
TAMKANG JOURNAL OF MATHEMATICS
Volume 44, Number 4, 417-430, Winter 2013
doi:10.5556/j.tkjm.44.2013.1219

-
+

+

-

-
-

-
-

Available online at http://journals.math.tku.edu.tw/

AN EXTENSION OF A BASIC UNIVALENCE CRITERION

DORINA RĂDUCANU, HORIANA TUDOR AND SHIGEYOSHI OWA

Abstract. Some sufficient conditions for univalence and quasiconformal extension of a

class of functions defined by an integral operator are discussed with some examples. This

condition involves two arbitrary functions g and h analytic in the unit disk. A number of

well-known univalent conditions would follow upon specializing the functions and the

parameters involved in our main result.

1. Introduction

Let Ur = {z ∈C : |z| < r,0< r ≤ 1} be the disk of radius r centered at the origin and let

U =U1 be the open unit disk.

Denote by A the class of analytic functions in U which satisfy the usual normalization

f (0) = f ′(0)−1 = 0.

The first results concerning univalence criteria are related to the univalence of an ana-

lytic function in the open unit disk U . Among the most important sufficient conditions for

univalence, we mention those obtained by Nehari [13], Goluzin [8], Ozaki and Nunokawa [17],

Becker [3], and by Lewandowski [12].

For examples, Becker [3] has given the following condition

(1−|z|2)
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z f ′′(z)

f ′(z)

∣

∣

∣

∣

≦ 1 (z ∈U ) (1.1)

for f ∈A to be univalent in U .

Furthermore, Ozaki and Nunokawa [17] have showed the following condition
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< 1 (z ∈U ) (1.2)

for f ∈A to be univalent in U .

Some extensions of these univalence criteria for an integral operator were obtained in the
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papers [5], [7], [14], [15], [16], [18], and [24]. Tudor [24] has discussed the condition for the

integral operator Fα(z) defined by

Fα(z) =

(

α

∫z

0
uα−1 f ′(u)du

) 1
α

(1.3)

to be univalent in U .

From the main result of this paper, would follow all the univalence criteria mentioned

above and in the same time other new ones. Recently, Deniz and Orhan [6] gave some results

for univalence of functions f ∈A , but not for our integral operator of f ∈A .

2. Loewner chains and quasiconformal extensions

Before proving our main result, we need a brief summary of theory of Loewner chains.

A function L(z, t ) : U × [0,∞) →C is said to be a Loewner chain or a subordination chain

if:

(i) L(z, t ) is analytic and univalent in U for all t ≥ 0.

(ii) L(z, t )≺ L(z, s) for all 0 ≤ t ≤ s <∞, where the symbol “≺" stands for subordination.

The following result due to Pommerenke is often used to obtain univalence criteria.

Theorem 2.1 ([20, 21]). Let L(z, t ) = a1(t )z+·· · be an analytic function in Ur (0 < r ≤ 1) for all

t ≥ 0. Suppose that:

(i) L(z, t ) is a locally absolutely continuous function of t ∈ [0,∞), locally uniform with respect

to z ∈Ur .

(ii) a1(t ) is a complex valued continuous function on [0,∞) such that a1(t ) 6= 0, lim
t→∞

|a1(t )| =

∞ and
{

L(z, t )

a1(t )

}

t≥0

is a normal family of functions in Ur .

(iii) There exists an analytic function p : Ur × [0,∞) → C satisfying ℜp(z, t ) > 0 for all (z, t ) ∈

U × [0,∞) and

z
∂L(z, t )

∂z
= p(z, t )

∂L(z, t )

∂t
, z ∈Ur ,a.e t ≥ 0. (2.1)

Then, for each t ≥ 0, the function L(z, t ) has an analytic and univalent extension to the whole

disk U , i.e L(z, t ) is a Loewner chain.

Let k be a constant in [0,1). Recall that a homeomorphism f of G ⊂ C is said to be k-

quasiconformal if ∂z f and ∂z f are locally integrable on G and satisfy |∂z f | ≤ k |∂z f | almost

everywhere in G .

