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DIFFERENTIAL EQUATIONS AND FOLDING OF n-MANIFOLDS

I. MOUSA AND F. SALAMA

Abstract. In this paper we will describe some topological and geometric characters of n-manifold
by using the properties of differential equations. The folding and unfolding of n-manifold into

itself will be deduced from viewpoint of the differential equations.

Definition 1. An n-dimensional manifold is a Housdorff space such that each point
has an open neighbourhood homeomorphic to the open n-dimensional disc U (= {x €
R™: |z| < 1}) [10, 14].

Definition 2. The set is compact if it closed and bounded [10].

Definition 3. For Riemannian manifolds M and N (not necessarily of the same
dimension), a map f : M — N is said to be a “topological folding’ of M into N if, for
each piecewise geodesic path v : I — M (I = [0,1] C R), the induced path foy:I — N
is piecewise geodesic. If, in addition, f : M — N preserves lengths of paths, we call f an
“isometric folding” of M into N. Thus an isometric folding is necessarily a topological
folding. Some types of folding of manifolds discussed in [3, 6] and some applications of
foldings introduced in [8].

Definition 4. Let M and N be two Riemannian manifolds of the same dimensions,
amap g : M — N is said to be an “unfolding” of M into N if, for every piecwise geodesic
path v : I — M (I =[0,1] C R), the induced path v/ = go~ : I — N is piecewise
geodesic but with length greater than that for ~.

ie. Va,y € M = d(z,y) < d(g(x),9(y))[2,4,5].
Theorem 1. If the eigenvalues A\, Ao, ..., An of an n X n matric A are real and
distinct, then any set of corresponding eigenvectors {Vi,Va,...,V,} forms a basis for

R™, the matriz

p=[ViVa---V,] is invertible, p~* Ap = diag[A1, A2, ..., \y] [12,13].
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Theorem 2. If the 2n x 2n real matriz A has 2n distinct complex eigenvalues \; =
aj +ib; and \; = a; — ib; and corresponding complex eigenvectors w; = uj + iV; and
wy; =u; —iVy, j = 1,...,n, then {u1V1,...,u,V,,} is a basis for R*" the matriz p =
[u1 Vi, ..., un, Vo] is invertible and

-1 T a; —bj

A real 2n x 2n matriz with 2 x 2 blocks along the diagonal.

The main results.
In this article we restrict on surfaces which represent 2-manifold and some examples
of n-manifolds.

Theorem 3. The folding of any n-manifold represented by D(V') = AV is a restric-

A O -0
00X -0
tion on the elements of n X n matriz A = L. or on A1, Mg, ..., \,, where
00 -\,
A1, A2, ..oy Ay are real (complex) and distinct eignevalues of n X n matriz A, V is vector
in R™ and |\;| < 1.
Proof. Let
D(V)=AV (1)
ie. V=AV
ail @12 - Qin
Q21 Q22 "+ G2n
let V= (x1,22,...,2p), then A =
Apl Gp2 * - Ann
the equation (1) can be written in the following form
T air ai2 - Ain T
Z2 Q21 Q22 "+ G2n T2
I I : (2)
Tn Apl Gp2 *** Ann LTn
from Theorems 1 and 2 (according to A1, Ag,..., A, are real or complex) we have the

following system equivalent to the system (2)

(1 by 0 --- 0 Y1
Y2 00by--- Yo

o
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and any m X n matrix equivalent to the matrix

by 0 --- 0
0by--- 0
B=1.". .
00---b,
If |b1] < 1, |b2| <1,...,|bs] <1 then all vectors (y1,ya,...,yn) folded.
by 0--- 01 [t b1 0 -~ 07 [w1
i ) 0by--- 0 U2 0b§~~0 Y2
Also Y=BY =BY=|. . | =,
00---b, Un 0 ()...b% Yn
if |b1], [bal, ..., |bn| < 1 then Y represent the folding of Y’
'1)?0...0 Y1
0b3---0 Y2
also Y=BY=|. | .
L0003 ] Lyn
7 0 -+ 0 n
0b2-.. 0
vy =pry=| "
L0 0051 Lyn

this is a sequence of foldings f,, of Y which also is foldings of X.

Theorem 4. Let X1, Xo,..., X, are functions of wy,wa,...,wy, i.e. X; = X;(wy,
Wa, ... W), 0 €{1,...,n} and X; = Wi, (w1)Wa;(ws) - - - Wy (wy,) then the folding of any
X1

Xo
n-manifold represented by f(X) = Dy; X = AX, where X = | . | andj € {1,...,n},

Xn

A O -0
00X 0
is a restraction on the elements of n x n matric A= | . . . or on the distinct
00 -\,
and real (complex) eigenvalues A1, Az, ..., A\p of the n X n matriz A.
Proof. Let Xi,Xs,..., X, are functions of wy,wa, ..., wy, i.e. X; = X;(wy,wa,...,

wy), ¢ € {1,...,n} and X; = Wy;(w1)Wai(we) - Whyi(wy), f : M — M be a folding
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where f = D,,;. Let we have the system

