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DYNAMICS OF THE PREDATOR-PREY MODELS ON

THE TWO-PATCH FRAGMENTED HABITAT WITH DISPERSAL

KAIJEN CHENG, TING-HUI YANG AND JIN-WEI YU

Abstract. In this work, we consider the population-dispersal dynamics for predator-prey

interactions in a two-patch environment. On each fragmented patch, there is a two-

species predator-prey ecological system. It is assumed that the predator species are mo-

bile. The existence and local dynamics of boundary equilibria and interior equilibria with

respect to parameters are completely classified. Moreover, global extinction results are

established analytically. In particular, the phenomenon of over-exploitation is also found

in these discrete patches models. Finally, some biological interpretations are discussed.

1. Introduction

Habitat fragmentation is an ecological phenomenon whereby discontinuities of habitat

arise from naturally geological processes, or from human activity such as agriculture, rural

development, urbanization and the creation of hydroelectric reservoirs [6, 9]. Habitat frag-

mentation is often a cause of species becoming threatened or endangered. So in order to pre-

serve biodiversity. It is a matter of urgency to understand the effects of fragmented habitats

[7, 8].

In this work, we investigate the dynamics of fragmented two-patch ecological systems.

On each fragmented habitat, we assume a two-species food web model with Lotka-Volterra

type interactions such that the predator species in the two-species system disperses between

different patches with dispersal costs. More precisely, in the patch i = 1,2, the following mod-

els are considered :

P i :



















d xi

d t
= ri xi (1−

xi

Ki
)−ai

x y xi yi ,

d yi

d t
= (−dyi

+ai
y x xi )yi −

∑

j 6=i

mi j yi +
∑

j 6=i

m j i (1−ε j i )y j .
(1.1)
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Here the constants ri , Ki and dyi
represent respectively the birth rate, environmental carrying

capacity and the death rate for species y on patch i . The parameter 0 ≤ mi j < 1 measures the

dispersal rates between patches i and j with dispersal costs 0 ≤ εi j ≤ 1. We make the following

non-dimensional transformation,

xi → xi /Ki , ai
y x → ai

y x Ki ,

retaining the other parameters in order to have the biological significance as rich as possible.

Then system (1.1) can be rewritten in the forms,

P 1 :















d x1

d t
= r1x1(1−x1)−ax y x1 y1,

d y1

d t
= (−dy1

+ay x x1)y1 −m12 y1 +m21(1−ε21)y2,

(1.2)

P 2 :















d x2

d t
= r2x2(1−x2)−bx y x2 y2,

d y2

d t
= (−dy2

+by x x2)y2 −m21 y2 +m12(1−ε12)y1,

(1.3)

In two recent articles [1, 4], Lou and Wu [4] study a three-trophic level food chain model,

proposed in [2], in two patches. The system consists of one resource species, two consumers,

and a top predator. The top predator feeds on the two consumers and both consumers feed

on the resource. Only the consumers move between the patches, possibly with a fraction of

loss in population during the movement. If the two consumers have the same dispersal rate

from patch 1 to patch 2, Lou and Wu show that the global dynamics of the model is completely

determined by the standard Lyapunov function using LaSalle’s invariance principle. They also

show that there exists an “optimal” dispersal rate from patch 2 to patch 1 for the consumers,

giving rise to a globally evolutionarily stable strategy and also a convergent stable strategy.

Note that to generalize their results to more than 3 patches would not be an easy task since

the effect of the geometric configuration of the patches comes into play.

In a related contribution Cressman and Křivan [1] consider the population-dispersal dy-

namics for two-species with predator-prey interactions or two competing species in a two-

patch environment. They assume that both species (i.e., either predators and their prey, or

the two competing species) are mobile and their dispersal between patches is directed to the

higher fitness patch. Local stability of boundary and interior equilibria are established.

First, it is an interesting and important question to establish the global dynamics of (1.2)−

(1.3) rigorously. Such results would complement those in [1]. Understanding the global dy-

namics of two species on a fragmented habitat with two patches is an essential first step to

understanding the results on more patches and with more species. Hence, in this work, we

consider the models (1.2)−(1.3) in a two-patch environment. If the patches are isolated, that
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is m12 = m21 = 0, then the local and global dynamics in each patch are well-known. Here

we are interested in the effect of the dispersal between the two fragmented habitats on the

dynamics of species and the meta-population [3] of the whole system, which is defined as

the set of local populations which persists through a balance between local extinction and

colonization.