The method of constructing quasiconformal extension criteria is based on the following

result due to Becker (see [3], [4]).
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Theorem 2.2. Supose that L(z, t ) is a subordination chain. Consider

w (z, t )=
p(z, t )−1

p(z, t )+1
, z ∈U , t ≥ 0

where p(z, t ) is defined by (2.1). If

|w (z, t )| ≤ k , 0≤ k < 1

for all z ∈U and t ≥ 0, then L(z, t ) admits a continuous extension to Ū for each t ≥ 0 and the

function F (z, z̄) defined by

F (z, z̄) =







L(z,0) , if |z| < 1

L

(

z

|z|
, log |z|

)

, if |z| ≥ 1

is a k-quasiconformal extension of L(z,0) to C.

Examples of quasiconformal extension criteria can be found in [1], [2], [19] and more

recently in [9], [10], [11].

3. Univalence criteria

Making use of Theorem 2.1 we can prove our main result.

Theorem 3.1. Let α be a complex number, ℜα> 0, m ∈ R, m > 0 and f ∈A . If there exist two

analytic functions in U , g (z) = 1+b1z +·· · and h(z)= c0 +c1z +·· · such that the inequalities

∣

∣

∣

∣

(

f ′(z)

g (z)
−1

)

−
m −1

2

∣

∣

∣

∣

<
m +1

2
(3.1)

and
∣

∣

∣

∣

(

f ′(z)

g (z)
−1

)

|z|α(m+1)
+

1−|z|α(m+1)

α

(

2α
z f ′(z)h(z)

g (z)
+

zg ′(z)

g (z)

)

+
(1−|z|α(m+1))2

α|z|α(m+1)
z2

[

α
f ′(z)h2(z)

g (z)
+

g ′(z)h(z)

g (z)
+ (α−1)

h(z)

z
−h′(z)

]

−
m −1

2

∣

∣

∣

∣

≤
m +1

2
(3.2)

hold true for all z ∈U \ {0}, then the function

Fα(z) =

(

α

∫z

0
uα−1 f ′(u)du

)1/α

(3.3)

is analytic and univalent in U , where the principal branch is intended.

Proof. Let a be a positive real number and let the function h1(z, t ) be defined by

h1(z, t )= 1+ (e (m+1)aαt
−1)e−at zh(e−at z).
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For all t ≥ 0 and z ∈U , we have e−at z ∈U and, from the analyticity of h in U , it follows that

h1(z, t ) is also analytic in U . Since h1(0, t ) = 1, there exists a disk Ur1
, 0 < r1 < 1 in which

h1(z, t ) 6= 0 for all t ≥ 0. Let us define the function h2(z, t ) by

h2(z, t )=α

∫e−at z

0
uα−1 f ′(u)du.

Letting

h3(z, t ) = e−aαt
(

1+
α

α+1
e−at z +·· ·

)

,

we have that h2(z, t ) = zαh3(z, t ). It can be shown easily that h3(z, t ) is analytic in Ur1
and

h3(0, t ) = e−aαt . It follows that the function

h4(z, t )= h3(z, t )+ (emaαt
−e−aαt )

g (e−at z)

h1(z, t )

is also analytic in a disk Ur2
, 0 < r2 ≤ r1 and h4(0, t ) = emaαt . Therefore, there is a disk

Ur3
, 0 < r3 ≤ r2 in which h4(z, t ) 6= 0, for all t ≥ 0 and thus, we can choose an analytic branch

of [h4(z, t )]1/α, denoted by h5(z, t ). We choose the branch which is equal to emat at the origin.

From these reasons, it follows that the function

L(z, t ) = zh5(z, t )= emat z +a2(t )z2
+·· ·

is analytic in Ur3
for all t ≥ 0. It is easy to see that the function L(z, t ) can be also written in

the form

L(z, t )=

[

α

∫e−at z

0
uα−1 f ′(u)du +

(emaαt −e−aαt )zαg (e−at z)

1+ (e (m+1)aαt −1)e−at zh(e−at z)

] 1
α

. (3.4)

If L(z, t ) = a1(t )z +a2(t )z2 +·· · is the Taylor expansion of L(z, t ) in Ur3
, then we have a1(t ) =

emat and therefore a1(t ) 6= 0 for all t ≥ 0 and limt→∞ |a1(t )| =∞.

