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CONDITIONS FOR THE UNIVALENCE OF CERTAIN
INTEGRAL OPERATORS

R. AGHALARY, A. EBADIAN AND P. ARJOMANDINIA

Abstract. In the present paper, we consider two integral operators defined on special
subclass of o/, namely U, (A, 1) with n € N. Using the extension of Becker’s lemma, we
obtain new univalence criterions for the operators in the open unit diskD ={z € C: |z| <
1}. Finally, we deduce some corollaries of the main results.

1. Introduction

Let H(D) denote the class of all analytic functions in D and «#,, be the subclass of H(D)
containing the functions f of the form

f@)=z+ap 12"+,

with «f] = of. Suppose that S € of denote the class of normalized analytic and univalent func-
tions in D. For fixed real numbers A and p with 0 < A <1 and u(1 + 1) < n consider the class
U, (A, 1) defined by

z p+1
(f( )) flz)-1 <A,ze[n>}, (1.1)

such that f(z) # 0 for ze D\ {0}. For n = 1, we have U, (A, u) = U(A, u), where the class U(A, )
was defined and studied by authors in [1, 7]. For more details about U, (A, u) see [8]. Now,

Unm,m:{fed

consider the following integral operator

Fop(2) = {ﬁ/ - 11—[(ﬁ(t)) ldt} ;(@i€CzeD,i=1,...,m), (1.2)

where f; € o, € C,R(B) > 0,a = (a1,...,ay) and fj(z)/z # 0 for i = 1,..., m. Note that all
powers in (1.2) are principal ones. This integral operator was introduced and studied by Breaz
[2].
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Fora;, BieC,a=(a,...,am),B=B1,...,Bm), fi €« and fi(z)/z#0forall f;,i=1,...,m,
consider the integral operator G4 g(z) defined by

G o= [F T (L2 4 _
ap(2) = | [T @ — dt; (zeD,i=1,...,m). (1.3)
i=1

This integral operator was studied and used by Frasin [4].

The aim of this note is to use other methods and obtain new univalence conditions for
the operators defined by (1.2) and (1.3). In order to get the purpose, we need the following

lemmas.

Lemma 1.1. ([6]). Let fe Cand R(B) >0,c e C\ {-1} with |c| =< 1. If f € of satisfies

Zfl/(z)
clz?P + (1 —121%) 5 <1; (zeD),
then the integral operator
z l/ﬁ
Fp(2) = {ﬁfo tﬁ_lf’(t)dt} (1.4)

is univalent in D.

Lemma 1.2. [[5]] Let f € C withR(B) > 0. If f € of satisfies

1— |Z|2%(ﬁ)
R(B)

Zf//(z)

@ <1; (zeD),

then the integral operator defined by (1.4) is univalent in D.

2. Main results
We begin with the following lemma that will be used in the next theorems.

Lemma 2.1. For fixed real numbers 1 and pwith0 <A <1and u(1+A1) <nlet f e U,(A, .
There exists an analytic function w(z) in D, where |w(z)| < 1 for z€ D and w(0) = w'(0) =--- =

w™ Y (0) = 0, such that
z2f'(z)  1+Aw(2)

f@ 1 Apfy M@y

; (zeD). 2.1

Proof. For f € 7, such that f(z)/z # 0, we can write

( z )y+1_ 1 ~ 1
f@ T A+ ans12 ) 14 (et Dapg 2"+
=1-(u+Dap12"+--.
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So, we obtain

z p+1
(_) @ =1+n-man 2"+

f(2)
= 1+A((n_u)an+1z”+---
Therefore, by definition, for f € U, (A, 1) there exists an analytic function w(z) with |w(z)| <1
inDand w(0) = w'(0) =...= w"™ Y (0) =0, such that
(L)”Hf’(z) =1+ Aw(2). 2.2)
f(2)

Let p(2) = (z/ f(2))*, then p is an analytic function in D and p(0) = 1. Differentiating logarit-
mically from p(z), we get
zp'(2) — u(p(z) = 1) = —pAw(z). (2.3)

Solving the first order differential equation (2.3) we conclude that

plz)=1- Auf dt (zeD),
or equally
z 1
P2y - 240
1-Apf, rd t
Using (2.2) and (2.4), finally we obtain
zf'(z 1+Aw(z
ff e iy <D
1= A fy e dt
This completes the proof. O

Theorem 2.1. Letforalli=1,...,m, fi e U,(A;,u;) with0< A; <1 and y;(1+A;) < n. If

m
Z/lilail
i=1

n+lu;l-
— (Ui + Ay |/Jt|)

<1pl,

then the integral operator Fy () defined by (1.2) is univalent in D.
Proof. To prove this, define the function

P(z) = H(fl()) ldt; (aj€C,zeD,i=1,...,m).

Then ¢ is analytic in D, ¢»(0) = 0,¢'(0) = 1 and

¢ @=] (@)a

i=1
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From this and Lemma 2.1 we obtain

Z(l)” (Z)
¢'(2)

no(zfi(2)
a; -1
1 fi(2)

i=

m
Zai/l,-(
i=1

. (2.5)

1 w;

wi(2) + i fo ”;”Ef)dt)
1 w;

1—Aili fy “t’ufif)dt

Because |w;(z)| < 1in D and w;(0) = w;(O) =...= wE"‘D(O) = 0, by generalized Schwarz’s

lemma we have |w;(z)| <|z|" fori =1,..., m. Hence

flwl'(tZ) _(Mlate el
0 tﬂ,‘-l—l 0 tﬂ,‘+1 - n_“l.