For the predator-prey system on one patch with strong Allee effect in the prey, it is known

that predator invasion leads to the extinction of both species. This phenomenon is called

over-exploitation [10, 11, 12]. Mathematically, it means that a large enough initial predator

population will always lead to the extinction of both species for any given initial prey popu-

lation, i.e. convergence to the trivial equilibrium (0,0). Although the systems (1.2)−(1.3) have

no Allee effect in the prey, in Proposition 2.9 we will show that over-exploitation arises due to

the fragmented habitat.

The paper is organized as follows. In the next section we investigate a two-species

predator-prey model in an environment with two patches analytically. First, results on posi-

tivity and boundedness of solutions are presented. In the special case where there is no dis-

persal from patch 1 to patch 2, that is m12 = 0, conditions for the existence of local stability of

boundary and interior equilibria are presented. Criteria for global stability of the boundary

equilibria are obtained by considering the limiting system as in Markus [5], using Lyapunov

functions and LaSalle’s invariance principle. Finally, numerical results on the global stabil-

ity of the interior equilibrium are presented. In the final discussion section, we describe the

ecological implications of our mathematical results and formulate our conclusions. We also

point out some future research directions.

2. Predator-prey systems in two patches

In this section, first we show the positivity and boundedness of solution of (1.2)−(1.3).

Then the existence and local stability of boundary and interior equilibria are established.

Then classifications of all parameter corresponding to the global dynamics are presented.

Finally, investigate analytically the dynamics of predator-prey system in the two patchy envi-

ronments. If patches are isolated, that is m12 = m21 = 0, then (1.2)−(1.3) are decoupled and

each patch is a two-species predator-prey model which are well studied in the past decades.

In term of notation, for the decoupled system of (1.2)−(1.3), it is obvious that

E0 = (0,0,0,0),

Ex1
= (1,0,0,0),

Ex2
= (0,0,1,0),

Ex1 y1
=

( dy1

ay x
,

r1

ax y
(1−

dy1

ay x
),0,0

)

if dy1
< ay x ,
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Ex2 y2
=

(

0,0,
dy2

by x
,

r2

bx y
(1−

dy2

by x
)
)

if dy2
< by x ,

Ex1x2
= (1,0,1,0),

E1 =
( dy1

ay x
,

r1

ax y
(1−

dy1

ay x
),1,0

)

if dy1
< ay x ,

E2 =
(

1,0,
dy2

by x
,

r2

bx y
(1−

dy2

by x
)
)

if dy2
< by x ,

are boundary equilibria. The only interior equilibrium is

E∗ =
( dy1

ay x
,

r1

ax y
(1−

dy1

ay x
),

dy2

by x
,

r2

bx y
(1−

dy2

by x
)
)

if dy1
< ay x and dy2

< by x .

Here we state some well-known classical results for m12 = m21 = 0.

Proposition 2.1. Let the habitats patch 1 and 2 be isolated, that is, m12 = m21 = 0. Then

(i) If dy1
≥ ay x , then limt→∞ y1(t ) = 0. The boundary equilibrium Ex1

is globally asymptoti-

cally stable (GAS) in the x1-y1 plane. Otherwise, if dy1
< ay x , then the equilibrium Ex1 y1

is GAS in the x1-y1 plane.

(ii) Similarly, If dy2
≥ by x , then limt→∞ y2(t ) = 0. The boundary equilibrium Ex2

is globally

asymptotically stable (GAS) in the x2-y2 plane. Otherwise, if dy2
< by x , then the equilib-

rium Ex2 y2
is GAS in the x2-y2 plane.

Remark 2.2. By the previous results of proposition, in the decoupled system (1.2)−(1.3), equi-

libria Ex1x2
, E1, E2, E∗ are GAS with positive initial condition in R4 if

dy1
≥ ay x and dy2

≥ by x ,

dy1
< ay x and dy2

≥ by x ,

dy1
≥ ay x and dy2

< by x ,

dy1
< ay x and dy2

< by x ,

respectively.

2.1. Preliminary results and local stability of boundary equilibria

To start our investigation of the coupled systems (1.2)−(1.3), we first show that solutions

with positive initial conditions are bounded and positive for all positive time.

