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SOLUTIONS OF A MULTI-POINT BOUNDARY VALUE PROBLEM

FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

AT RESONANCE(III)∗

YUJI LIU1,2 AND WEIGAO GE2

Abstract. In this paper, we are concerned with the existence of solutions of the following

multi-point boundary value problem consisting of the higher-order differential equations

x
(n)(t) = f(t, x(t), x

′(t), · · · , x
(n−1)(t)) + e(t), 0 < t < 1, (∗)

and the following multi-point boundary value conditions

x(i)(0) = 0 for i = 0, 1, · · · , n − 3,

x(n−2)(0) = αx(n−1)(ξ), x(n−1)(1) = βx(n−2)(η),
(∗∗)

Sufficient conditions for the existence of at least one solution of the BVP(∗) and (∗∗) at resonance

are established. This paper is directly motivated by Liu and Yu [India J. Pure Appl. Math.,

33(4)(2002)475-494] and Qi [Acta Math. Appl. Sinica, 17(2)(2001)271-278].

1. Introduction

In recent years, there has been considerable authors concerned with the solvability of

the multi-point boundary value problems for second order differential equations, which
can arise in many applications, we refer the reader to the monographs [1-3] and the

references [4-14].
In [15], Erbe and Tang studied the existence of positive solutions of the following

Sturm-Liouvile boundary value problem consisting of the second order differential equa-
tion

{

x′′(t) = f(t, x(t)), 0 < t < 1,

αx(0) − βx′(0) = 0 γx(1) + δx′(1) = 0,
(1)

where f is continuous and nonnegative, α ≥ 0, β ≥ 0, γ ≥ 0 and δ ≥ 0 with αδ+γδ+αβ >
0. He proved that, under some assumptions, BVP(1) has at least one or two positive

solutions.
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Recently, Qi, in [16], and Agawarl, Wong, in [23], investigated the following Sturm-
Liouvile boundary value problem for higher-order differential equation















x(n)(t) = f(t, x(t), x′(t), · · · , x(n−2)(t)), 0 < t < 1,

x(i)(0) = 0 for i = 0, 1, · · · , n − 3,

αx(n−2)(0) − βx(n−1)(0) = 0 γx(n−2)(1) + δx(n−1)(1) = 0,

(2)

respectively, where α, β, δ, γ ≥ 0. They proved the existence of positive solutions under
the assumption ∆ = βδ + δα + αγ > 0 and other assumptions. However, they didn’t
study the solvability of above problem in the case where α, β, δ, γ ∈ R and ∆ = 0 since
at this time problem (2) can not be transformed into an integral equation.

In [6], Liu and Yu studied the solvability of the following multi-point boundary value
problem consisting of the second-order differential equation

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1, (3)

and one of the following boundary value conditions

x′(0) = αx′(ξ), x′(1) = βx′(η), (31)

x(0) = αx(ξ), x(1) = βx(η), (32)

x(0) = αx(ξ), x′(1) = βx′(η), (33)

x′(0) = αx′(ξ), x(1) = βx(η), (34)

where 0 < η < 1, 0 < ξ < 1, α ≥ 0 and β ≥ 0 and f is continuous and e ∈ L1[0, 1].
However, the Sturm-Liouvile type boundary value conditions, i.e. x(0) = αx′(ξ), x′(1) =
βx(η) was not studied in [6].

Furthermore, to the best of our knowledge, there has been no paper concerned with
the existence of solutions of multi-point boundary value problems for higher-order differ-
ential equations at resonance, although there were considerable papers concerned with
the existence of positive solutions or solutions of higher-order differential equations at
non-resonance cases [1-3, 19, 20].

Motivated and inspired by papers[15,16,6], we are concerned with the following higher-
order differential equation

x(n)(t) = f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t), 0 < t < 1, (4)

subjected to the following multi-point boundary value conditions
{

x(i)(0) = 0 for i = 0, 1, · · · , n − 3,

x(n−2)(0) = αx(n−1)(ξ), x(n−1)(1) = βx(n−2)(η),
(5)

where 0 < ξ < 1, 0 < η < 1, α ∈ R, β ∈ R are fixed and f is continuous, e ∈ L1[0, 1].
Boundary value conditions (5) is called multi-point Sturm-Liouvile type conditions. Ob-
viously, this problem contains BVP(1), BVP(2) as special cases.
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Let Lx(t) = x(n)(t) be defined in a suitable Banach space. It is easy to check that if

∣

∣

∣

∣

−α 1

βη − 1 β

∣

∣

∣

∣

= 0,

then Lx(t) = 0 has nontrivial solutions satisfying x(i)(0) = 0 for i = 0, 1, · · · , n −

2, x(n−1)(1) = βx(n−2)(η). We call this case resonance case. Otherwise we call non-

resonance case.