The last inequality then shows that

1 w;(t
wi(2) +pi Jo g dt

1 w;(t
1= Aipi fy L2 dt

n, lwillzl”
AT S el = )zl
_1_/1”%2?” n— (i + Ailpillzlm

(2.6)

Set "
_ (n+pil=pix

ki(x)
l n— i = Ailpilx"

;(0<sx<l1,i=1,...,m),

then it is easy to see that k; (0) =0and k; (x) >0 for 0 < x < 1. Therefore

sup ki) = IR Gy,

0<x<1 n—(u; +Ailpil)

Now, from (2.5), (2.6) and last equality we deduce that

Z(p// (Z)
¢'(2)

& n+ il — i )
< AAI(X‘I(— . 2.7)
izzi T = (g Al

Finally, the assumption of theorem and inequality (2.7) show that

m

z¢" (2) 1
s — 2 Aila;
B |~ ip M

Applying Lemma 1.1 for ¢p(z), we conclude that F,, p(2) €S. O

’(1 —2/%)

n+ il = pi )<1
n—(ui+Ailu))~

Taking py; =0 and A; = 1 in Theorem 2.1, we obtain the following result.

Corollary 2.1 ([9]). Letforalli=1,...,m,a; €C, f; € ofp, f € C withR(B) >0 and|zﬁ(zz)) - 1' <

L Ifa=(ay,...,am) and 372, |a;| < |Bl, then the integral operator defined by (1.2) is univalent
inD.

Using Lemma 1.2 and the same techniques as in the proof of Theorem 2.1, we obtain

another univalence condition for F, p(2).
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Corollary 2.2. Suppose thatfori=1,...,m,a; €C, f; € U,(A;, i), where0 < 1; <1 and p;(1+
Aj)<n.If BeCand
= n+ gl = pi
R(PB) =) Ailaj||———————],
h ,:Zi T = (i + Al
then the integral operator defined by (1.2) belongs to S.

In the next theorem, we give sufficient condition for the operator G, g(z) defined by (1.3)
to be univalent in D.

Theorem 2.2. Suppose that a;, ; € C and f; € U, (A;, u;) with0< A; <1 and y;(1+ ;) < nfor
alli=1,....m.Ifa=(ay,...,am),=_P1,...,Bm) and

3 A, (ZIaiI N (la; X+ p) | +1B:D(n+ | il _Hi)) <1,
i=1 n—(u; +Ailpil)

then the integral operator defined by (1.3) is univalent in D.

Proof. Consider the function ¢(z) by

. Bi
(@) dr. (2.8)

$(2) = Ga,p(2) = 5 [T @
i=1

Then ¢(0) =0,¢'(0) = 1 and ¢(z) € H(D). From (2.8) we see that
1" m " /
z¢" (2) -y aizfﬁ (2) 45, zf(2) )
(O B fl (2) fi(2)

The formula (2.2) shows that for f; € U, (A, u;) there exists a Schwarz function w;(z) with
w;i(0) = wi0) =...= wgn_l) (0) = 0, such that

z wi+l
(f'(z)) fl(@=1+Aiw(2); (i=1,...,m). 2.9)

Differentiating logaritmically from (2.9), we obtain that

zfi'(2) . zf(2) Aizwi(z)
o M e T T e U

1,...,m).

The last relation shows that

2 e _ > {(ai(1+ﬂi)+,3i)(

zf](2) ) a,-xl,-zw;(z)}
B it Aac O

RGO fi(2 1+ A w;(2)
By Schwarz’s lemma |w;(z)| < |z|", also by Pick-Schwarz's lemma (see [3]) we have |w}(z)| <
%iz(lzz)lz. So we deduce that
zwi(2) 3 Ed 1= lwi@P _ 121+ 1wi@D) _ 1210+ [21") .10
1+ ALiw;(2) |~ 1-Alwi(@)]  1-]zf? 1—|zf2 1— |22
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The formula (2.1) and inequality (2.10) then show that

Z(/)” (Z)
¢'(2)

m

=3 {(la,-(l Sl + IBiDA;

i=1

(n+ 1l —p)lzl" N Ailaillzl(1 +]z]™) }
n—(ui+Ailpillzl™ 1—|zf?

Multiplying both sides to (1 — |z|%), we conclude that

(1—|Z|2) Z¢/ (2) SZ/li (2|ai|+ (la;( Wil |ﬁl|)(n il 'Ul))Sl,
¢'(2) et n—(u;+Ailpl)
by the assumption of theorem. The result now follows from Lemma 1.2. a
Letting A; = 1,u; = —1 in Theorem 2.2, we obtain the following result. For the similar

results see [4].

Corollary 2.3. Suppose that f; € o, Ifl.’(z) —-1l<1lfori=1,...,mand
m 2
Y Qlal+ 1611+ N=L (@ fieCi=1,....m).
i=1

Then the integral operator G, p(2) defined by (1.3) belongs to S.

Finally, using the same techniques as in the proof of Theorem 2.1, we obtain the following
result, but we omit the details. See [4] for the similar results.

Corollary 2.4. Letfori=1,...,m,0<A; <1, u;(1+A;) <nand f; € U, (A, ui). If

Y Ailal M) <1; (a;€0),
= n—(u;+Ailpil)
then the integral operator
z m (¢t @
P(z) = (fl()) dt; (zeD),
0 j=1\ 1
is convex (univalent) function of order
& n+ il - pi )
=1-) Ailaj||———————]. (2.11)
¥m lzzl T = (i + Al
Proof. The inequality (2.7) shows that
Z(l)”(Z))
R S e T
’ ( ') T
where v, is given by (2.11). Therefore we have
i
RI1+ 2 (Z)) >Ym,
¢'(2)

and ¢(z) is convex of order y,, (see [3]). a
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