Lemma 2.3. Solutions of (1.2)−(1.3) are positive and bounded if they start with positive initial

conditions.
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Proof. Consider the 4-dimensional phase space, (x1, y1, x2, y2), it is obvious that systems

(1.2)−(1.3) have invariant subspaces, {(0, y1, x2, y2)}, {(x1, y1,0, y2)} and {(x1,0, x2,0)} for all

positive xi and yi . In addition, on the hyperplane {(x1,0, x2, y2)}
(

{(x1, y1, x2,0)}
)

with nor-

mal vector (0,1,0,0)
(

(0,0,0,1)
)

, the vector fields of systems (1.2)−(1.3) point to non-negative

cone of R4. Hence we show that non-negativity of all coordinates of solutions of (1.2)−(1.3)

with positive initial conditions.

Now we show solutions of (1.2)−(1.3) are bounded. First, it is easy to see that limsupt→∞

xi (t ) ≤ 1 by the differential inequality. Moreover, define D = max{
ayx

ax y
,

byx

bx y
}, D̄ = min{dy1

,dy2
}

and consider

d

d t

(

D
(

x1(t )+x2(t )
)

+ y1(t )+ y2(t )
)

≤ D
(

r1x1(1−x1)+ r2x2(1−x2)
)

−dy1
y1 −dy2

y2

≤ D
(

r1x1(1−x1)+ r2x2(1−x2)
)

− D̄(y1 + y2)

≤ M − D̄(D(x1 +x2)+ y1 + y2),

where M = D supt≥0

{

r1x1(1−x1)+ D̄ x1 +r2x2(1−x2)+ D̄ x2

}

. Hence D
(

x1(t )+x2(t )
)

+ y1(t )+

y2(t ) are bounded for all t ≥ 0. And xi (t ) and yi (t ) are also bounded, because of non-negativity

of xi (t ) and yi (t ). We complete the proof. ���

In order to couple the systems (1.2) and (1.3), we assume that one of the dispersal rates

m12 and m21 is positive. Moreover, to simply the arguments we assume further another dis-

persal rate is zero. Hence, without loss of generality, we have the assumption,

(A1) m21 > 0 and m12 = 0,

throughout this work. So we obtain a simplified systems of (1.2)−(1.3) :

P 1 :















d x1

d t
= r1x1(1−x1)−ax y x1 y1,

d y1

d t
= (−dy1

+ay x x1)y1 +m21(1−ε21)y2,

(2.1)

P 2 :















d x2

d t
= r2x2(1−x2)−bx y x2 y2,

d y2

d t
= (−dy2

+by x x2)y2 −m21 y2.

(2.2)

It is easy to see that Ex1x2
and E1 are still boundary equilibria of (2.1)−(2.2). But E2 is not an

equilibrium anymore. In the following, we try to find all equilibria with positive x2 and y2

coordinates.

By the second equation of (2.2), it easy to to solve x∗
2 =

dy2
+m21

byx
and y∗

2 =
r2

bx y
(1− x∗

2 ) if

by x > dy2
+m21. By system (2.1), we should solve the equations,

(

r1(1−x1)−ax y y1

)

x1 = 0,
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(dy1
−ay x x1)y1 = m21(1−ε21)y∗

2 ,

to find equilibria. If x∗
1 = 0, then we have y∗

1 =
m21(1−ε21)

dy1
y∗

2 . So here is a boundary equilibrium

Ē2 = (0,
m21(1−ε21)

dy1

y∗
2 , x∗

2 , y∗
2 ).

Otherwise, if x∗
1 > 0, then the positive equilibrium Ē∗ exists if and only if we can find a positive

number x∗
1 such that x∗

1 < min{1,
dy1

ayx
} and satisfies the equation,

( dy1

ay x
−x1

)

(1−x1) =
ax y

ay x

m21(1−ε21)

r1
y∗

2 . (2.3)

It is easy to see that left-hand side of equation (2.3) is a concave-upward quadratic polynomial

with roots 1 and dy1
/ay x and intersects y-axis on the point (0,dy1

/ay x ). Hence if

r2

r1

ax y

bx y

(

m21(1−ε21)
)

(1−
dy2

+m21

by x
) < dy1

, (2.4)

then we can find an x∗
1 < min{1,

dy1

ayx
} satisfying (2.3). Next we can further discuss the local

stabilities of all equilibrium of (2.1)−(2.2).

