
TAMKANG JOURNAL OF MATHEMATICS

Volume 36, Number 2, 93-101, Summer 2005

INTEGRAL OPERATOR AND OSCILLATION OF SECOND ORDER

ELLIPTIC EQUATIONS

ZHITING XU AND HONGYAN XING

Abstract. By using integral operator, some oscillation criteria for second order elliptic differ-

ential equation
d
∑

i,j=1

Di[Aij(x)Djy] + q(x)f(y) = 0, x ∈ Ω, (E)

are established. The results obtained here can be regarded as the extension of the well-known

Kamenev theorem to Eq.(E).

1. Introduction and Preliminaries

We are concerned with the oscillatory behavior of second order elliptic differential

equation of the form
d
∑

i,j=1

Di[Aij(x)Djy] + q(x)f(y) = 0, (1)

where x = (x1, · · · , xd) ∈ Ω(a) ⊆ R
d, d ≥ 2, |x| = [

∑d
i=1 x2

i ]
1/2, Diy = ∂y/∂xi for all i,

Ω(a) = {x ∈ R
d : |x| ≥ a} for some a > 0.

Throughout this paper, we assume that the following conditions holds:

(A1) A = (Aij) is a real symmetric positive definite matrix function with Aij ∈

C1+ν
loc (Ω(a), R) for all i, j, and ν ∈ (0, 1).

Denote by umax(x) the largest eigenvalue of the matrix A. We suppose that there

exists a function u ∈ C([a,∞), R+) such that

u(r) ≥ max
|x|=r

umax(x), for r ≥ a;

(A2) q ∈ Cν
loc(Ω(a), R), ν ∈ (0, 1), and q(x) does not eventually vanish;

(A2) f ∈ C(R, R) ∪ C1(R − {0}, R), yf(y) > 0 whenever y 6= 0, and f ′(y) ≥ k > 0

for all y 6= 0.
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As usual, a function y ∈ C2+ν
loc (Ω(a), R), ν ∈ (0, 1), is called a solution of Eq.(1)

if y(x) satisfies Eq.(1) for all x ∈ Ω(a). We restrict our attention only the nontrivial
solution of Eq.(1), i.e., to the solution y(x) such that sup{|y(x)| : x ∈ Ω(b)} > 0 for every
b ≥ a. Regarding the question of existence of solution of Eq.(1) we refer the reader to
the monograph [2]. A nontrivial solution y(x) of Eq.(1) is said to be oscillatory in Ω(a)
if the set {x ∈ Ω(a) : y(x) = 0} is unbounded, otherwise it is said to be nonoscillatory.
Eq.(1) called oscillatory if all its nontrivial solutions are oscillatory.

Investigation of oscillation of Eq.(1) with variable coefficient q(x) was initiated by
Noussair and Swanson [5], who first extended the well-known Fite-Wintner Theorem
(see Fite [1] and Wintner [10]) to Eq.(1). As an excellent survey paper, the reader is to
recommended to Swanson [6]. Recently, Xu [7], [8] and Zhang et al. [9] have discussed
the oscillation property of Eq.(1) under the assumption that the function q(x) is an
“integrally small” coefficient, and have shown that most of Kamenev’s results in [3] do
hold equally well in the case for Eq.(1). However, as far as the authors know there are
few results by using integral averaging techniques [4], even through the function q(x)
is nonnegative. Motivated by this fact, we intend here to establish Kamenev’s integral
theorem for oscillation of Eq.(1) based on the integral operator [11]. We are especially
interested in case where q may be take on negative values for arbitrarily large |x|. Our
methodology is somewhat different from that of previous authors, we believe that our
approach is simpler and also provides a more unified for the study of Kamenev-type
oscillation theorems.

Now, we introduce the general mean and the integral operator.
Following Wong [11], let D = {(r, s) : r ≥ s ≥ a} ∈ R

2, and D0 = {(r, s) : r >
s ≥ a} ∈ R

2. Consider the kernel function H(r, s) ∈ C1(D, R) such that the following
conditions are satisfied:

(H1) H(r, r) = 0 for r ≥ a; H(r, s) > 0 on (r, s) ∈ D0;
(H2) For each s ≥ a, limr→∞ H(r, s) = ∞, and there exists a positive constant k0

such that

lim
r→∞

H(r, s)

H(r, a)
= k0, for all s ≥ a;

(H3)
∂H

∂s
(r, s) ≤ 0, −

∂H

∂s
(r, s) = h(r, s)H(r, s), and

∂h

∂r
(r, s) ≤ 0, for (r, s) ∈ D0.

