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FEW RELATIONS ON THE GROWTH RATES OF COMPOSITE ENTIRE

FUNCTIONS USING THEIR (p, q)TH ORDER

SANJIB KUMAR DATTA, TANMAY BISWAS AND MANAB BISWAS

Abstract. In this paper we discuss the growth rates of the maximum term of composition

of entire functions with their corresponding left and right factors.

1. Introduction, definitions and notations

Let f be an entire function defined in the open complex plane C. The maximum term

µ
(

r, f
)

of f =
∞
∑

n=0
an zn on |z| = r is defined by µ

(

r, f
)

= max
n≥0

(|an|r
n). We do not explain the

standard definitions and notations in the theory of entire function as those are available in [6]

In the sequel the following two notations are used:

log[k] x = log
(

log[k−1] x
)

for k = 1,2,3, · · · ;

log[0] x = x

and

exp[k] x = exp
(

exp[k−1] x
)

for k = 1,2,3, · · · ;

exp[0] x = x.

To start our paper we just recall the following definitions:

Definition 1. The order ρ f and lower order λ f of an entire function f is defined as follows:

ρ f = lim sup
r→∞

log[2] M
(

r, f
)

log r
and λ f = liminf

r→∞

log[2] M
(

r, f
)

log r
.

Definition 2 ([3]). Let l be an integer ≥ 2. The generalised order ρ[l ]
f

and generalised lower

order λ[l ]
f

of an entire function f are defined as

ρ[l ]
f
= lim sup

r→∞

log[l ] M
(

r, f
)

log r
and λ[l ]

f
= lim inf

r→∞

log[l ] M
(

r, f
)

log r
.

When l = 2 , Definition 2 coincides with Definition 1.
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Juneja, Kapoor and Bajpai [2] defined the (p, q) th order and (p, q) th lower order of an

entire function f respectively as follows:

ρ f

(

p, q
)

= lim sup
r→∞

log[p] M
(

r, f
)

log[q] r
and λ f

(

p, q
)

= liminf
r→∞

log[p] M
(

r, f
)

log[q] r
,

where p, q are positive integers with p > q .

For p = 2 and q = 1 we respectively denote ρ f (2,1) and λ f (2,1) by ρ f and λ f .

Since for 0 ≤ r <R ,

µ
(

r, f
)

≤ M
(

r, f
)

≤
R

R − r
µ

(

R , f
) {

c f . [5]
}

(1)

it is easy to see that

ρ f = lim sup
r→∞

log[2]µ
(

r, f
)

log r
, λ f = lim inf

r→∞

log[2]µ
(

r, f
)

log r
;

ρ[l ]
f

= lim sup
r→∞

log[l ]µ
(

r, f
)

log r
, λ[l ]

f
= lim inf

r→∞

log[l ]µ
(

r, f
)

log r
;

and

ρ f

(

p, q
)

= lim sup
r→∞

log[p] µ
(

r, f
)

log[q] r
, λ f

(

p, q
)

= liminf
r→∞

log[p] µ
(

r, f
)

log[q] r
.

In this paper we wish to prove some results relating to the growth rates of maximum

terms of composition of two entire functions with their corresponding left and right factors

on the basis of (p, q) th order and (p, q) th lower order where p, q are positive integers with

p > q .

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([4]). Let f and g be any two entire functions with g (0) = 0. Then for all sufficiently

large values of r,

µ
(

r, f ◦ g
)

≥
1

2
µ

(

1

8
µ

(r

4
, g

)

−
∣

∣g (0)
∣

∣ , f

)

.

Lemma 2 ([1]). If f and g are any two entire functions then for all sufficiently large values of r,

M (r, f ◦ g ) ≤ M
(

M
(

r, g
)

, f
)

.