Direct computations, we can obtain the Jacobian matrix by direct computations,

J =













J11 −ax y x1 0 0

ay x y1 J22 0 m21(1−ε21)

0 0 J33 −bx y x2

0 0 by x y2 J44













(2.5)

where

J11 = r1(1−2x1)−ax y y1,

J22 =−dy1
+ay x x1,

J33 = r2(1−2x2)−bx y y2,

J44 =−dy2
+by x x2 −m21,

Here we list all boundary equilibria and their corresponding local stabilities as follows.

(a) Ex1x2
: Evaluating the Jacobian matrix, we obtain

J(Ex1x2
) =













−r1 −ax y 0 0

0 −dy1
+ay x 0 m21(1−ε21)

0 0 −r2 −bx y

0 0 0 −dy2
−m21 +by x













.

It is obvious that Ex1x2
is stable if dy1

> ay x and dy2
+m21 > by x .
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(b) E1 : Similarly, evaluating the Jacobian matrix, we obtain

J(E1) =













−r1x∗
1 −ax y x∗

1 0 0

ay x y∗
1 0 0 m21(1−ε21)

0 0 −r2 −bx y

0 0 0 −dy2
−m21 +by x













,

where x∗
1 =

dy1

ayx
and y∗

1 =
r1

ax y
(1−x∗

1 ). It is easy to see that E1 is stable if dy2
+m21 > by x .

(c) Ē2 : Similarly, evaluating the Jacobian matrix, we obtain

J(Ē2)=













r1 −ax y y∗
1 0 0 0

ay x y∗
1 −dy1

0 m21(1−ε21)

0 0 −r2x∗
2 −bx y x∗

2

0 0 by x y∗
2 0













,

where x∗
2 =

dy2+m21

byx
, y∗

2 =
r2

bx y
(1−x∗

2 ), and y∗
1 =

m21(1−ε21)
dy1

y∗
2 . It is easy to see that Ē2 is stable

if r1 < ax y y∗
1 which is equivalent to

r2

r1

ax y

bx y

(

m21(1−ε21)
)

(1−
dy2

+m21

by x
) > dy1

. (2.6)

(d) Ē∗ : Evaluated the Jacobian matrix, we obtain

J(Ē∗) =













−r1x∗
1 −ax y x∗

1 0 0

ay x y∗
1 −dy1

+ay x x∗
1 0 m21(1−ε21)

0 0 −r2x∗
2 −bx y x∗

2

0 0 by x y∗
2 0













.

Since x∗
1 < dy1

/ay x , it is clear that all eigenvalues of the Jacobian matrix J(Ē∗) are negative

if Ē∗ exists.

Therefore, we summarise the above arguments of local stabilities of equilibria in the fol-

lowing proposition.

Proposition 2.4. Consider the systems (2.1)−(2.2). The following statements are valid.

(i) The equilibrium Ex1x2
exists and is stable if dy1

> ay x and dy2
+m21 > by x .

(ii) The equilibrium E1 exists if ay x > dy1
and it is stable if dy2

+m21 > by x .

(iii) The equilibrium Ē2 exists if dy2
+m21 < by x and it is stable if (2.6) holds.

(iv) The equilibrium Ē∗ exists if dy2
+m21 < by x and (2.4) hold. Moreover, it is stable whenever

it exists.
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2.2. Classification and its corresponding global dynamics

To clarify all global dynamics of (2.1)−(2.2) is not a easy task. Since these are four dimen-

sional coupled systems with twelve parameters. How to take suitable parameters to classify is

crucial. So we classify generically all parameters as six cases :

I: ay x < dy1
and by x < dy2

;

II: ay x > dy1
and by x < dy2

;

III: ay x < dy1
and dy2

< by x < dy2
+m21;

IV: ay x > dy1
and dy2

< by x < dy2
+m21;

V: ay x < dy1
and by x > dy2

+m21;

VI: ay x > dy1
and by x > dy2

+m21.

The classification of parameters configuration are presented in Figure 2.1. First, we show a

extinction result if the death rates of species y1 and y2 are over maximal resources which they

can exploit. These parameters are showed in the case I of the Figure 2.1.

Proposition 2.5. If dy1
> ay x and dy2

> by x , then limt→∞ y1(t )= 0 and limt→∞ y2(t ) = 0. More-

over, the boundary equilibrium Ex1x2
is globally asymptotically stable (GAS).