From the analyticity of L(z, t ) in Ur3
, it follows that there exists a number r4, 0 < r4 ≤ r3,

and a constant K = K (r4) such that

| L(z, t )/a1(t ) | <K , ∀z ∈Ur4
, t ≥ 0,

and thus {L(z, t )/a1(t )} is a normal family in Ur4
. From the analyticity of ∂L(z, t )/∂t , for all

fixed numbers T > 0 and r5, 0 < r5 ≤ r4, there exists a constant K1 > 0 (that depends on T and

r5 ) such that
∣

∣

∣

∣

∂L(z, t )

∂t

∣

∣

∣

∣

< K1, ∀z ∈Ur5
, t ∈ [0,T ].

It follows that the function L(z, t ) is locally absolutely continuous in [0,∞), locally uniform

with respect to z ∈Ur5
. The function p(z, t ) defined by

p(z, t )= z
∂L(z, t )

∂z

/

∂L(z, t )

∂t
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is analytic in a disk Ur , 0 < r ≤ r5, for all t ≥ 0.

In order to prove that the function p(z, t ) is analytic and has positive real part in U , we

will show that the function

w (z, t )=
p(z, t )−1

p(z, t )+1
, z ∈Ur , t ≥ 0

has an analytic extension in U and

|w (z, t )| < 1 for all z ∈U and t ≥ 0. (3.5)

An elementary calculation gives that

w (z, t )=
(1+a)G (z, t )+1−ma

(1−a)G (z, t )+1+ma
, (3.6)

where G (z, t ) is given by

G (z, t ) =

(

f ′(e−at z)

g (e−at z)
−1

)

e−(1+m)aαt

+
1−e−(1+m)aαt

α

[

2α
e−at z f ′(e−at z)h(e−at z)

g (e−at z)
+

e−at zg ′(e−at z)

g (e−at z)

]

+
( 1−e−(1+m)aαt )2

αe−(1+m)aαt

[

α
e−2at z2 f ′(e−at z)h2(e−at z)

g (e−at z)
+

e−2at z2g ′(e−at z)h(e−at z)

g (e−at z)

+(α−1)e−at zh(e−at z)−e−2at z2h′(e−at z)
]

. (3.7)

It is easy to prove that the condition (3.5) is equivalent to

∣

∣

∣

∣

G (z, t )−
m −1

2

∣

∣

∣

∣

<
m +1

2
for all z ∈U and t ≥ 0. (3.8)

For t = 0 and z 6= 0, in view of (3.1), we get

∣

∣

∣

∣

G (z,0)−
m −1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

(

f ′(z)

g (z)
−1

)

−
m −1

2

∣

∣

∣

∣

<
m +1

2
. (3.9)

Also, since m is a positive number, the following inequality

∣

∣

∣

∣

G (0, t )−
m −1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

m −1

2

∣

∣

∣

∣

<
m +1

2
, t > 0 (3.10)

is true. Let t be a fixed number, t > 0 and let z ∈ U , z 6= 0. Since |e−at z| ≤ e−at < 1 for all

z ∈ U = {z ∈ C : |z| ≤ 1}, from (3.7), we conclude that the function G (z, t ) is analytic in U .

Using the maximum modulus principle, it follows that for each t > 0, arbitrary fixed, there

exists θ = θ(t )∈R such that

|G (z, t )| < max
|ξ|=1

|G (ξ, t )| = |G (e iθ, t )|. (3.11)
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Denote u = e−at e iθ. Then |u| = e−at < 1, e (m+1)at = 1/|u|m+1 and therefore

G (e iθ, t ) =

(

f ′(u)

g (u)
−1

)

|u|
α(m+1)

+
1−|u|α(m+1)

α

(

2α
u f ′(u)h(u)

g (u)
+

ug ′(u)

g (u)

)

+
(1−|u|α(m+1))2

α|u|α(m+1)
u2

[

α
f ′(u)h2(u)

g (u)
+

g ′(u)h(u)

g (u)
+ (α−1)

h(u)

u
−h′(u)

]

.