Lemma 3. Let f be an entire function with non zero finite generalised order ρ[l ]
f

(non zero finite

generalised lower order λ[l ]
f

). If p − q = l −1, then the (p, q)- th order ρ f (p, q) (lower (p, q)-th

order λ f (p, q)) of f will be equal to 1. If p −q 6= l −1 then ρ f (p, q) ( λ f (p, q) ) is either zero or

infinity.
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Proof. From the definition of generalised order of an entire function f we have for all suffi-

ciently large values of r ,

log[l ] µ
(

r, f
)

≤

(

ρ[l ]
f
+ε

)

log r (2)

and for a sequence of values of r tending to infinity,

log[l ] µ
(

r, f
)

≥

(

ρ[l ]
f
−ε

)

log r. (3)

Next let a and b be any two positive integers.

Now from (2) we have for all sufficiently large values of r ,

log[l+a]µ
(

r, f
)

≤ log[1+a] r +O(1) i.e.,
log[l+a]µ

(

r, f
)

log[1+b] r
≤

log[1+a] r +O(1)

log[1+b] r
. (4)

If we take l +a = p and 1+b = q ,then p −q = (l −1)+ (a −b).

We discuss the following three cases:

Case I. Let a = b. Then from (4) we get for all sufficiently large values of r ,

log[p]µ
(

r, f
)

log[q] r
≤ 1+

O(1)

log[1+a] r
i.e., limsup

r→∞

log[p]µ
(

r, f
)

log[q] r
≤ 1. (5)

Similarly from (3) we have for a sequence of values of r tending to infinity,

log[p]µ
(

r, f
)

log[q] r
≥ 1+

O(1)

log[1+a] r
i.e., limsup

r→∞

log[p]µ
(

r, f
)

log[q] r
≥ 1. (6)

Now from(5) and (6) we have

ρ f (p, q)= 1 when p −q = l −1.

Case II. Let a > b
(

i.e., p −q 6= l −1
)

. Then from (4) we have for all sufficiently large values of

r ,

lim sup
r→∞

log[p] µ
(

r, f
)

log[q] r
≤ 0 i.e., ρ f (p, q) = 0 when p −q 6= l −1.

Case III. Also let us choose a and b such that a < b and l +a > 1+b
(

i.e., p −q 6= l −1
)

. Then

from (3) it can be proved for a sequence of values of r tending to infinity that

limsup
r→∞

log[p]µ
(

r, f
)

log[q] r
≥∞ i.e., ρ f (p, q) =∞ when p −q 6= l −1.

Therefore combining Case II and Case III (not violating the condition p > q), it follows that

ρ f (p, q) is either zero or infinity.
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Similarly we may prove the conclusion for λ f (p, q).

This proves the lemma. ���

3. Main results

In this section we present the main results of the paper.

Theorem 1. Let f and g be any two entire functions such that ρg (m,n)<λ f (p, q) ≤ ρ f (p, q) <

∞, where p, q,m,n are positive integers with p > q,m > n. Then

(i) lim
r→∞

log[p]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0 if q ≥ m

and

(ii) lim
r→∞

log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0 if q <m.

Proof. Since ρg (m,n)<λ f (p, q), we can choose ε (> 0) is such a way that

ρg (m,n)+ε<λ f (p, q)−ε. (7)

Now in view of the inequality (1),we have from Lemma 2 for all sufficiently large values of r ,

µ
(

r, f ◦ g
)

≤ M
(

r, f ◦ g
)

≤ M
(

M
(

r, g
)

, f
)

i.e., log[p] µ
(

exp[n−1] r, f ◦ g
)

É log[p] M
(

M
(

exp[n−1] r, g
)

, f
)

i.e., log[p] µ
(

exp[n−1] r, f ◦ g
)

É
(

ρ f

(

p, q
)

+ε
)

log[q] M
(

exp[n−1] r, g
)

. (8)

Now the following two cases may arise:

Case I. Let q Êm.