Proof. Let δ ≡
1
2

min{dy1
− ay x ,dy2

−by x } > 0. Since limsupt→∞ xi (t ) ≤ 1, there is a positive

time T such that

x1(t )< 1+
δ

ay x
and x2(t )< 1+

δ

by x

for t ≥ T . These will imply that −dy1
+ay x x1 < −δ and −dy2

+by x x2 <−δ for t ≥ T . Further-

more, we consider

ẏ1 + ẏ2

y1 + y2
=

(−dy1
+ay x x1)y1

y1 + y2
+

(−dy2
+by x x2)y2

y1 + y2
−

m12ε12 y1 +m21ε21 y2

y1 + y2

≤
−δy1

y1 + y2
+

−δy2

y1 + y2
=−δ

This implies that limt→∞

(

y1(t )+ y2(t )
)

= 0. Because of positivity of y1(t ) and y2(t ), we obtain

limt→∞ y1(t ) = 0 and limt→∞ y2(t )= 0. We complete the proof. ���

Remark 2.6. This extinction result is still true if m12 > 0.
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Figure 2.1: We classify the dynamics of (2.1)−(2.2) by parameters ay x and by x . Generically,

we have six cases, case I : ay x < dy1
and by x < dy2

, case II :ay x > dy1
and by x < dy2

, case III

: ay x < dy1
and dy2

< by x < dy2
+m21, case IV : ay x > dy1

and dy2
< by x < dy2

+m21, case V :

ay x < dy1
and by x > dy2

+m21, case VI : ay x > dy1
and by x > dy2

+m21 .

Proposition 2.7. Let assumption (A1) hold. If by x < dy2
+m21 then limt→∞ y2(t ) = 0. If, in ad-

dition, ay x < dy1
, then limt→∞ y1(t )= 0 and the boundary equilibrium Ex1x2

is GAS. Otherwise,

if, in addition, ay x > dy1
, then the boundary equilibrium E1 =

( dy1

ax y
, r1

ax y
(1−

dy1

ax y
),1,0

)

is GAS.

Proof. It is clear to see that system (1.3) becomes the form,

d x2

d t
= r2x2(1−x2)−bx y x2 y2,

d y2

d t
= (−dy2

+by x x2)y2 −m21 y2.

The differential inequality ẏ2/y2 ≤ by x −dy2
−m21 < 0 implies limt→∞ y2(t ) = 0. Hence the

remaining part of the proposition can be easily showed by the results of Proposition 2.1. ���

Remark 2.8. This result says that if parameters (ay x ,by x ) fall in region I-IV of Figure 2.1 then

species y2 will die out if m12 = 0. Systems (2.1)−(2.2) become decoupled systems. Hence by

results of Proposition 2.1, either Ex1x2
is GAS in region I, III or E1 is GAS in region II, IV.

Before showing the GAS of equilibrium Ē2, we recall the following definitions and a the-

orem of Markus [5] which will be used here.

Definition. Let A : ẋ = f (x, t ) and A∞ : ẋ = f (x) be a first order system of ordinary differential

equations. The real valued function f (x, t ) and f (x) are continuous in (x, t ) for x ∈ G , where

G is an open subset of Rn , and for t > t0, and they satisfy a local Lipschitz condition in x. A is

said to be asymptotic to A∞, (A → A∞) in G if for each compact set K ⊂G and for each ǫ> 0,

there is a T = T (K ,ǫ)> t0 such that | f (x, t )− f (x)| < ǫ for all x ∈ K , and all t > T .
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Theorem (Markus). Let A → A∞, in G and let P be an asymptotically stable critical point of

A∞. Then there is a neighborhood N of P and a time T such that the omega limit set for every

solution x(t ) of A which intersects N at a time later than T is equal to P.

Proposition 2.9. Let assumption (A1), by x > dy2
+m21 and (2.6) hold. Then the boundary

equilibrium Ē2 =
(

0, y∗
1 , x∗

2 , y∗
2

)

of (2.1)−(2.2) is GAS where x∗
2 =

dy2+m21

byx
, y∗

2 =
r2

bx y
(1− x∗

2 ), and

y∗
1 =

m21(1−ε21)
dy1

y∗
2 .

Proof. Let
(

x1(t ), y1(t ), x2(t ), y2(t )
)

be a solution of (2.1)−(2.2) with positive initial conditions.