The purpose of this paper is to establish the existence results for the solutions of

BVP(4) and (5) at resonance case, which generalize the results in [15,16] and complement

the results in [6]. By the way, we, in [21,22], investigated the solvability of the following

boundary value problems for higher-order differential equations















x(n)(t) = f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t), 0 < t < 1,

x(i)(0) = 0 for i = 0, 1, · · · , n − 3,

x(n−1)(0) = αx(n−1)(ξ), x(n−1)(1) =
∑m

i=1 βix
(n−1)(ξi),

and














x(n)(t) = f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t), 0 < t < 1,

x(i)(0) = 0 for i = 0, 1, · · · , n − 3,

x(n−1)(0) = αx(n−1)(ξ), x(n−2)(1) =
∑m

i=1 βix
(n−2)(ηi),

respectively.

To obtain the main results, we need the following notations and an abstract existence

theorem by Gaines and Mawhin [17, 18].

Let X and Y be Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator of

index zero, P : X → X , Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q.

It follows that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible, we denote the inverse of that map by Kp.

If Ω is an open bounded subset of X , dom L ∩ Ω 6= Φ, the map N : X → Y will be

called L−compact on Ω if QN(Ω) is bounded and Kp(I − Q)N : Ω → X is compact.

Theorem GM[17, 18]. Let L be a Fredholm operator of index zero and let N be

L−compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(domL\KerL) ∩ ∂Ω] × (0, 1);

(ii) Nx /∈ Im L for every x ∈ KerL ∩ ∂Ω;

(iii) deg (Λ−1QN |KerL , Ω ∩ KerL, 0) 6= 0, where Λ−1 : Y/Im L → KerL is the iso-

morphism.
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Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

We use the classical Banach space Ck[0, 1], let X = Cn−1[0, 1] and Y = L1[0, 1]. Y

is endowed with the norm ||y||1 =
∫ 1

0 |y(s)|ds, C0[0, 1] is endowed with the norm ||x|| =
maxt∈[0,1] |x(t)|, X is endowed with the norm ||x|| = max{||x||∞, ||x′||∞, · · · , ||x(n−1)||∞}.
Define the linear operator L and the nonlinear operator N by

L : X ∩ domL → Y, Lx(t) = x(n)(t) for x ∈ X ∩ domL,

N : X → Y Nx(t) = f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t), for x ∈ X,

respectively. This paper can be placed in the existence theory of boundary value prob-
lems for ordinary differential equation. The foundation and the most vital impact on
this theory are closely related to mathematicians: Agarwal, O’Regan and Wong, whose
scientific output is represented in monograph [1-3]. It is observed that this particular
branch of differential equations has been constantly developed and gained prominence
since the early 1980s.

2. Existence Results for Solutions of BVP(4) and (5)

In this section, we establish the existence results for BVP(4) and (5) in the following
cases:

Case (i). α = 0, 1 − βη = 0;
Case (ii). α 6= 0, αβ − (1 − βη) = 0.
We first consider Case (i). Let

dom L = { x ∈ Wn,1(0, 1), x(i)(0) = 0 for i = 0, 1, · · · , n − 3, x(n−2)(0) = 0,

x(n−1)(1) = βx(n−2)(η) }.

Lemma 2.1. The following results hold.

(i) KerL = {ctn−1, t ∈ [0, 1], c ∈ R};

(ii) ImL =
{

y ∈ Y, β
∫ η

0 (η − s)y(s)ds =
∫ 1

0 y(s)ds
}

;

(iii) L is a Fredholm operator of index zero;

(iv) There are projectors P : X → X and Q : Y → Y such that KerL = Im P
and KerQ = Im L. Furthermore, let Ω ⊂ X be an open bounded subset with

Ω ∩ domL 6= Φ, then N is L−compact on Ω;

(v) x(t) is a solution of BV P (4) − (5) if and only if x is a solution of the operator

equation Lx = Nx in domL.