Dy X = AX (1)
Xi] ail a2 - - Gin
X a1 G22 - - A2p
where X=1 .1, A=
Xn Anpl Ap2 *** Qnn

the system (1) can be written in the form

—W11(w1) W21(w2) Wn1(wn)
Wig(wr) Wag(wg) --- Wy,

Dy

Wi (1) Wan (w3) - - W (1)

a11 @12 * - Aln W11(w1) W21(w2)
a21 @22 -+ A2n W12(w1) W22(w2)

Anpl Qp2 *** Apn Wln(wl) W2n (w2) Tt Wnn (wn)

the above system can be reduced to the form

Wit ai1 aiz - Aip Wi1
Wj ags1 a2z -+ -+ A2n ng

= . .. . . (2)
W; Anl An2 " Gpp W;

from theorem (3) we find that the folding of any n-manifold into itself represented by

MO0
0Xy--- 0
the system (2) is a restriction on the elements of the matrix A = . . or
0 0---X\,
on the distinct and real (complex) eigenvalues A1, Aa,..., A, of the n x n matrix A.
Then also the folding of any n-manifold represented by D,,; X = AX is a restriction on
A O -2 0
0 XNp-- 0
the elements of the matrix A = o or on the distinct and real (complex)
00 -\,
eigenvalues A1, Ao, ..., A\, of the n X n matrix A.

Corollary. The limit of the foldings of the conditional folding in Theorem 3 is a
manifold of dimension k, k < n.
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Proof. Let DY = f,,(Y), m =1,2,..., we have a sequence f1, fa,..., fm.

b* 0 -~ 0 [w b"y1
P L e 2 R L
Then DY = . _— . . = . :(bl ylab2 y27"'7bnyn)~
00 -] |yn b Yn

Such that [b)"| << 1,Vi€ {1,...,n} also |b]}| << 1 where k € {1,...,n}. Let b; — 0 as
m — oo then limy, oo frm(Y) = (&191, &2, -+, 0,...,&yn) € R™1 where b; <<< b;,
Vi€ {1,...,n} and lim,, o 07" — 0 faster than the other b;, i # j. Then the manifold

must be of dimension k such that maxk =n — 1. See Figure 1.

‘ - fm Q
m—0o0
Sgn Sn—l

Figure 1.

Corollary. The end of the limit of foldings in Theorem 3 is a 0-manifold.

Proof.
bi* 0 - 0] [wr Ty
vt fa@y=omy= | S bt
00 bi” yn bz’;yn

Since rr}gnoo f'ﬁl(Y) = (glyla €2y2a e 707 gk-‘rlyk-i-la DR ’gnyn)
fml = lim fm(Y) = (glylv ceey 0,§k+1yk+1, ce ;gnyn)a

m— 00

fm2 = (flyl, cee 707 0) €k+1yk+17 SRR 7€nyn)

klim fmi(y) = (0,0,...,0) which is O-manifold (See Figure 2).
— 00
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1 fmz 0 fonk

N~

Sn Snfl

Figure 2.

From the above theorem, the two types of differentiations Xy, X4, where X =
(x(0,0),y(0,9),2(0,9)), the first is a limit of foldings, the second is a folding. The
first type induces a limit of foldings of the tangent space, the second type induces a
folding of the tangent space.

Example 1. The parametric equations of the unit sphere S? given by
x = cosfsin ¢
y = sinfsin ¢
Z=C0oS¢

where 0 < 6 < 27 and 0 < ¢ < 7 by differentiating the above system with respect to 6
and ¢ we have the boundary-value partial differential equations of the unit sphere S2.

rp=—y 0<0<2m, 0<¢<m
Yo =

29 =0

xp = cosfsing

Y = sinfsin ¢

2y = —sing

the boundary condations are

if we take the part
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0 —-10

we find the eigenvalues of the matrix |1 0 0| are A2 = +i and A3 = 0 if we take
0 0 O

|A\1| < 1, |A2| < 1 we have a limit folding of the unit sphere S? and its tangent space (see

Figure 3).

n—oo

Sl

Figure 3.

A restriction of the boundary conditions in the boundary—value partial differential
equations and the singularity of the folding at this restriction also making folding. The
following example show this idea,

Example 2. From Example 1 by doing restriction of the boundary conditions we
will have many cases of foldings of the unit sphere S2. Now we will show those cases,

Case 1. If we take the boundary conditions in the form

T 1 3 1
m(@,z) :ﬁcos& I(H,Z) :ﬁcose,
1
2 V2

s . 3

y(@,z) = ——sin#b, y(@, 1
™ 1 3
2(9, 4) :—2, Z(@,Z)
0<6 <o gg¢>§3

y Is a folding by cut

—1 1
E<Z<ﬁ
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the result sphere is 2-manifold with boundary.
Case 2. If we change the boundary conditions into

x (9, %) = L cosf, x(0,m) =0,

[\

y (9, E) = L sin 6, y(0,7) =0,

4 2
™ 1
z 9,—):—, z(0,7) = —1,
(»7)=7% (6.7)
0<6<o2r, %g¢gw,
z
y Folding by cut a Yy
1
—1<Z<%