Let ρ ∈ C1([a,∞), R+), we define an integral operator Πρ
τ , which is defined in [11],

in terms of H(r, s) and ρ(s) as

Πρ
τ (Θ; r) =

∫ r

τ

H(r, s)Θ(s)ρ(s)ds, for r > τ ≥ a, (2)

where Θ ∈ C([a,∞), R).

For natational simplicity, for arbitrary given functions Φ ∈ C1([a,∞), R+) and (uφ) ∈
C1([a,∞), R), we define

Q(r) = Φ(r)

{
∫

Sr

q(x) dσ +
k

ω
u(r)φ2(r)r1−d − [u(r)φ(r)]′

}

,
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(3)

p(r) = −

[

Φ′(r)

Φ(r)
+

2k

ω
φ(r)r1−d

]

, g(r) =
kr1−d

ωu(r)Φ(r)
,

where Sr = {x ∈ R
d : |x| = r} for r > a, dσ denotes the spherical integral element in R

d,

ω denotes the surface area of unit sphere in R
d, i.e., ω = 2π

d
2 /Γ(d

2 ).

Lemma 1.[11] Let H(r, s) ∈ C1(D, R) satisfying (H1)−(H3) and ρ(s) ∈ C([a,∞), R).

Then

(i) lim
r→∞

1

H(r, a)

∫ r

a

H(r, s)ρ(s) ds = ∞, if lim
r→∞

∫ r

a

ρ(s) ds = ∞;

(ii)
1

H(r, a)

∫ r

a

H(r, s)ρ(s) ds is nondecreasing in r, if ρ(s) ≥ 0 on [a,∞).

2. Main Results

In this section, we establish Kamenev’s integral oscillation criteria for Eq.(1) based

on the integral operator Πρ
τ . For the sake of simplicity, we always assume that the kernel

function H(r, s) satisfies condition (H1) − (H3), the integral operator Πρ
τ and functions

Q, p, g defined by (2) and (3), respectively.

Theorem 1. Assume that there exist functions Φ ∈ C1([a,∞), R+) and (uφ) ∈

C1([a,∞), R) such that

lim sup
r→∞

1

H(r, a)
Πτ

a

(

Q −
1

4g

[

h + p −
ρ′

ρ

]2
)

= ∞. (4)

Then Eq.(1) is oscillatory.

Proof. Let y(x) be a nonoscillatory solution of Eq.(1). Without loss of generality,

we may assume that y(x) > 0 for all x ∈ Ω(a). Define

W (x) =
1

f(y)
(A∇y)(x), (5)

where ∇y = (D1y, D2y, · · · , Ddy)T denotes the gradient of y(x). Differentiation (5) and

using Eq.(1), we obtain that

div W (x) = −q(x) − f ′(y)(WT A−1W )(x).

Put

Z(r) = Φ(r)

[
∫

Sr

W (x) · µ(x) dσ + u(r)φ(r)

]

, (6)
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where µ(x) = x/|x|, (x 6= 0), denotes the outward unit normal. By Green’s formula in
(6), we have

Z ′(r) =
Φ′(r)

Φ(r)
Z(r)+Φ(r)

{
∫

Sr

divW (x) dσ+[u(r)φ(r)]′
}

=
Φ′(r)

Φ(r)
Z(r)−Φ(r)

{
∫

Sr

q(x)dσ+

∫

Sr

f ′(y)(WT A−1W )(x) dσ−[u(r)φ(r)]′
}

. (7)

In view of (A1),
(WT A−1W )(x) ≥ u−1

max(x)|W (x)|2.

The Schwartz inequality gives

∫

Sr

|W (x)|2 dσ ≥
r1−d

ω

[
∫

Sr

W (x) · µ(x) dσ

]2

.