Since u ∈U , the inequality (3.2) implies

∣

∣

∣

∣

G (e iθ, t )−
m −1

2

∣

∣

∣

∣

≤
m +1

2
. (3.12)

From (3.9), (3.10), (3.11) and (3.12), we conclude that the inequality (3.8) holds true for all

z ∈U and t ≥ 0. Since all the conditions of Theorem 2.1 are satisfied, it follows that L(z, t ) is a

Loewner chain and hence the function L(z,0) = Fα(z) is analytic and univalent in U . ���

Suitable choices of the functions g and h in Theorem 3.1 yield various univalence criteria

as follows.

For g (z) ≡ f ′(z), h(z)≡−
1

2α

f ′′(z)

f ′(z)
, we obtain the next result.

Corollary 3.1. Let α be a complex number,ℜα> 0, m ∈R, m > 0 and f ∈A . If, for all z ∈U \{0},

the inequality

∣

∣

∣

∣

∣

(

1−|z|α(m+1)
)2

2α2|z|α(m+1)

(

z2
{

f ; z
}

+ (1−α)
z f ′′(z)

f ′(z)

)

−
m −1

2

∣

∣

∣

∣

∣

≤
m +1

2
, (3.13)

holds true, then the function Fα defined by (3.3) is analytic and univalent in U , where
{

f ; z
}

denotes Schwarzian derivative of f (z) which is defined by

{

f ; z
}

=

(

f ′′(z)

f ′(z)

)′

−
1

2

(

f ′′(z)

f ′(z)

)2

. (3.14)

Example 3.1. Consider the function f ∈A defined by

f ′(z) =
1

(1− zα)2
, z ∈U .

Then, some elementary calculations show that

{

f ; z
}

=
2α(α−1)zα−2

1− zα
and z2

{

f ; z
}

+ (1−α)
z f ′′(z)

f ′(z)
= 0.

Therefore, the function f (z) satisfies the condition (3.13). Furthermore, by using (3.3), we

obtain that

Fα(z) =

(

α

∫z

0
uα−1 f ′(u)du

)1/α

=

(

α

∫z

0

uα−1

(1−uα)2
du

)1/α

=
z

(1− zα)1/α
.
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For this function Fα(z), we see that

ℜ

(

zF ′
α(z)

Fα(z)

)

=ℜ

(

1

1− zα

)

>
1

2
, z ∈U ,

which means that Fα(z) is starlike of order 1/2 (univalent) in U .

Remark 3.1. For special values of the parameters α and m in Corollary 3.1, we get some well

known results:

(i) For m = 1, we get the result given in the paper of Ovesea [15].

(ii) For α= 1, since F1(z) = f (z), Corollary 3.1 generalizes the criterion of univalence due to

Nehari [13].

(iii) For α= 1 and m = 1, we obtain the univalence criterion due to Nehari [13].

Remark 3.2. For the function f (z) considered in Example 3.1, we have that

ℜ

(

1+
z f ′′(z)

f ′(z)

)

=ℜ

(

1−2α+
2α

1− zα

)

> 1−α, z ∈U .

Thus, f (z) is convex of order 1−α with 0 < α ≤ 1. In this case, the integral operator Fα(z) of

f (z) satisfies

ℜ

(

zF ′
α(z)

Fα(z)

)

= ℜ

(

1

1− zα

)

>
1

2
, z ∈U

and

ℜ

(

1+
zF ′′

α(z)

F ′
α(z)

)

= ℜ

(

1+α

1− zα
−α

)

>
1−α

2
, z ∈U .

Therefore, we can say that Fα(z) is starlike of order 1/2 and convex of order (1−α)/2 with

0 <α≤ 1.

If we take α= 9 in Example 3.1, then the function

F9(z) =
z

(1− z9)
1
9

maps the circle with the center at the origin and radius 0.9 to the following closed curve.
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In view of Remark 3.2, we give the following conjecture.

Conjecture 3.1 If f ∈A satisfies

z2
{

f ; z
}

+ (1−α)
z f ′′(z)

f ′(z)
= 0, z ∈U ,

then the integral operator Fα(z) defined by (3.3) is starlike of order 1/2 and convex of order

(1−α)/2 with 0 <α≤ 1.