Then we have from (8) for all sufficiently large values of r ,

log[p] µ
(

exp[n−1] r, f ◦ g
)

É
(

ρ f

(

p, q
)

+ε
)

log[m−1] M
(

exp[n−1] r, g
)

. (9)

Again for all sufficiently large values of r,

log[m] M
(

exp[n−1] r, g
)

É
(

ρg (m,n)+ε
)

log[n] exp[n−1] r

i.e., log[m] M
(

exp[n−1] r, g
)

É
(

ρg (m,n)+ε
)

log r

i.e., log[m] M
(

exp[n−1] r, g
)

É log r (ρg (m,n)+ε)

i.e., log[m−1] M
(

exp[n−1] r, g
)

É r (ρg (m,n)+ε). (10)

Now from (9) and (10) we have for all sufficiently large values of r ,

log[p] µ
(

exp[n−1] r, f ◦ g
)

É
(

ρ f

(

p, q
)

+ε
)

r (ρg (m,n)+ε). (11)
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Case II. Let q < m.

Then for all sufficiently large values of r we get from (8) that

log[p]µ
(

exp[n−1] r, f ◦ g
)

É
(

ρ f

(

p, q
)

+ε
)

exp[m−q] log[m] M
(

exp[n−1] r, g
)

. (12)

Again for all sufficiently large values of r,

log[m] M
(

exp[n−1] r, g
)

É
(

ρg (m,n)+ε
)

log[n] exp[n−1] r

i.e., log[m] M
(

exp[n−1] r, g
)

É
(

ρg (m,n)+ε
)

log r

i.e., log[m] M
(

exp[n−1] r, g
)

É log r ρg (m,n)+ε

i.e., exp[m−q] log[m] M
(

exp[n−1] r, g
)

É exp[m−q] log r ρg (m,n)+ε

i.e., exp[m−q] log[m] M
(

exp[n−1] r, g
)

É exp[m−q−1] r ρg (m,n)+ε. (13)

Now from (12) and (13) we have for all sufficiently large values of r ,

log[p]µ
(

exp[n−1] r, f ◦ g
)

≤
(

ρ f

(

p, q
)

+ε
)

exp[m−q−1] r ρg (m,n)+ε

i.e., log[p+1]µ
(

exp[n−1] r, f ◦ g
)

É exp[m−q−2] r ρg (m,n)+ε

i.e., log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

É log[m−q−2] exp[m−q−2] r ρg (m,n)+ε

i.e., log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

É r ρg (m,n)+ε. (14)

Again for all sufficiently large values of r, we obtain that

log[p]µ(exp[q−1] r, f ) Ê (λ f (p, q)−ε) log[q] exp[q−1] r

i.e., log[p]µ(exp[q−1] r, f ) Ê (λ f (p, q)−ε) log r

i.e., log[p]µ(exp[q−1] r, f ) Ê log r (λ f (p,q)−ε)

i.e., log[p−1]µ(exp[q−1] r, f ) Ê r (λ f (p,q)−ε). (15)

Now combining (11) of Case I and (15) we get for all sufficiently large values of r that

log[p]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
≤

(

ρ f

(

p, q
)

+ε
)

r (ρg (m,n)+ε)

r (λ f (p,q)−ε)
. (16)

Now in view of (7) it follows from (16) that

lim sup
r→∞

log[p]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0 i.e., lim

r→∞

log[p]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0.

This proves the first part of the theorem.

Again combining (14) of Case II and (15) we obtain for all sufficiently large values of r that

log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
≤

r ρg (m,n)+ε+O(1)

r (λ f (p,q)−ε)
. (17)
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Now in view of (7) it follows from (17) that

lim sup
r→∞

log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0 i.e., lim

r→∞

log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0.

This establishes the second part of the theorem. ���

Remark 1. The condition ρg (m,n) < λ f

(

p, q
)

in Theorem 1 is essential as we see in the fol-

lowing example:

Example 1. Let f = g = exp z and p = m = 2, q =n = 1. Then

ρg (m,n)=λ f (p, q)= ρ f (p, q)= 1.