Proof. (i). Let x ∈ KerL, then x(n)(t) = 0 and x(i)(0) = 0 for i = 0, 1, · · · , n − 3
and x(n−2)(0) = 0 and x(n−1)(1) = βx(n−2)(η). It is easy to get x(t) = ctn−1, thus
x ∈ {ctn−1 : t ∈ [0, 1], c ∈ R }. On the other hand, if x(t) = ctn−1, then we find that
x ∈ KerL. This completes the proof of (i).

(ii). For y ∈ Im L, then there is x ∈ domL such that x(n)(t) = y(t) and x(i)(0) = 0
for i = 0, 1, · · · , n − 3 and x(n−2)(0) = 0 and x(n−1)(1) = βx(n−2)(η). Thus

x(t) =

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds + ctn−1.
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Then

β

∫ η

0

(η − s)y(s)ds =

∫ 1

0

y(s)ds. (6)

On the other hand, if (6) holds, let

x(t) =

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds + ctn−1, t ∈ [0, 1].

Then x ∈ domL ∩ X and Lx = y. Thus the proof of (ii) is completed.

(iii). From (i), dimKerL = 1. On the other hand, it is easy to check that 1− 1
2βη2 > 0

since 1 − βη = 0 and 0 ≤ η ≤ 1. For y ∈ Y , let

y0 = y −
1

1 − 1
2βη2

(
∫ 1

0

y(s)ds − β

∫ η

0

(η − s)y(s)ds

)

.

It is easy to show that y0 ∈ Im L. So Y = R + Im L. Again, R ∩ Im L = {0}, so

Y = R
⊕

Im L. It follows that dimY/Im L = 1. Together with that ImL is closed,

hence L is a Fredholm operator of index zero.

(iv). Define the projectors Q : Y → Y and P : X → X by

Qy(t) =
1

1 − 1
2βη2

(
∫ 1

0

y(s)ds − β

∫ η

0

(η − s)y(s)ds

)

for y ∈ Y,

and

Px(t) =
x(n−1)(0)

(n − 1)!
tn−1 for x ∈ X,

respectively. It is easy to prove that KerL = Im P and ImL = KerQ. Then the inverse

Kp : Im L → domL ∩ KerP of the map L : domL ∩ KerP → Im L can be written by

Kpy(t) =

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds for y ∈ Im L.

In fact, for y ∈ Im L, we have (LKp)y(t) = y(t). On the other hand, for x ∈ KerP∩domL,

it follows that

(KpL)x(t) = Kp(x
(n)(t))

=

∫ t

0

(t − s)n−1

(n − 1)!
x(n)(s)ds

= −
x(n−1)(0)

(n − 1)!
tn−1 −

x(n−2)(0)

(n − 2)!
tn−2 + x(t)

= x(t).
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Furthermore, let ∧ : KerL → R be the isomophism with ∧(ctn−1) = c. One has

QNx(t) = Q(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))

=
1

1 − 1
2βη2

(
∫ 1

0

(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))dt

−β

∫ η

0

(η − s)(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))dt

)

,

Kp(I − Q)Nx(t)

= Kp

[

(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))

−
1

1 − 1
2βη2

(
∫ 1

0

(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))dt

−β

∫ η

0

(η − s)(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))dt

)]

=

∫ t

0

(t − s)n−1

(n − 1)!
(f(s, x(s), x′(s), · · · , x(n−1)(s)) + e(s))ds

−
1

1 − 1
2βη2

(
∫ 1

0

(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))dt

−β

∫ η

0

(η − s)(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))dt

)
∫ t

0

(t − s)n−1

(n − 1)!
ds.

Since f is continuous, using the Ascoli-Arzela theorem, we can prove that QN(Ω) is

bounded and Kp(I − Q)N : Ω → X is compact, thus N is L−compact on Ω.

(v). The proof is simple and is omitted.

Theorem 2.1. For Case (i), assume the following conditions hold.