For g (z) ≡ f ′(z) and h(z)≡
1

α

(

1

z
−

f ′(z)

f (z)

)

, we have

Corollary 3.2. Let α be a complex number,ℜα> 0, m ∈R, m > 0 and f ∈A . If, for all z ∈U \{0},

the inequality
∣

∣

∣

∣

1−|z|α(m+1)

α
· z

d

d z
log

(

z2 f ′(z)

f 2(z)

)

+
(1−|z|α(m+1))2

α2|z|α(m+1)
· z

d

d z

(

log
z1+α f ′(z)

f 1+α(z)

)

−
m −1

2

∣

∣

∣

∣

≤
m +1

2
(3.15)

holds true, then the function Fα defined by (3.3) is analytic and univalent in U .

Remark 3.3. Corollary 3.2 is a generalization of the univalence criterion due to Goluzin [8].

(i) For m = 1 in Corollary 3.2, we get the results from [8] and for α= 1 the one from [23].

(ii) The case α= 1 and m = 1 gives Goluzin’s criterion [8].

For g (z) ≡

(

f (z)

z

)2

and h(z)≡
1

α

(

1

z
−

f (z)

z2

)

, we get
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Corollary 3.3. Let α be a complex number, ℜα > 0, m ∈ R, m > 0 and f ∈ A . If f satisfies the

inequalities
∣

∣

∣

∣

(

z2 f ′(z)

f 2(z)
−1

)

−
m −1

2

∣

∣

∣

∣

<
m +1

2
(3.16)

and
∣

∣

∣

∣

(

z2 f ′(z)

f 2(z)
−1

)

|z|α(m+1)
+2

1−|z|α(m+1)

α

(

z2 f ′(z)

f 2(z)
−1

)

(1−|z|α(m+1))2

α2|z|α(m+1)

[(

z2 f ′(z)

f 2(z)
−1

)

+ (1−α)

(

f (z)

z
−1

)

−
m −1

2

]∣

∣

∣

∣

≤
m +1

2
(3.17)

for all z ∈U \ {0}, then the function Fα defined by (3.3) is analytic and univalent in U .

Remark 3.4. Corollary 3.3 represents a generalization of the univalence criterion due to Ozaki

and Nunokawa [17].

(i) For m = 1, we get the result from [24] and for α= 1 the one given in [22].

(ii) In the case m = 1 and α = 1, Corollary 3.3 reduces to the univalence criterion obtained

by Ozaki and Nunokawa [17].

For g (z) ≡ f ′(z), h(z)≡ 0 we get

Corollary 3.4. Let α be a complex number, ℜα> 0, m ∈R, m > 0 and f ∈A . If f satisfies
∣

∣

∣

∣

1−|z|α(m+1)

α
·

z f ′′(z)

f ′(z)
−

m −1

2

∣

∣

∣

∣

≤
m +1

2
(3.18)

for all z ∈U \ {0}, then the function Fα defined by (3.3) is analytic and univalent in U .

Remark 3.5. Corollary 3.4 represents a generalization of the well known univalence criterion

due to Becker [3].

(i) For m = 1, we obtain the result from [18].

(ii) In the case m = 1 and α= 1, the above corollary reduces to Becker’s criterion [3].

For h(z)≡ 0, g (z) ≡
f ′(z)(p(z)+1)

2
, where p is analytic in U , p(0) = 1, we have

Corollary 3.5. Let α be a complex number, ℜα> 0, m ∈ R, m > 0 and f ∈ A . If there exists an

analytic functions p in U such that p(0) = 1 and the inequalities
∣

∣

∣

∣

1−p(z)

1+p(z)
−

m −1

2

∣

∣

∣

∣

<
m +1

2
(3.19)

and
∣

∣

∣

∣

1−p(z)

1+p(z)
|z|α(m+1)

+
1−|z|α(m+1)

α

(

z f ′′(z)

f ′(z)
+

zp ′(z)

p(z)+1

)

−
m −1

2

∣

∣

∣

∣

≤
m +1

2
(3.20)

hold true for all z ∈ U \ {0}, then the function Fα defined by (3.3) is analytic and univalent in

U .
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For Corollary 3.5, we give the following example.