First, we claim that
(

x2(t ), y2(t )
)

approaches (x∗
2 , y∗

2 ) as t →∞. Since it is obvious that (2.2) is

decoupled with (2.1). So we consider the Lyapunov function

L1(t ) =

∫x2(t )

x2(0)

η−x∗
2

η
dη+

bx y

by x

∫y2(t )

y2(0)

η− y∗
2

η
dη.

Direct computation yields that

dL1

d t
=(x2 −x∗

2 )
ẋ2

x2
+

bx y

by x
(y2 − y∗

2 )
ẏ2

y2

=(x2 −x∗
2 )

(

r2(1−x2)−bx y y2

)

+
bx y

by x
(y2 − y∗

2 )(−dy2
−m21 +by x x2)

=− r2(x2 −x∗
2 )2

≤ 0.

Let M ≡ {(x1, y1, x2, y2) : L̇1(x1, y1, x2, y2) = 0} and it is obvious that M = {(x1, y1, x∗
2 , y2) : x1 >

0, y1 > 0, y2 > 0} with maximal invariant subset of M , {(x1, y1, x∗
2 , y∗

2 ) : x1 > 0, y1 > 0}. Hence,

by LaSalle’s invariant principle, we prove the claim,
(

x2(t ), y2(t )
)

→ (x∗
2 , y∗

2 ) as t →∞.

Applying the Markus theorem to

A :











































ẋ1 = r1x1(1−x1)−ax y x1 y1,

ẏ1 = (−dy1
+ay x x1)y1 +m21(1−ε21)y2,

ẋ2 = r2x2(1−x2)−bx y x2 y2,

ẏ2 = (−dy2
+by x x2)y2 −m21 y2,

xi (0) > 0, yi (0) > 0,

(2.7)

and

A∞ :











































ẋ1 = r1x1(1−x1)−ax y x1 y1,

ẏ1 = (−dy1
+ay x x1)y1 +m21(1−ε21)y∗

2 ,

ẋ2 = 0,

ẏ2 = 0,

x1(0) > 0, y1(0) > 0, x2(0) = x∗
2 , y2(0) = y∗

2 ,

(2.8)
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Table 2.1: Parmeters to simulate the global dynamics of (2.1)−(2.2) numerically.

r1 ax y ay x dy1
r2 bx y by x dy2

m21 ε21

0.6 1 1 0.1 0.6 0.5 1 0.4 0.4 0.1

0.6 1 1 0.5 0.6 0.5 1 0.4 0.4 0.1

it follows that solutions of (2.7) approach Ē2 if we can show that solutions of (2.8) approach

Ē2.

It is sufficient to complete the proof if we can show that
(

x1(t ), y1(t )
)

of the solution of

(2.8) approaches (0, y∗
1 ). Now we define another Lyapunov function for (2.8),

L2(t )= x1(t )+
ax y

ay x

∫y1(t )

y1(0)

η− y∗
1

η
dη.

By direct computations, we have

dL2

d t
=r1x1(1−x1)−ax y x1 y1 +

ax y

ay x
(y1 − y∗

1 )
[

−dy1
+ay x x1 +m21(1−ε21)

y∗
2

y1

]

=r1x1(1−x1)−ax y x1 y1 +ax y x1(y1 − y∗
1 )+

ax y

ay x
(y1 − y∗

1 )
[

−m21(1−ε21)
y∗

2

y∗
1

+m21(1−ε21)
y∗

2

y1

]

=r1x1(1−x1)−ax y x1 y∗
1 +

ax y

ay x
(y1 − y∗

1 )m21(1−ε21)
( y∗

2

y1
−

y∗
2

y∗
1

)

=− r1x2
1 −x1(ax y y∗

1 − r1)−
ax y

ay x
m21(1−ε21)

y∗
2 (y1 − y∗

1 )2

y1 y∗
1

≤ 0,

where note that (2.6) is equivalent to r1 < ax y y∗
1 . Similarly, by LaSalle’s invariant principle,

(

x1(t ), y1(t )
)

of the solution of (2.8) approaches (0, y∗
1 ). We complete the proof. ���

Finally, we would like to present the global dynamics of (2.1)−(2.2) with parameters (ay x ,

by x ) falling in region V and VI of Figure 1 numerically, that is, we ask that by x > dy2
+m21 and

take parameters in following table. By direct computations, we have

r2

r1

ax y

bx y
m21(1−ε21)(1−

dy2
+m21

by x
)= 0.144.