Thus, by (6) and (7), we obtain

Z ′(r) ≤
Φ′(r)

Φ(r)
Z(r) − Φ(r)

{

∫

Sr

q(x) dσ +
kr1−d

ωu(r)

[
∫

Sr

W (x) · µ(x) dσ

]2

− [u(r)φ(r)]′

}

=
Φ′(r)

Φ(r)
Z(r) − Φ(r)

{

∫

Sr

q(x) dσ +
kr1−d

ωu(r)

[

Z(r)

Φ(r)
− u(r)φ(r)

]2

− [u(r)φ(r)]′

}

= −Φ(r)

{
∫

Sr

q(x) dσ +
k

ω
u(r)φ2(r)r1−d − [u(r)φ(r)]′

}

+

[

Φ′(r)

Φ(r)
+

2k

ω
φ(r)r1−d

]

Z(r) −
kr1−d

ωu(r)Φ(r)
Z2(r). (8)

Denote V (r) = Z(r) + p(r)
2g(r) , (8) can be rewritten as

Z ′(r) + g(r)V 2(r) + Q(r) −
1

4

p2(r)

g(r)
≤ 0. (9)

Applying the integral operator Πρ
b , (b ≥ a), to (9), we obtain

Πρ
b (gV 2) + Πρ

τ

([

h −
ρ′

ρ

]

Z

)

+ Πρ
τ

(

Q −
p2

4g

)

≤ H(r, b)ρ(b)Z(b). (10)

Completing squares of V in (10) yields

Πρ
b

(

g

{

V +
1

2g

[

h −
ρ′

ρ

]}2
)

+ Πρ
b

(

Q −
1

4g

[

h + p −
ρ′

ρ

]2
)

≤ H(r, b)ρ(b)Z(b). (11)

Let b = a and divide (11) through by H(r, a). Note the first term is nonnegative, thus

1

H(r, a)
Πτ

a

(

Q −
1

4g

[

h + p −
ρ′

ρ

]2
)

≤ ρ(a)Z(a). (12)
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Take linsup in (12) as r → ∞. Condition (4) gives a desired contradiction in (12). This
proves Theorem 1.

Remark 1. If we choose the function φ(s) ≡ 0, then Theorem 1 contains Theorem
4 in [5].

Theorem 2. Let Φ and φ be as Theorem 1. Assume that there exist functions
ϕi ∈ C([a,∞), R), (i = 1, 2), such that for τ ≥ a,

lim
r→∞

1

H(r, a)
Πρ

τ

(

1

g

[

h + p −
ρ′

ρ

]2
)

≤ ϕ1(τ), (13)

and

lim sup
r→∞

1

H(r, a)
Πρ

τ (Q) ≥ ϕ2(τ), (14)

where ϕ1 and ϕ2 satisfy

lim
r→∞

1

H(r, a)
Πρ

a

(

gρ−2

[

ϕ2 −
1

4
ϕ1

]2

+

)

= ∞, (15)

and [ϕ(r)]+ = max{ϕ(r), 0}. Then Eq.(1) is oscillatory.

Proof. Proceeding as in the proof Theorem 1, we see (11) holds for all r ≥ a. Divide
(11) by H(r, a) and drop the nonnegative first term and obtain

1

H(r, a)
Πρ

τ (Q) −
1

4

1

H(r, a)
Πρ

τ

(

1

g

[

h + p −
ρ′

ρ

]2
)

≤
H(r, b)

H(r, a)
ρ(τ)Z(τ).

Take limsup in above inequality as r → ∞ and note from (13), (14) and (H2) that

ϕ2(τ) −
1

4
ϕ1(τ) ≤ k0ρ(τ)Z(τ).

From which it follows that

k−2
0 ρ−2(τ)

[

ϕ2(τ) −
1

4
ϕ1(τ)

]2

+

≤ Z2(τ). (16)

Then, it follows from (15) and (16) that

lim
r→∞

1

H(r, a)
Πρ

a(gZ2) ≥ lim
r→∞

k−2
0

H(r, a)
Πρ

a

(

gρ−2

[

ϕ2 −
1

4
ϕ1

]2

+

)

= ∞. (17)

Next, we shall show that (17) is not possible.
For (11), set b = a. Dividing (11) through H(r, a), and noting (13), (14), we have

1

H(r, a)
Πρ

a

(

g

{

V +
1

2g

[

h −
ρ′

ρ

]}2
)

≤ ρ(a)Z(a) +

[

ϕ2(b) −
1

4
ϕ1(b)

]

. (18)
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We note that by Lemma 1 (ii), (18) and (13), the following limits exist and finite, that
is

lim
r→∞

1

H(r, a)
Πρ

a

(

g

{

V +
1

2g

[

h −
ρ′

ρ

]}2
)

< ∞,

(19)

lim
r→∞

1

H(r, a)
Πρ

a

(

1

g

[

h + p −
ρ′

ρ

]2
)

< ∞.

