t0

pλ(t )q(t )∆t =∞,

where

p (t ) :=

∫t

t0

p(s)∆s, (1.3)

then system (1.1) is oscillatory.
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Recently, Baoguo [5] proved above theorem when q (t ) is allowed to take on negative val-

ues and established the following theorem.

Theorem 1.2. Assume that T satisfies condition (C) and (1.2). If there exists λ ∈ [0,1) such that
∫

∞

t0

p(σ (t ))q(t )∆t =∞, (1.4)

where p (t ) is defined by (1.3), then system (1.1) is oscillatory.

To be precise, we say T satisfies condition (C), that is there is an M > 0 such that χ(t ) ≤

Mµ (t ) , t ∈ T, where χ is the characteristic function of the set T̂=
{

t ∈T :µ (t )> 0
}

. We note

that if T satisfies condition (C), then the subset Ť of T defined by

Ť=
{

t ∈T : t > 0 is right-scattered or left-scattered
}

,

is necessarily countable and T̂⊂ Ť. Then, we can rewrite Ť by

Ť= {ti ∈T : 0 < t1 < t2 < ... < tn < ...} ,

and so

T= Ť∪ [∪n∈A (tn−1, tn)] ,

where A is the set of all integers for which the real open interval (tn−1, tn) is contained in T.

There are several time scales do not satisfy condition (C), for example

It is easy to see the time scale in the form

T : =
∞
∪

k=1
Tk , where Tk =

∞
∪

n=1

{
k +

n +1

n

}
,

does not satisfy condition (C).

Therefore it will be of great interest to prove Theorems 1.1 and 1.2 without explicit sign

assumption on q and also without condition (C) to the same dynamic system (1.1), so our

work improves and generalizes those established in [6, 5].

2. Main results

Before stating the main results, we start with the following lemmas which will play an

important role in the proofs of the main results.

Lemma 2.1. For all λ∈ [0,1) and for sufficiently large T ≥ t0, we have, for t ∈ [T,∞)T

∫t

T
p (s)

[
p (σ (s))

]λ−2
∆s ≤

[
p (T )

]λ−1

1−λ
,

where p (t ) is defined by (1.3).
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Proof. By Pötzsche chain rule ([3, Theorem 1.90]), we have

1

λ−1

([
p (s)

]λ−1
)
∆

=

∫1

0

[
(1−h) p (s)+hp (σ (s))

]λ−2
dh p (s)

≥

∫1

0

[
(1−h) p (σ (s))+hp (σ (s))

]λ−2
dh p (s)

=
[
p (σ (s))

]λ−2
p (s) .

which yields

∫t

T
p (s)

[
p (σ (s))

]λ−2
∆s ≤

1

λ−1

∫t

T

([
p (s)

]λ−1
)
∆

∆s

=
1

λ−1

{[
p (t )

]λ−1
−

[
p (T )

]λ−1
}

≤

[
p (T )

]λ−1

1−λ
. ���

Lemma 2.2. If y and x are differentiable on T and x 6= 0 on T, then

x∆
(

y2

x

)∆
=

(
y∆

)2
−




x∆yσ

x√
1+µ x∆

x

+

√

1+µ
x∆

x
y∆




2

.

Proof. From the quotient rule, we get

x∆
(

y2

x

)∆
= x∆

[
x

(
y2

)∆
− y2x∆

xxσ

]
=

x∆

xxσ

[
x

(
y2

)∆
− y2x∆

]

Since
(
y2

)∆
=

(
y y

)
∆
= y∆

(
yσ+ y

)
= y∆

(
2y +µy∆

)
, then

x∆
(

y2

x

)∆
=

x∆

xxσ

[
2x y y∆+µx

(
y∆

)2
−x∆y2

]

=
x∆

xxσ

[
2y y∆

(
xσ

−µx∆
)
+µ

(
y∆

)2 (
xσ

−µx∆
)
−x∆y2

]

=
x∆

xxσ

[
−x∆

(
y2

+2µy y∆+µ2
(

y∆
)2

)
+xσy∆

(
y +µy∆

)
+xσy y∆

]

=
x∆

xxσ

[
−x∆

(
y +µy∆

)2
+xσy∆

(
y +µy∆

)
+xσy∆

(
yσ

−µy∆
)]

=
x∆

xxσ

[
−x∆

(
yσ

)2
+2xσy∆yσ

−µxσ
(
y∆

)2
]

= −

(
x∆yσ

x

)2
x

xσ
+

2x∆

x
y∆yσ

−
µx∆

x

(
y∆

)2

= −

(
x∆yσ

x

)2

1+µ x∆

x

+
2x∆

x
y∆yσ

−
µx∆

x

(
y∆

)2
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= −




x∆yσ

x√
1+µ x∆

x

+

√

1+µ
x∆

x
y∆




2

+
(
y∆

)2
,

since 1+µ x∆

x =
xσ

x 6= 0. ���

From above lemmas and motivated by the proof of Theorem 3.1 in [5], we can prove

Theorem 1.1 without condition (C).

Theorem 2.3. Assume that

∫
∞

t0

p (t )∆t =∞ and lim
t→∞

µ (t ) p (t )

p (t )
= 0. (2.1)

If there exists λ ∈ [0,1) such that

∫
∞

t0

pλ(σ (t ))q(t )∆t =∞, (2.2)

where p (t ) is defined by (1.3), then system (1.1) is oscillatory.