If we take parameters in the first row of Table 2.1 with dy1
= 0.1, then (2.6) holds which implies

Ē2 is globally asymptotically stable by Proposition 2.9. Please refer Figure 2.2. Similarly, we

take parameters in the second row of Table 2.1 with dy1
= 0.5, then (2.4) holds which implies

Ē∗ exists and is stable by Proposition 2.4. Numerically, we see these facts in Figure 2.3. Finally,

we conjecture that the positive equilibrium Ē∗ is globally asymptotically stable whenever is

exists.



138 KAIJEN CHENG, TING-HUI YANG AND JIN-WEI YU

Figure 2.2: Time courses of numerical simulation of each species of (2.1)−(2.2) with parame-

ters and dy1
= 0.1 in Table 2.1.

Figure 2.3: Time courses of numerical simulation of each species of (2.1)−(2.2) with parame-

ters and dy1
= 0.5 in Table 2.1.

3. Discussions and biological interpretations

In this work, we consider the dynamics of predator-prey systems on a fragmented habitat

with two patches. Each patch contains a two-species predator-prey ecological system. More-

over the predator species can disperse between the two patches with dispersal rates m12(m21)
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and dispersal costs ε12(ε21). To simplify the arguments, we further assume that the dispersal is

asymmetric, i.e. 0 = m12 <m21. Analytically, we find conditions guaranteeing the existence of

boundary and interior equilibria. Moreover, local stability and global extinctions of all equi-

libria are established using differential inequalities and LaSalle’s invariance principle.

It is well-known that for a predator-prey system on one patch with strong Allee effect in

the prey, a large predator invasion leads to the extinction of both species. Mathematically it is

called bi-stability whereas in biology it is called over-exploitation by the predator [10, 11, 12].

It is interesting that even though each of the predator-prey systems (1.2)−(1.3) has no Allee

effect in the prey, we have been able to show in Proposition 2.9 that the boundary equilibrium

E2 is globally asymptotically stable if the inequality below holds,

r2

r1

ax y

bx y

(

m21(1−ε21)
)

(1−
dy2

+m21

by x
)> dy1

, or equivalently r1 < ax y y∗
1 .

Let us carefully re-examine this inequality. It will hold if,

[1] the predator of patch 2 survives (dy2
+m21 < by x );

[2] the dispersal rate (m21) is larger and the dispersal cost (ε21) is smaller;

[3] the resource in patch 1 cannot sustain the exploitation by the consumer in patch 1 (r1 <

ax y y∗
1 ).

Up to now the phenomenon of overexploitation by predator has only been found in the predator-

prey model with strong Allee effect in the prey in the ODE case [10, 12] or PDE case [11].

In Proposition 2.9 we show a similar phenomenon arises when the resource in patch 1 can-

not sustain the exploitation by the consumer in patch 1. There is no Allee effect in systems

(1.2)−(1.3). Hence we suggest that the reason is due to the fragmentation of habitat.

For the case m12 > 0, the analysis will be another long story. So we leave it as another

project. Here we only present an interesting numerical result.Take the same parameters as in

the first row of Table 2.1. By the previous results, if m12 = 0, then we have limt→∞ x1(t ) = 0,

i.e. the species x1 will die out eventually. Mathematically, the numerical results suggest that

the positive equilibrium does not exist. However, we take m12 > 0 and fix m12 ∈ [0.1,0.2] with

step size 0.001. For each fixed parameter m12, we calculate the asymptotic state of (1.2)−(1.3)

numerically. We find that if m12 is large enough(> 0.15), then the species x1 will survive and

a positive equilibrium Ē∗ exists. Moreover, the asymptotic density of species x1 increases

with respect to parameter m12. Please refer to Figure 3.4. Numerically, it is obvious that the

dispersal affects the global dynamics positively. Moreover, the numerical results also suggest

that the habitat corridor which increases the rate of movement enhances biodiversity.



140 KAIJEN CHENG, TING-HUI YANG AND JIN-WEI YU

Figure 3.4: Numerical simulations of the asymptotic state of species x1 of (1.2)−(1.3) for values

of parameter m12 from 0.1 to 0.2 with step size 0.001; the other parameters are the same as in

the first row of Table 2.1.
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