T

the graph after folding is 2-manifold

Case 3. If the boundary conditions are
T (9, g) = cos¥, z(0,7) =0,

y (9, g) =sinb, y(0,7) =0,

Folding by cut

-1<2<0




DIFFERENTIAL EQUATIONS AND FOLDING OF n-MANIFOLDS 269

Case 4. Consider the boundary conditions on the form

x(6,0) =0, x (9, g) = cos b,

y(6,0) =0, y (9, g) =sin6,

20,0)=1, = (9, g) —0,
0<o<m  0<g<o,
z
y Folding by cut Yy
0<z<1
x
the result graph is open 2-manifold without boundary.
Case 5. If we take the boundary conditions in the form
x(0, ¢) =sin ¢, x(m, @) = —sin @,
y(0,¢) =0, y(m, ¢) =0,
0<b<m, 0<op<m,
z
Y
y Folding by cut
O<y<l1
x

the result shape is open 2-manifold with boundary.

Note 1. From the boundary conditions of the Case 1—5 we find that the limit of the
foldings of the unit sphere is a circle (see Figure 4).
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lim f

S? St
Figure 4.

Case 6. Ifwetake71<:c<1,0<y<1,;—%<z<%Where0<9<7r,

1<9< %’T we find that the shape after folding is 2-manifold with boundary (see Figure

5).

Figure 5. T

The above cases are not only the cases of foldings of S2 but there are many cases also
are foldings of S2.

Note 2. The conditions of Case 6 represent the end of the limit foldings of the unit
sphere S? which is a tow points (see Figure 6).

O<y<l1

<z <

Sl
<

Figure 6.
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Note 3. We note from the Case 1—6 that a restriction on one of the parameter 6 or

® is folding the sphere S? into a circle but a restriction on the two parameters 6 and ®
is folding the sphere S? into two points.

Example 3. Consider the parametric equations of tours T'! given by

z1 = (b+ acosu) cosv, O<wv<22m 0<u<2m,

22 = (b+ acosu)sinw,

T3 = asinu,

the boundary-value partial differential equations of the tours T'* are

Dvxl = —X2
Dyzy =1
Dvx3 =0

D,x1 = asinucos(v + )
D,z = asinusin(v + )
D,x3 = acosu
x1(v,0) = (b+ a) cosv
22(v,0) = (b+ a)sinv

z3(v,0) =0
0<v<2m, 0<wu<2m
if we take the part
0 —-10
X,=1(1 0 0|X
0 0 O
0 —10
the eigenvalues of the matrix |1 0 0] are A2 = %4, A3 = 0 which represent a limit

0 0 O

of lim f,,{T" — S'} (see Figure 7). If we take |A1| < 1, [Aa] < 1 the tours T" folding into
itself and also if [A1] > 1, [A2| > 1 the tours T* unfolding into itself.

Figure 7.
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If we take the part

D,z = asinucos(v + )
D,z = asinusin(v + )

D,x3 = acosu
we find it a type of folding.

Example 4. In this example we will show some of folding 7" which corresponding
to the cases in example two.

Case 1. If we take the boundary conditions in the form

3
1 (v, g) = bcosv, 1 <v, g) = bcosv,

3
To (v, g) = bsinwv, To (v, ?ﬁ) = bcosv,

i
?7

Folding by cut @
6

the result graph is 2-manifold.

R oy
w

0 <wv<2m,

Case 2. If we take the boundary conditions in the form

21(v,0) = (b + a) cosv, x1(v,m) = (b — a) coswv,
22(v,0) = (b+a)sinwv, xo(v,m) = (b — a) coswv,
x3(v,0) =0, xzz(v,m) =0

O<u<m, 0<v<2m,

the graph after folding by cut is the upper half of the tours 7! which is 2-manifold.

Case 3. This case corresponding to the Case 4 in Example 2 the boundary condition
are

z1(v,7) = (b— a) cosv, z1(v,2m) = (b+ a) cos v,
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x2(v,m) = (b—a)sinwv, x2(v,27) = (b+ a) sinwv,
1‘3(’0, W) =0, 1‘3(’0, 2’”) =0,
T™<u<?2m, 0<v<2rm

the graph after folding by cut is the upper half of the tours 7! which is 2-manifold.

Case 4. This case corresponding to the Case 5 in Example 2 the boundary condition
are

21(0,u) = b+ acosu, x1(2m,v) = —(b+ acosu),

22(0,u) =0, xo(m,u) =0,

23(0,u) = asinu, x3(m,u) = asinu,
0<u<2m, O<v<m,

Folding by cut
——

the graph after folding is 2-manifold with boundary.

Note 4. From the boundary conditions of the Case 1—4 above we conclude that the
limit folding of the tours T is a circle (see Figure 7).

Case 5. If we make a restriction on u and v as § < u < 37’7, 0 < v <7 we have a
folding by cut (see the following Figure 8).

Folding by cut
———

Figure 8.
the result graph is 2-manifold.

Note 5. There is a homeomorphism between folding of the unit sphere S? and folding
of the tours T
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