Example 3.2. Let α be a complex number such that ℜα > 0 and m ∈ R, m > 1. Then, we

consider the functions

f (z) = z +
e iθ

2
z2

and

p(z) =
1−e iθz

1+e iθz
.

We note that
z f ′′(z)

f ′(z)
=

e iθz

1+e iθz
,

and
1−p(z)

1+p(z)
= e iθz,

zp ′(z)

p(z)+1
=−

e iθz

1+e iθz
.

Therefore, we have that
∣

∣

∣

∣

1−p(z)

1+p(z)
−

m −1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

e iθz −
m −1

2

∣

∣

∣

∣

≤ |z|+
m −1

2
< 1+

m −1

2
=

m +1

2

and
∣

∣

∣

∣

1−p(z)

1+p(z)
|z|α(m+1)

+
1−|z|α(m+1)

α

(

z f ′′(z)

f ′(z)
+

zp ′(z)

p(z)+1

)

−
m −1

2

∣

∣

∣

∣

≤ |z|(m+1)ℜα+1
+

m −1

2
< 1+

m −1

2
=

m +1

2

for all z ∈U , α ∈C with ℜα> 0 and m > 1.

It follows that all the conditions of Corollary 3.5 are satisfied. By using (3.3), we obtain

that

Fα(z) =

(

α

∫z

0
uα−1 f ′(u)du

)1/α

=

(

α

∫z

0
uα−1

(

1+e iθu
)

du

)1/α

= z
(

1+
α

α+1
e iθz

)1/α
.

For this function Fα(z), we have

ℜ

(

zF ′
α(z)

Fα(z)

)

=ℜ

(

1

α

(

α+1−
1

1+ α
α+1

e iθz

))

> 0

for z ∈U . Thus, Fα(z) is starlike (univalent) in U .

Remark 3.6. If we take α= 1/6 and θ =π/2 in Example 3.2, then we have that

F1/6(z) = z

(

1+
i

7
z

)6

.

This function F1/6(z) maps the unit circle to the following starlike curve.
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In view of 3.6, we give the following conjecture.

Conjecture 3.2. If f ∈A satisfies

z f ′′(z)

f ′(z)
+

zp ′(z)

p(z)+1
= 0

for some analytic function p(z) such that p(0) = 1 and

∣

∣

∣

∣

1−p(z)

1+p(z)

∣

∣

∣

∣

< 1, z ∈U ,

then Fα(z) defined by (3.3) is starlike in U .

Remark 3.7. Corollary 3.5 represents a generalization of the univalence criterion due to

Lewandowski [12].

(i) For m = 1, we obtain the result from [14].

(ii) In the case m = 1 and α= 1, the above corollary reduces to Lewandowski’s criterion [12].

Remark 3.8. Theorem 3.1 gives us a connection between the univalence criteria of Becker,

Lewandowski, Nehari, Goluzin and also of Ozaki and Nunokawa and their generalizations.

4. Quasiconformal extension

Now, we discuss the quasiconformal extension for the integral operator Fα(z).
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Theorem 4.1. Let α be a complex number, ℜα> 0, m ∈R, m > 0, k ∈ [0,1) and f ∈A . If there

exist two analytic functions in U , g (z) = 1+b1z + ·· · and h(z) = c0 + c1z + ·· · such that the

inequalities

∣

∣

∣

∣

(

f ′(z)

g (z)
−1

)

−
m −1

2

∣

∣

∣

∣

≤ k
m +1

2
(4.1)

and
∣

∣

∣

∣

(

f ′(z)

g (z)
−1

)

|z|α(m+1)
+

1−|z|α(m+1)

α

(

2α
z f ′(z)h(z)

g (z)
+

zg ′(z)

g (z)

)

+
(1−|z|α(m+1))2

α|z|α(m+1)
z2

[

α
f ′(z)h2(z)

g (z)
+

g ′(z)h(z)

g (z)
+ (α−1)

h(z)

z
−h′(z)

]

−
m −1

2

∣

∣

∣

∣

≤ k
m +1

2
(4.2)

hold true for all z ∈U \ {0}, then the function Fα given by (3.3) has a quasiconformal extension

to C.