Now

logµ(r, f ◦ g ) ≥ log M (
r

2
, f ◦ g )+O(1) ≥ T (

r

2
, f ◦ g )+O(1)

= T (
r

2
,exp[2] z)+O(1) ∼

exp
(

r
2

)

(

2π3 r
2

)
1
2

+O(1) (r →∞)

i.e., log[2]µ(r, f ◦ g ) ≥
r

2
−

1

2
log r +O(1)

and logµ(r, f ) ≤ log M (r, f )= log M (r,exp z)= r.

Then

lim
r→∞

log[p+m−q−1] µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= lim

r→∞

log[2]µ
(

r, f ◦ g
)

logµ(r, f )

≥ lim
r→∞

r
2 −

1
2 log r +O(1)

r

=
1

2
6= 0,which is contrary to Theorem 1.

Theorem 2. Let f and g be any two entire functions such that λg (m,n)<λ f (p, q) ≤ ρ f (p, q) <

∞, where p, q,m,n are positive integers with p > q,m > n. Then

(i) lim inf
r→∞

log[p]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0 if q ≥ m

and

(ii) lim inf
r→∞

log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0 if q < m.

Proof. For a sequence of values of r tending to infinity that

log[m] M
(

exp[n−1] r, g
)

É
(

λg (m,n)+ε
)

log[n] exp[n−1] r
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i.e., log[m] M
(

exp[n−1] r, g
)

É
(

λg (m,n)+ε
)

log r

i.e., log[m] M
(

exp[n−1] r, g
)

É log r λg (m,n)+ε

i.e., log[m−1] M
(

exp[n−1] r, g
)

É log r λg (m,n)+ε. (18)

Now from (9) and (18), we have for a sequence of values of r tending to infinity that

log[p]µ
(

exp[n−1] r, f ◦ g
)

É
(

ρ f

(

p, q
)

+ε
)

r λg (m,n)+ε. (19)

Combining (15) and (19) we get for a sequence of values of r tending to infinity that

log[p]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
≤

(

ρ f

(

p, q
)

+ε
)

r λg (m,n)+ε

r (λ f (p,q)−ε)
. (20)

Now in view of (7) it follows from (20) that

lim inf
r→∞

log[p]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0.

This proves the first part of the theorem.

Again for a sequence of values of r tending to infinity that

log[m] M
(

exp[n−1] r, g
)

É
(

λg (m,n)+ε
)

log[n] exp[n−1] r

i.e., log[m] M
(

exp[n−1] r, g
)

É
(

λg (m,n)+ε
)

log r

i.e., log[m] M
(

exp[n−1] r, g
)

É log r (λg (m,n)+ε)

i.e., exp[m−q] log[m] M
(

exp[n−1] r, g
)

É exp[m−q] log r (λg (m,n)+ε)

i.e., exp[m−q] log[m] M
(

exp[n−1] r, g
)

É exp[m−q−1] r (λg (m,n)+ε). (21)

Now from (12) and (21), we have for a sequence of values of r tending to infinity that

log[p] µ
(

exp[n−1] r, f ◦ g
)

É
(

ρ f

(

p, q
)

+ε
)

exp[m−q−1] r (λg (m,n)+ε)

i.e., log[p+1]µ
(

exp[n−1] r, f ◦ g
)

É exp[m−q−2] r (λg (m,n)+ε)

i.e., log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

É log[m−q−2] exp[m−q−2] r (λg (m,n)+ε)

i.e., log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

É r (λg (m,n)+ε). (22)

Combining (15) and (22) we obtain for a sequence of values of r tending to infinity that

log[p+m−q−1] µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
≤

r λg (m,n)+ε

r λ f (p,q)−ε
. (23)

Now in view of (7) it follows from (23) that

lim inf
r→∞

log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= 0.

This establishes the second part of the theorem. ���
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Remark 2. The condition λg (m,n) < λ f

(

p, q
)

in Theorem 2 is necessary which is evident

from the following example:

Example 2. Let f = g = exp z and p = m = 2, q =n = 1. Then

λg (m,n)=λ f (p, q) = ρ f (p, q) = 1.