Noting that

Z(r) = V (r) −
p(r)

2g(r)
=

(

V +
1

2g

[

h −
ρ′

ρ

])

−
1

2g

(

h + p −
ρ′

ρ

)

.

Thus

g(s)Z2(r) ≤ 2

{

g(s)

(

V +
1

2g

[

h −
ρ′

ρ

])2

+
1

4g

(

h + p −
ρ′

ρ

)2
}

.

Consequently, by (19), we obtain

lim
r→∞

1

H(r, a)
Πρ

a(gZ2) < ∞,

which contradicts (17). Therefore, the proof is complete.

Remark 2. Note that Theorem 1 and Theorem 2 do not require conditions
∫∞ r1−d

u(r) dr

= ∞, or
∫

Ω(b) q(x) dx, (b ≥ a), convergent in [5], [7-9].

In same way as it was done in [11], with an appropriate choice of the functions H
and ρ, we can derive various oscillation criteria for Eq.(1) from Theorems 1 and 2. For
example, define

H(r, s) = (r − s)α, (r, s) ∈ D, α > 1.

Corollary 1. Let α > 1. Suppose that the function g is nondecreasing, and

lim sup
r→∞

r−α

∫ r

a

(r − s)α

{

Q(s) −
p2(s)

4g(s)
−

1

2

(

p(s)

g(s)

)′
}

ds = ∞. (20)

Then Eq.(1) is oscillatory.

Proof. Let ρ(r) = 1 in Theorem 1, observe that

[p(s) + α(r − s)−1]2 = p2(s) + 2α(r − s)−1p(s) + α2(r − s)−2.

By the Bonnet Theorem, for a fixed r ≥ a and some ξ ∈ [a, r], we have

∫ r

a

(r − s)α−2

g(s)
ds =

1

g(a)

∫ ξ

a

(r − s)α−2 ds,
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hence

lim
r→∞

1

rα

∫ r

a

(r − s)α−2

g(s)
ds = 0.

Using integrating by parts, we get

α

∫ r

a

(r − s)α−1 p(s)

g(s)
ds = (r − a)α p(a)

g(a)
+

∫ r

a

(r − s)α

(

p(s)

g(s)

)′

ds.

Thus, Corollary 1 from Theorem 1.

Now, let ρ(r) = exp(
∫ r

a p(s) ds) in condition (4), we have

Corollary 2. Let α > 1. If

lim sup
r→∞

r−α

∫ r

a

(r − s)αQ(s) exp

(
∫ s

a

p(s) dτ

)

ds = ∞, (21)

and

lim
r→∞

r−α

∫ r

a

(r − s)α−2[g(s)]−1 exp

[
∫ s

a

p(τ) dτ

]

ds < ∞. (22)

Then Eq.(1) is oscillatory.

Remark 3. With the same choice of the functions H(r, s) and ρ(s) as corollary 1
and Corollary 2, more general oscillation criteria for Eq.(1) can be obtained by Theorem
2 similarly. Here we omit the details.

Example 1. Consider the linear elliptic equation of second order

∆y + (|x|σ−1 sin |x|)y = 0, (23)

where x ∈ Ω(1), d = 2, σ > 0, u(r) = 1, q(x) = |x|σ−1 sin |x|, f ′(y) = 1 for all |x| > 1.
Choose Φ(r) = 1, ϕ(r) = 0, then

Q(r) = 2πrσ sin r, g(r) = (2πr)−1, p(s) = 0.

For σ > 0, it is easy to verify that

lim sup
r→∞

1

r2

∫ r

1

(r − s)2Q(s)ds = lim sup
r→∞

1

r2

∫ r

1

(r − s)2sσ sin s ds = ∞,

and

lim
r→∞

1

r2

∫ r

1

1

g(s)
ds = π.