Proof. In the proof of Theorem 3.1, we have shown that the function L(z, t ) given by (3.4) is

a subordination chain in U . Applying Theorem 2.2 to the function w (z, t ) given by (3.6), we

obtain that the condition
∣

∣

∣

∣

(1+a)G (z, t )+1−ma

(1−a)G (z, t )+1+ma

∣

∣

∣

∣

≤ l , z ∈U , t ≥ 0 and l ∈ [0,1), (4.3)

where G (z, t ) is defined by (3.7), implies l-quasiconformal extensibility of Fα.

Lenghty but elementary calculation shows that the last inequality (4.3) is equivalent to

∣

∣

∣

∣

G (z, t )−
a(1+ l 2)(m −1)+ (1− l 2)(ma2 −1)

2a(1+ l 2)+ (1− l 2)(1+a2)

∣

∣

∣

∣

≤
2al (1+m)

2a(1+ l 2)+ (1− l 2)(1+a2)
. (4.4)

It is easy to check that, under the assumption (4.2), we have

∣

∣

∣

∣

G (z, t )−
m −1

2

∣

∣

∣

∣

≤ k
m +1

2
. (4.5)

Consider the two disks ∆ and ∆′ defined by (4.4) and (4.5) respectively, where G (z, t ) is

replaced by a complex variable ζ. Our theorem will be proved if we find the smalest l ∈ [0,1)

for which ∆′ is contained in ∆. This will be so if and only if the distance apart of the centers

plus the smalest radius is equal, at most, to the largest radius. So, we are required to prove

that

∣

∣

∣

∣

a(1+ l 2)(m −1)+ (1− l 2)(ma2 −1)

2a(1+ l 2)+ (1− l 2)(1+a2)
−

m −1

2

∣

∣

∣

∣

+k
m +1

2
≤

2al (1+m)

2a(1+ l 2)+ (1− l 2)(1+a2)

or equivalently

(1− l 2)|1−a2|

2[2a(1+ l 2)+ (1− l 2)(1+a2)]
≤

2al

2a(1+ l 2)+ (1− l 2)(1+a2)
−

k

2
(4.6)
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with the condition
2al

2a(1+ l 2)+ (1− l 2)(1+a2)
−

k

2
≥ 0. (4.7)

We will solve inequalities (4.6) and (4.7) for 1−a2 > 0. In a similar way, they can be solved

for 1−a2 < 0.

It is easy to check that the solution of inequality (4.6) is L1 ≤ l and l ≤ L2, where

L1 =
(1−a)2 +k(1−a2)

1−a2 +k(1−a)2
, L2 =−

(1+a)2 +k(1−a2)

1−a2 +k(1−a)2
.

Since L2 < 0, it remains L1 ≤ l < 1.

From the inequality (4.7), we obtain L1 ≤ l and l ≤L2, where

L1 =
−2a +

√

4a2 + (1−a2)2k2

k(1−a)2
, L2 =

−2a −
√

4a2 + (1−a2)2k2

k(1−a)2
.

Since L2 < 0 and L1 ≤ L1, we get L1 ≤ l < 1.

If a = 1, (4.6) and (4.7) reduce to k ≤ l and thus l = k .

Consequently, the function Fα has an l -quasiconformal extension to C, where

l =
(1−a)2 +k |1−a2|

|1−a2|+k(1−a)2
if a ∈ (0,∞) \ {1} and l = k if a = 1. ���

References

[1] L. V. Ahlfors,Sufficient conditions for quasiconformal extension, Ann. Math. Studies., 79 (1974), 23–29.

[2] J. M. Anderson, A. Hinkkanen, Univalence criteria and quasiconformal extensions, Trans. Amer. Math. Soc.,

324 (1991), 823–842.

[3] J. Becker, Löwnersche differential gleichung und quasikonform fortsetzbare schlichte functionen, J. Reine

Angew. Math., 255(1972), 23–43.

[4] J. Becker, Conformal mappings with quasiconformal extensions, Aspects of Contemporary Complex Analysis,

Ed. by D. A. Brannan and J. G. Clunie, Acad. Press, 1980, 37–77.
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