Now

logµ(r, f ◦ g ) ≥ log M (
r

2
, f ◦ g )+O(1) ≥ T (

r

2
, f ◦ g )+O(1)

= T (
r

2
,exp[2] z)+O(1) ∼

exp
(

r
2

)

(

2π3 r
2

) 1
2

+O(1) (r →∞)

and

logµ(r, f ) ≤ log M (r, f ) = log M (r,expz) = r.

Therefore

lim inf
r→∞

log[p+m−q−1]µ
(

exp[n−1] r, f ◦ g
)

log[p−1]µ(exp[q−1] r, f )
= lim inf

r→∞

log[2]µ
(

r, f ◦ g
)

logµ(r, f )

≥ lim inf
r→∞

r
2 −

1
2 log r +O(1)

r

=
1

2
6= 0,which is contrary to Theorem 2.

Theorem 3. Let f and g be any two entire functions such that

(A) ρg <∞, (B ) λ[l ]
f

> 0 and (C ) λ f ◦g (a,b) > 0 where l , a,b are all positive integers with l ≥ 2

and a > b. Also let A < ρg . Then for any two positive integers m,n such that m −n = 1 and

m > 2,

limsup
r→∞

log[a]µ(exp[b−1] r, f ◦ g ) log[l ] µ(r, f ◦ g )
{

log[m]µ(exp[n]
(

r A
)

, g )
}{

log[m]µ(exp[n−1] r, g )
} =∞.

Proof. Let us choose 0 < ε< min
{

λ[l ]
f

,λ f ◦g (a,b),ρg

}

.

Now from Lemma 1, we get for a sequence of values of r tending to infinity that

log[l ] µ
(

r, f ◦ g
)

≥ log[l ] µ

(

1

8
µ

(r

4
, g

)

−
∣

∣g (0)
∣

∣ , f

)

+O(1)

i.e., log[l ] µ
(

r, f ◦ g
)

≥ (λ[l ]
f
−ε) logµ

(r

4
, g

)

+O(1)

i.e., log[l ] µ
(

r, f ◦ g
)

≥ (λ[l ]
f
−ε)

( r

4

)ρg−ε
. (24)

Since ρg (m,n)= 1, in view of Lemma 3 it follows for all sufficiently large values of r that

log[m] µ(exp[n]
(

r A
)

, g ) ≤ (1+ε) log[n] exp[n](r A)
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i.e., log[m]µ(exp[n]
(

r A
)

, g ) ≤ (1+ε)(r A ). (25)

Now from (24) and (25), we get for a sequence of values of r tending to infinity that

log[l ] µ(r, f ◦ g )

log[m]µ(exp[n]
(

r A
)

, g )
≥

(λ[l ]
f
−ε)

(

r
4

)ρg−ε

(1+ε)(r A)
. (26)

Again for all sufficiently large values of r,

log[a]µ(exp[b−1] r, f ◦ g ) ≥
(

λ f ◦g (a,b)−ε
)

log r

and

log[m]µ(exp[n−1] r, g ) ≤ (1+ε) log r.

Therefore from the above two inequalities we get for all sufficiently large values of r that

log[a]µ(exp[b−1] r, f ◦ g )

log[m]µ(exp[n−1] r, g )
≥

λ f ◦g (a,b)−ε

1+ε
.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

log[a]µ(exp[b−1] r, f ◦ g )

log[m]µ(exp[n−1] r, g )
≥λ f ◦g (a,b). (27)

As A < ρg , we can choose ε in such a way that

A < ρg −ε. (28)

Now from (26) and (28) it follows that

lim sup
r→∞

log[l ] µ(r, f ◦ g )

log[m]µ(exp[n]
(

r A
)

, g )
=∞. (29)

Thus the theorem follows from (27) and (29) . ���

Corollary 1. Under the same conditions of Theorem 3 when m = 2

lim sup
r→∞

log[a]µ(exp[b−1] r, f ◦ g ) log[l ]µ(r, f ◦ g )
{

log[2]µ(exp
(

r A
)

, g )
}{

log[2]µ(r, g )
} =∞.