(A1). There exist functions ai(i = 0, 1, · · · , n − 1), b and r ∈ L1[0, 1] and a constant

θ ∈ [0, 1) such that for all xi ∈ R(i = 0, 1, · · · , n − 1), the following inequality holds:

|f(t, x0, x1, x2, · · · , xn−1)| ≤

n−1
∑

i−0

ai(t)|xi| + b(t)|xn−1|
θ + r(t);

(A2). There is M > 0 such that for any x ∈ domL/KerL, if |x(n−1)(t)| > M for all

t ∈ [0, 1], then

∫ 1

0

(f(s, x(s), x′(s), · · · , x(n−1)(s)) + e(s))ds

−β

∫ η

0

(η − s)(f(s, x(s), x′(s), · · · , x(n−1)(s)) + e(s))ds 6= 0;
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(A3). There is M∗ > 0 such that, for x(t) = ctn−1, either

c
[

∫ 1

0
(f(s, csn−1, c(n − 1)sn−2, · · · , (n − 1)!c) + e(s))ds

−β
∫ η

0 (η − s)(f(s, csn−1, (n − 1)csn−2, · · · , (n − 1)!c) + e(s))ds
]

< 0
(b1)

for all |c| > M∗ or

c
[

∫ 1

0 (f(s, csn−1, c(n − 1)sn−2, · · · , (n − 1)!c) + e(s))ds

−β
∫ η

0
(η − s)(f(s, csn−1, (n − 1)csn−2, · · · , (n − 1)!c) + e(s))ds

]

> 0
(b2)

for all |c| > M∗;

(A4).
∑n−1

i=1 ||ai||1 < 1.
Then BV P (4) and (5) has at least one solution.

Proof. To apply Theorem GM, we should define an open bounded subset Ω of X so
that (i), (ii) and (iii) of Theorem GM hold. To obtain Ω, we base it upon three steps.

The proof of this theorem is divide into four steps.

Step 1. Let

Ω1 = {x ∈ domL/KerL, Lx = λNx for some λ ∈ (0, 1)}.

For x ∈ Ω1, x /∈ KerL, λ 6= 0 and Nx ∈ Im L, thus QNx = 0. Then

∫ 1

0 (f(s, x(s), x′(s), · · · , x(n−1)(s)) + e(s))ds

−β
∫ η

0
(η − s)(f(s, x(s), x′(s), · · · , x(n−1)(s)) + e(s))ds = 0.

Hence by (A2), we know that there is t0 ∈ [0, 1] such that |x(n−1)(t0)| ≤ M. It is easy
to check that ||x|| = ||x(n−1)||∞ for all x ∈ domL. Let ||x|| = maxt∈[0,1] |x

(n−1)(t)| =

|x(n−1)(t1)|. Thus

|x(n−1)(t1)| ≤ |x(n−1)(t0)| +

∣

∣

∣

∣

∫ t0

t1

x(n)(s)ds

∣

∣

∣

∣

≤ M +

∫ 1

0

|x(n)(s)|ds

≤ M + ||Nx||1.

So
||x|| ≤ M + ||Nx||1.

From (A1), we get

||x|| ≤

n−1
∑

i=0

||ai||1||x
(i)||∞ + ||b||1||x

(n−1)||θ∞ + ||r||1 + ||e||1 + M
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≤

(

n−1
∑

i=0

||ai||1

)

||x(n−1)||∞ + ||b||1||x
(n−1)||θ∞ + ||r||1 + ||e||1 + M

=

n−1
∑

i=0

||ai||1||x|| + ||b||1||x||
θ + ||r||1 + ||e||1 + M.

i.e.
(

1 −

n−1
∑

i=0

||ai||1

)

||x|| ≤ ||b||1||x||
θ + ||r||1||e||1 + M.

Since θ ∈ [0, 1) and (A4), from the above inequality, there is M1 > 0 such that

||x|| = ||x(n−1)||∞ ≤ M1.

it follows that Ω1 is bounded.

Step 2. Let
Ω2 = {x ∈ KerL : Nx ∈ Im L}.

For x ∈ Ω2, then x(t) = ctn−1 for some t ∈ [0, 1]. Nx ∈ Im L implies QNx = 0. Thus

∫ 1

0 (f(s, csn−1, c(n − 1)sn−2, · · · , c(n − 1)!) + e(s))ds

− β
∫ η

0
(η − s)(f(s, csn−1, c(n − 1)sn−2, · · · , c(n − 1)!) + e(s))ds = 0.

From (A3), we get |c| ≤ M∗. So Ω2 is bounded.