Proof. Assume that (u (t ) , v (t )) is a nonoscillatory solution of system (1.1). We claim that u (t )

is nonoscillatory. If not, we assume u (t ) is oscillatory andv (t ) is nonoscillatory. Without loss

of generality, we let v (t ) > 0 on [t0,∞)T . In the view of the first equation of system (1.1), we

have u∆ (t ) > 0 on [t0,∞)T . Thus u (t ) > 0 or u (t ) < 0 for all large t , which is a contradiction.

Thus u (t ) is nonoscillatory and without loss of generality, we let u (t )> 0 for t ≥T ≥ t0.

Define, for λ ∈ [0,1)

w (t ) :=
pλ (t )u∆ (t )

p (t )u (t )
.

Then, from the product rule, we get (suppressing arguments)

w∆
=

[
pλ

u

]σ (
1

p
u∆

)
∆

+

[
pλ

u

]
∆ (

1

p
u∆

)
=−

(
pλ

)σ
q +

1

p


u∆




(
pλ/2

)2

u




∆

 .

Now, by using Lemma 2.2 with replaced x by u and y by pλ/2, we get

w∆
= −

(
pλ

)σ
q +

1

p


u∆




(
pλ/2

)2

u




∆



= −

(
pλ

)σ
q +

1

p



((

pλ/2
)
∆
)2

−




u∆
(
pλ/2

)σ

u√
1+µu∆

u

+

√

1+µ
u∆

u
pλ/2∆




2

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≤ −

(
pλ

)σ
q +

((
pλ/2

)
∆
)2

p
.

Therefore,

∫t

T
w∆ (s) ∆s ≤−

∫t

T
pλ (σ (s)) q (s) ∆s +

∫t

T

[(
pλ/2 (s)

)
∆
]2

p (s)
∆s. (2.3)

Using the Pötzsche chain rule ([3, Theorem 1.90]), we get

(
pλ/2 (t )

)
∆

=
λ

2

∫1

0

[
(1−h) p (t )+hp (σ (t ))

]λ/2−1
dh p (t ) . (2.4)

Since limt→∞
µ(t )p(t )

p(t )
= 0, it implies that

lim
t→∞

p (σ (t ))

p (t )
= lim

t→∞

∫t
t0

p(s)∆s +
∫σ(t )

t p(s)∆s
∫t

t0
p(s)∆s

= 1+ lim
t→∞

µ (t ) p (t )

p (t )
= 1,

so for given 0 < ǫ< 1, there exists T1 sufficiently large such that

p (t )≥ (1−ǫ) p (σ (t )) , for t ≥T1.

Then, from (2.4), we have

(
pλ/2 (t )

)
∆

≤
λ

2
p (t )

[
p (σ (t ))

]λ/2−1
∫1

0
[1− (1−h)ǫ]λ/2−1 dh

= p (t )
[
p (σ (t ))

]λ/2−1 1

ǫ

[
1− (1−ǫ)λ/2

]

= M p (t )
[
p (σ (t ))

]λ/2−1
, (2.5)

where M := 1
ǫ

[
1− (1−ǫ)λ/2

]
. From (2.3) and (2.5), we get

w (t )−w (T ) ≤ −

∫t

T
pλ (σ (s)) q (s) ∆s +

∫t

T

[(
pλ/2 (s)

)
∆
]2

p (s)
∆s

≤ −

∫t

T
pλ (σ (s)) q (s) ∆s +M 2

∫t

T
p (s)

[
p (σ (s))

]λ−2
∆s.

Since

1

λ−1

([
p (s)

]λ−1
)
∆

=

∫1

0

[
(1−h) p (s)+hp (σ (s))

]λ−2
dh p (s)

≥

∫1

0

[
(1−h) p (σ (s))+hp (σ (s))

]λ−2
dh p (s)

=
[
p (s)

]λ−2
p (s) ,



232 TAHER S. HASSAN

which yields

w (t )−w (T ) ≤ −

∫t

T
pλ (σ (s)) q (s) ∆s +M 2

([
p (t )

]λ−1

λ−1
−

[
p (T )

]λ−1

λ−1

)

≤ −

∫t

T
pλ (σ (s)) q (s) ∆s +M 2

([
p (T )

]λ−1

1−λ

)
.

In view of condition (2.2), it follows from the last inequality that there exists a sufficiently large

T2 ≥ T1 such that

u∆ (t )< 0, for t ∈ [T2,∞)T. (2.6)

By using [3, Theorem 4.61], there is a positive solution ũ, called dominant solution such that
∫

∞

T2

p (t )

ũ (t ) ũσ (t )
∆t <∞,

and then, from (2.6), we get

ũ∆ (t )< 0, for t ∈ [T2,∞)T.

This implies
∫

∞

T2

p (t )∆t = ũ (T2) ũσ (T2)

∫
∞

T2

p (t )

ũ (T2) ũσ (T2)
∆t

≤ ũ (T2) ũσ (T2)

∫
∞

T2

p (t )

ũ (t ) ũσ (t )
∆t <∞,

which is a contradiction. This completes the proof. ���
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