Remark 3. The condition λ[l ]
f
> 0 in Corollary 1 is essential as we see in the following example:

Example 3. Let

f = z and g = exp z.

Also let

l = a = 2 and b = 1.
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Then

λ f = 0 and ρg =λ f ◦g = 1.

Now

log[2]µ(r, f ◦ g ) ≤ log[2] M (r, f ◦ g ) = log[2] M
(

r, g
)

= log r

and

log[2]µ(r, g ) ≥ log[2] M (
r

2
, g ) = log r +O(1).

Hence

lim sup
r→∞

{

log[2]µ(r, f ◦ g )
}2

log[2]µ(exp
(

r A
)

, g ) log[2]µ
(

r, g
) ≤ lim sup

r→∞

{

log r
}2

r A

2

{

log r +O(1)
}

= 0, which is contrary to Corollary 1.

Theorem 4. Let f be an entire function such that 0 <λ f (p, q) ≤ ρ f (p, q) <∞ . Also let g be an

entire function with ρ[l ]
g > 0. Then

(i) lim sup
r→∞

log[p]µ(r, f ◦ g )

log[p] µ(exp[l−1] (r µ) , f )
=∞ if q = l −1

(ii) lim sup
r→∞

log[p]µ(r, f ◦ g )

log[p] µ(exp[l−1] (r µ) , f )
≥

ρ[l ]
g λ f

(

p, q
)

µρ f

(

p, q
) if q = l

and

(iii) lim sup
r→∞

log[p]µ(r, f ◦ g )

log[p] µ(exp[l−1] (r µ) , f )
≥

λ f

(

p, q
)

ρ f

(

p, q
) if q > l

where µ< ρ[l ]
g and p, q, l are positive integers with p > q.

Proof. By Lemma 1 we obtain for a sequence of values of r tending to infinity,

log[p] µ
(

r, f ◦ g
)

≥ log[p]µ

(

1

8
µ

(r

4
, g

)

, f

)

+O(1)

i.e., log[p]µ(r, f ◦ g ) ≥ (λ f

(

p, q
)

−ε) log[q]µ
(r

4
, g

)

+O(1)

i.e., log[p]µ(r, f ◦ g ) ≥ (λ f

(

p, q
)

−ε) log[q−l+1] log[l−1]µ
(r

4
, g

)

+O(1)

i.e., log[p]µ(r, f ◦ g ) ≥ (λ f

(

p, q
)

−ε) log[q−l+1]
( r

4

)

(

ρ[l ]
g −ε

)

+O(1). (30)

Again from the definition of ρ f

(

p, q
)

it follows for all sufficiently large values of r that

log[p]µ(exp[l−1]
(

r µ
)

, f ) ≤
(

ρ f

(

p, q
)

+ε
)

log[q] exp[l−1]
(

r µ
)

i.e., log[p]µ(exp[l−1]
(

r µ
)

, f ) ≤
(

ρ f

(

p, q
)

+ε
)

log[q−l+1] (

r µ
)

. (31)
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Thus from (30) and (31) we have for a sequence of values of r tending to infinity that

log[p]µ(r, f ◦ g )

log[p]µ(exp[l−1] (r µ) , f )
≥

(λ f

(

p, q
)

−ε) log[q−l+1] (

r
4

)

(

ρ[l ]
g −ε

)

+O(1)
(

ρ f

(

p, q
)

+ε
)

log[q−l+1] (r µ)
. (32)

Since µ< ρ[l ]
g , the theorem follows from (32). ���

Remark 4. The condition µ< ρg in Theorem 4 is essential as we see in the following example:

Example 4. Let f = g = exp z and p = m = 2, q = n = 1, l = 2. Also let µ= 1. Then

λ f (p, q) =ρ f (p, q) = 1 and ρ[l ]
g = ρg = 1.