Hence, Eq.(23) is oscillatory by Corollary 2.

Example 2. Consider the nonlinear elliptic equation of second order

∆y + (|x|υ cos |x| + sin |x|)(y + y3) = 0, (24)
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where x ∈ Ω(1), d = 2, υ is a constant with 2υ > −1, u(r) = 1, q(x) = |x|υ cos |x|+sin |x|,
and f(y) = y + y3. Let Φ(r) = r−1, ϕ(r) = 0, then

g(r) = (2π)−1, p(r) = r−1, Q(r) = 2π(rυ cos r + sin r), f ′(y) = 1 + y2.

Taking H(r, s) = (r − s)2 for (r, s) ∈ D and ρ(r) = 1, we have, for all τ ≥ 1,

lim sup
r→∞

1

r2

∫ r

τ

(r − s)2Q(s) ds ≥ −2πτυ cos τ − ε,

and

lim
r→∞

1

r2

∫ r

τ

1

g(s)
(r − s)2[2(r − s)−1 + s−1]2 ds =

2π

τ
,

where ε is a positive constant.
Now, set ϕ1(τ) = (2πτ)−1 and ϕ2(τ) = −2πτυ cos τ −ε. Then, there exists an integer

N such that (2N + 1)π − π
4 > 1 and if n ≥ N ,

(2n + 1)π −
π

4
≤ τ ≤ (2n + 1)π +

π

4
, ϕ2(τ) −

1

4
ϕ1(τ) ≥ δτυ ,

where δ is a small constant. Taking into account that 2υ > −1, we obtain

lim
r→∞

∫ r

a

[

ϕ2(τ) −
1

4
ϕ1(τ)

]2

+

ds ≥
∞
∑

n=N

δ2

∫ (2n+1)π+ π
4

(2n+1)π−π
4

s2υ ds

≥
∞
∑

n+N

δ2

∫ (2n+1)π+ π
4

(2n+1)π−π
4

s−1 ds = ∞.

This implies that, by Lemma 1 (i),

lim
r→∞

1

r2

∫ r

a

1

2π
(r − s)2[ϕ2(τ) −

1

4
ϕ1(τ)]2+ ds = ∞.

Accordingly, all conditions of Theorem 2 are satisfied, and hence, Eq.(24) is oscillatory.

References

[1] W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans.

Amer. Math. Soc. 19(1918), 341-352.

[2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Spinger-Verlag, Now York, 1983.

[3] I. V. Kamenev, Oscillation of solution of a second order differential equation with an “in-

tegrally small” coefficient, Differencial’nye Uravnenija 13(1977), 2141-2148. (In Russian)

[4] I. V. Kamenev, An integral criterion for oscillation of linear differential equations, Math.

Zamtki 23 (1978), 249-251. (In Russian)

[5] E. S. Noussair and C. A. Swanson, Oscillation of semilinear elliptic inequalities by Riccati

transformation, Canad. J. Math. 32 (1980), 908-923.



INTEGRAL OPERATOR AND OSCILLATION 101

[6] C. A. Swanson, Semilinear second order elliptic oscillation, Cand. Math. Bull, 22(1979),

139-157.

[7] Z. T. Xu, Oscillation of second order elliptic partial differential equations with a “weakly

integrally small” coefficient, J. Sys & Math. Scis 18(1998), 478-484. (In Chinese)

[8] Z. T. Xu, Oscillation of second order nonlinear differential elliptic equations, Appl. Math.

JCU (A) 17(2002), 29-36. (In Chinese)

[9] B. G. Zhang, T. Zhao and B. S. Lalli, Oscillation criteria for nonlinear second order elliptic

differential equations, Chin Ann of Math(B) 1(1996), 89-102.

[10] A. Wintner, A criterion of oscillatory stability, Quart. J. Appl. Math. 7(1949), 115-117.

[11] J. S. W. Wong, On Kamenev-type oscillation theorems for second-order differential equations

with damping, J. Math. Anal. Appl. 258 (2001), 244-257.

Department of Mathematics, South China Normal University, Guangzhou, 510631, P. R. China.

E-mail: xztxhyyj@pub.guangzhou.gd.cn

Department of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510090,

P. R. China.

E-mail: 928hongy@163.com