Step 3. If (b1) in (A3) holds, let

Ω3 = {x ∈ KerL : −λ ∧ x + (1 − λ)QNx = 0, λ ∈ [0, 1]},

If (b2) in (A3) holds, Let

Ω3 = {x ∈ KerL : λx + (1 − λ)QNx = 0, λ ∈ [0, 1]}.

Now, we prove that Ω3 is bounded in both cases.
In fact, if (b1) in (A3) holds, and x = ctn−1 ∈ Ω3, we have

λc2 = (1 − λ)c 1
1− 1

2βη2

(

∫ 1

0 (f(s, csn−1, c(n − 1)sn−2, · · · , c(n − 1)!) + e(s))ds

−β
∫ η

0
(η − s)(f(s, csn−1, c(n − 1)sn−2, . . . , c(n − 1)!) + e(s))ds

)

.

If λ = 1, then c = 0. Otherwise, if |c| > M∗, then

λc2 = (1 − λ)c
1

1 − 1
2βη2

(
∫ 1

0

(f(s, csn−1, c(n − 1)sn−2, · · · , c(n − 1)!) + e(s))ds

−β

∫ η

0

(η − s)(f(s, csn−1, c(n − 1)sn−2, · · · , c(n − 1)!) + e(s))ds

)

< 0,
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which contradicts λc2 ≥ 0. So |c| ≤ M∗. This shows that Ω3 is bounded. Similarly to
above argument, we can prove that Ω3 is bounded if (b2) holds.

In the following, we shall show that all conditions of Theorem GM are satisfied. Set
Ω be a open bounded subset of X such that Ω ⊃ ∪3

i=1Ωi. By Lemma 2.1, L is a Fredholm
operator of index zero and N is L−compact on Ω. By the definition of Ω, we have

(a). Lx 6= λNx for x ∈ (domL/KerL) ∩ ∂Ω and λ ∈ (0, 1);
(b). Nx /∈ Im L for x ∈ KerL ∩ ∂Ω.

Step 4. We prove
(c). deg (QN |KerL, Ω ∩ KerL, 0) 6= 0.
In fact, let H(x, λ) = ∓λ∧ x + (1 − λ)QNx. According the definition of Ω, we know

H(x, λ) 6= 0 for x ∈ ∂Ω ∩ KerL, thus by homotopy property of degree,

deg (QN |KerL, Ω ∩ KerL, 0) = deg (H(·, 0), Ω ∩ KerL, 0)

= deg (H(·, 1), Ω ∩ KerL, 0)

= deg (∧, Ω ∩ KerL, 0)

6= 0.

Thus by Theorem GM, Lx = Nx has at least one solution in domL ∩ Ω, which is a
solution of BVP(4)-(5). The proof is complete.

Now, we consider BVP(4) and (5) in the Case (ii),

domL = { x ∈ Cn[0, 1], x(i)(0) = 0 for i = 0, 1, · · · , n − 3, x(n−2)(0) = αx(n−1)(ξ)

x(n−1)(1) = βx(η) }.

We have the following lemma, whose proof is similar to that of Lemma 2.1 and is omitted.

Lemma 2.2. The following results hold.

(i) KerL = {c(tn−1 + (n − 1)αtn−2), t ∈ [0, 1], c ∈ R};

(ii) ImL =

{

y ∈ Y,

∣

∣

∣

∣

∣

α
∫ ξ

0 y(s)ds 1
∫ 1

0 y(s)ds − β
∫ η

0 (η − s)y(s)ds β

∣

∣

∣

∣

∣

= 0

}

;

(iii) L is a Fredholm operator of index zero;

(iv) There are projectors P : X → X and Q : Y → Y such that KerL = Im P
and KerQ = Im L. Furthermore, let Ω ⊂ X be an open bounded subset with

Ω ∩ domL 6= Φ, then N is L−compact on Ω;

(v) x(t) is a solution of BV P (4) − (5) if and only if x is a solution of the operator

equation Lx = Nx in domL.

In fact, we have

Px(t) =
x(n−1)(0)

(n − 1)!

(

tn−1 + (n − 1)αtn−2
)

for x ∈ X,

Qy(t) =
1

M

∣

∣

∣

∣

∣

α
∫ ξ

0
y(s)ds 1

∫ 1

0 y(s)ds − β
∫ η

0 (η − s)y(s)ds β

∣

∣

∣

∣

∣

for y ∈ Y,
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Kpy(t) =

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds +

αtn−2

(n − 2)!