Now

logµ
(

r, f ◦ g
)

≤ log M
(

r, f ◦ g
)

≤ 3T (2r, f ◦ g ) ∼
3exp(2r )
(

4π3r
)

1
2

(r →∞)

and

µ(expr, f ) ≤ M (expr, f ) = exp[2] r.

Therefore

lim sup
r→∞

log[p]µ(r, f ◦ g )

log[p]µ(exp[l−1] (r µ) , f )
= lim sup

r→∞

log[2]µ(r, f ◦ g )

log[2]µ(expr, f )

≤
2r −

1
2 log r +O(1)

r
= 2 6=∞,which is contrary to Theorem 4.

Theorem 5. Let f and g be any two entire functions such that 0 <λ f (p, q)≤ ρ f (p, q)<∞ and

ρg (m,n)<∞, where p, q,m,n are positive integers with p > q, m >n. Then

(i) limsup
r→∞

log[p+1]µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
É

ρg (m,n)

λ f (p, q)
if q ≥ m

and

(ii) limsup
r→∞

log[p+m−q] µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
É

ρg (m,n)

λ f (p, q)
if q <m.

Proof. We have for all sufficiently large values of r

log[p] µ(exp[q−1] r, f ) ≥
(

λ f (p, q)−ε
)

log[q] exp[q−1] r

i.e., log[p] µ(exp[q−1] r, f ) ≥
(

λ f (p, q)−ε
)

log r. (33)

Case I. If q Ê m , then from (11) and (33) we get for all sufficiently large values of r that

log[p+1]µ
(

exp[n−1] r, f ◦ g
)

log[p] µ(exp[q−1] r, f )
É

(

ρg (m,n)+ε
)

log r +O(1)
(

λ f (p, q)−ε
)

log r
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i.e., limsup
r→∞

log[p+1]µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
É

ρg (m,n)+ε

λ f (p, q)−ε
.

Since ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log[p+1]µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
É

ρg (m,n)

λ f (p, q)
.

This proves the first part of the theorem.

Case II. If q < m then from (14) and (33) we obtain for all sufficiently large values of r that

log[p+m−q] µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
É

(

ρg (m,n)+ε
)

log r +O(1)
(

λ f (p, q)−ε
)

log r

i.e., limsup
r→∞

log[p+m−q] µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
É

ρg (m,n)+ε

λ f (p, q)−ε
.

As ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log[p+m−q] µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
É

ρg (m,n)

λ f (p, q)
.

Thus the second part of the theorem is established. ���

Remark 5. The condition ρg (m,n) <∞ in Theorem 5 is necessary which is evident from the

following example:

Example 5. Let f = exp z, g = exp[2] z and p = m = 2, q = n = 1. Then

λ f (p, q) =ρ f (p, q) = 1 and ρg (m,n) =∞.

Now

log[3]µ(r, f ◦ g ) ≥ log[3] M (
r

2
, f ◦ g )+O(1)

i.e., log[3]µ(r, f ◦ g ) ≥ log[3] M (
r

2
, f ◦ g )+O(1)

i.e., log[3]µ(r, f ◦ g ) ≥ log[3] exp[3]
(r

2

)

+O(1)

i.e., log[3]µ(r, f ◦ g ) ≥
( r

2

)

+O(1)

and

log[2]µ(r, f ) ≤ log[2] M (r, f ) = log r.

Therefore

limsup
r→∞

log[p+m−q] µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
= lim sup

r→∞

log[2] T (r, f ◦ g )

log[2]µ(r, f )
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i.e., lim sup
r→∞

log[p+m−q]µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
≥ lim sup

r→∞

r
2 +O(1)

log r

i.e., lim sup
r→∞

log[p+m−q]µ
(

exp[n−1] r, f ◦ g
)

log[p]µ(exp[q−1] r, f )
=∞,

which is contrary to Theorem 5.
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