∫ ξ

0

y(s)ds for y ∈ Y,

where M =

∣

∣

∣

∣

αξ 1

1 − 1
2βη2 β

∣

∣

∣

∣

.

Theorem 2.2. For Case (ii), assume the following conditions hold.

(A1). There exist functions ai(i = 0, 1, · · · , n − 1), b and r ∈ L1[0, 1] and a constant

θ ∈ [0, 1) such that for all xi ∈ R(i = 0, 1, · · · , n − 1), the following inequality holds:

|f(t, x0, x1, x2, · · · , xn−1)| ≤

n−1
∑

i−0

ai(t)|xi| + b(t)|xn−1|
θ + r(t);

(A2). There is M > 0 such that for any x ∈ domL/KerL, if |x(n−1)(t)| > M for all

t ∈ [0, 1], then
∣

∣

∣

∣

∣

α
∫ ξ

0
y(s)ds 1

∫ 1

0
y(s)ds − β

∫ η

0
(η − s)y(s)ds β

∣

∣

∣

∣

∣

6= 0;

(A3). There is M∗ > 0 such that, for any c ∈ R, x(t) = c(tn−1 + (n − 1)αtn−2), let

D =
∫ 1

0
(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))ds

−β
∫ η

0 (η − s)(f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))ds,

if |c| > M∗ then either

c

∣

∣

∣

∣

∣

α
∫ ξ

0 (f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))dt 1

D β

∣

∣

∣

∣

∣

< 0

or

c

∣

∣

∣

∣

∣

α
∫ ξ

0 (f(t, x(t), x′(t), · · · , x(n−1)(t)) + e(t))ds 1
D β

∣

∣

∣

∣

∣

> 0;

(A4).
∑n−1

i=0 ||ai||1 < 1
2+n|α| .

Then BV P (4) and (5) has at least one solution.

Proof. The proof is similar to that of Theorem 2.1. Let Ω1 be defined as in the proof
of Theorem 2.1. We prove that Ω1 is bounded.

If x ∈ Ω1, similar to that of Step 1 in the proof of Theorem 2.1, we get

|x(n−1)(0)| ≤ M + ||Nx||1.

So

||Px|| =

∣

∣

∣

∣

∣

∣

∣

∣

x(n−1)(0)

(n − 1)!

(

tn−1 + (n − 1)αtn−2
)

∣

∣

∣

∣

∣

∣

∣

∣

≤ max
{

|x(n−1)(0)|, |x(n−1)(0)|(1 + (n − 1)|α|)
}

= ((n − 1)|α| + 1)|x(n−1)(0)|

≤ (1 + (n − 1)|α|)(M + ||Nx||1).
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On the other hand, for x ∈ Ω1, then x ∈ domL/KerL, (I − P )x ∈ domL ∩ KerP and
LPx = 0. By the definition of Kp, it is easy to see that

||Kpy|| = max
{

||(Kp)
(n−2)||∞, ||(Kp)

(n−1)||∞

}

= max

{

max
t∈[0,1]

(∣

∣

∣

∣

∣

∫ 1

0

(t − s)y(s)ds + α

∫ ξ

0

y(s)ds

∣

∣

∣

∣

∣

)

, max
t∈[0,1]

∣

∣

∣

∣

∫ t

0

y(s)ds

∣

∣

∣

∣

}

≤ (1 + |α|)

∫ 1

0

|y(s)|ds

= (1 + |α|)||y||1.

Hence

||(I−P )x|| = ||KpL(I−P )x|| ≤ (1+|α|)||L(I−P )x||1 ≤ (1+|α|)||Lx||1 ≤ (1+|α|)||Nx||1.

Thus one has

||x|| ≤ ||Px|| + ||(I − P )x||

≤ (1 + |α|(n − 1))M + (1 + |α|(n − 1))||Nx||1 + (1 + |α|)||Nx||1

≤ (1 + |α|(n − 1))M + (2 + n|α|)||Nx||1.

i.e.
||x|| ≤ (1 + |α|(n − 1))M + (2 + n|α|)||Nx||1.

The remainder of the proof is just similar to that of the proof of Theorem 2.1 and is
omitted.
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