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SOME RESULTS ON SYMMETRIC DUALITY OF MATHEMATICAL

FRACTIONAL PROGRAMMING WITH GENERALIZED

F -CONVEXITY COMPLEX SPACES

DEO BRAT OJHA

Abstract. In this present article we have given some mathematical fractional programming

problems with their symmetric duals and have derived weak and strong duality results with re-

spect to such programs. Moreover, we have also used most general type of convexity assumptions

involved with the functions which are related to the programming problems. It is to be pointed

out that the objective functions in such programs contain terms like support functions which in

turn are able to give results on particular classes of programs involving quadratic terms. Our

results in particular give as of special cases some eariler results symmetric duals given in the

current literature. All discussion goes to complex spaces.

1. Introduction

In a very recent work [6] have given some results on symmetric duals for mathematical
programming problems where F -convexity concepts have been incorporated. Some kind

of weak duality results and strong duality theorem have been derived under generalized

F -convexity conditions. It may be observed that in ref.[6], the authors have shown that

some previous results can be obtained as special cases of their results, e.g. if there is a
quadratic term like (XT AX)1/2 in the objective then the specializing the program of the

above references, one can get results for duality theorems with objective having quadratic

terms.

Again in very recent article [3], authors moves real spaces to complex spaces for

discussing symmetric duality of mathematical programming with F -convexity, which is
the enhanced discussion to improve this field significantly.

In the present article, we are giving symmetric dual of a class of mathematical frac-

tional programming problems under F -convexity assumptions in complex space in two

variables which have wider applications and as an outcome weak and strong duality
theorems have been derived and elaborated.
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2. Notation and Preliminaries

Let Cn denote an n-dimensional complex space. For x ∈ Cn, let the real vectors Re(x)

and Im(x) denote the real and imaginary parts, respectively, and let x = Re(x)− iIm(x)

be the conjugate of x. Given a matrix A = [aij ] ∈ Cm×n, where Cm×n is the collection of

m×n complex matrices, let A = ⌊aij⌋ ∈ Cm×n denote its conjugate matrix, let AH = [aji]

denote its conjugate transpose. The inner product of x, y ∈ Cn is (x, y) = yHx. Let R+

denote the halfline [0,∞[.

For a complex function f : Cn × Cn × Cm × Cm → C analytic with respect to

ζ = (w1, w2), z ∈ Cn, define gradients by

∇zf(v, v, ζ) =

[

∂f

∂w1
(v, v, ζ)

]

, ∇zf(v, v, ζ) =

[

∂f

∂w2
(v, v, ζ)

]

.

In order to define generalized F -convexity, we introduced the functional F as follows.

Let F : Cn × Cn × Cn → R be sub linear on the third variable. Then we can define

generalized F -convexity for analytic functions.

Definition 2.1. The real part Ref of an analytic function f : Cn×Cn×Cm×Cm →

C is said to be F -convex at (u, u) with respect to R+ if for any x ∈ Cn for fixed

(y, y) ∈ C2m, Re[f(x, x, y, y) − f(u, u, y, y)] ≥ F (x, u,∇xf(u, u, y, y) + ∇xf(u, u, y, y))

for some arbitrary sublinear functional F .

Remark. The above definition is given in [3].

Definition 2.2. The real part Ref of an analytic function f : Cn×Cn×Cm×Cm →

C is said to be F -concave at (y, y) with respect to R+ if for any x ∈ Cn for fixed

(x, x) ∈ Cn × Cn, if

Re[f(x, x, y, y) − f(x, x, u, u)] ≥ F (y, u,−∇yf(x, x, y, y) −∇yf(x, x, y, y))

for some arbitrary sublinear functional F .

Definition 2.3. The real part Ref of an analytic function f : Cn×Cn×Cm×Cm →

C is said to be F -pseudoconvex at (u, u) with respect to R+ if for any x ∈ Cn for fixed

(y, y) ∈ Cm × Cm, if

F (x, u,∇xf(u, u, y, y) + ∇xf(u, u, y, y)) ≥ 0 ⇒ Re[f(x, x, y, y) − f(u, u, y, y)] ≥ 0

for all x ∈ Cn for some arbitrary sublinear functional F .

Definition 2.4. The real part Ref of an analytic function f : Cn×Cn×Cm×Cm →

C is said to be F -pseudoconcave at (u, u) with respect to R+ if for any x ∈ Cn for fixed

(x, x) ∈ Cn × Cn, if

F (y, u,−∇yf(x, x, u, u) −∇yf(x, x, u, u)) ≥ 0 ⇒ Re[f(x, x, y, y) − f(x, x, u, u)] ≤ 0
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for all y ∈ Cm and for some arbitrary sublinear functional F .

Let f be a twice differentiable function from Cn × Cn × Cm × Cm → C. Let C
be a compact convex set in R, the support function of C is defined by S((x, x)/C) =

max .{xT y + xHy, (y, y) ∈ C} for (x, x) ∈ Cn × Cn. A support function, being convex

and everywhere finite has a sub differential in the sense of convex analysis, that is there
exist (z, z) such that

Re[S((x, x)/C) − S((y, y)/C)] ≥ Re[(z, z)T {(x, x) − (y, y)}] for all (x, x).

The sub differential S(x/C) is given by

δS((x, x)/C) = {(z, z) ∈ Cn × Cn : zT x + zHx = S((x, x)/C)}.

There is a relation between normal cones and support functions of a compact convex set
C, namely, (y, y) is in NC(x, x) if and only if S((y, y)/C) = (x, x)T (y, y).

Consider the mathematical programming problem

min f(x, x) subject to (x, x) ∈ Cn × Cn, (1)

where f : Cn × Cn → C and x ∈ Cm × Cm. A feasible point (x0, x0) is said to

be weak optimal solution of (1) if there exist no other feasible point (x, x) for which

Re[f(x0, x0) − f(x, x)] > 0. If a feasible point (x0, x0) is optimal then it is clear that it
is also a weak solution.

In what follws we have used the notion of generalized F -convexity of a particular kind

namely for F and G which are sub linear functionals there are properties like F -convexity
and G-convexity. These properties have also been used in some of the references which

we have quoted in the present article. We do not repeat the details of such descriptions.

Symmetric Duality

Consider the following pair of symmetric duals of non-differentiable mathematical

programs.

Primal (VP)

Minimize
Re[(f(x, x, y, y) + S((x, x)/C) − (yT z + yHz))]

Re[(g(x, x, y, y) − S((x, x)/E) + (yT r + yHr))]
= l.

Subject to

(a) Re[{∇yf(x, x, y, y) − z} + {∇yf(x, x, y, y) − z} − l[{∇yg(x, x, y, y) + r}

+{∇yg(x, x, y, y) + r}]] ≤ 0,

(b) Re[yT [{∇yf(x, x, y, y) − z} − l{∇yg(x, x, y, y) + r}] + yH [{∇yf(x, x, y, y) − z}
−l{∇yg(x, x, y, y) + r}] ≥ 0,
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(c) (z, z) ∈ D ∈ Cm × Cm and (r, r) ∈ H ∈ Cm × Cm,

(d) x ≥ 0.

Dual (VD)

Minimize
Re[f(u, u, v, v) − S((v, v)/D) + uT w + uHw]

Re[g(u, u, v, v) + S((v, v)/H) − uT t − uHt]
= L.

Subject to

(e) Re[{{∇uf(u, u, v, v) + w} − L{∇ug(u, u, v, v) − t}} + {{∇uf(u, u, v, v) + w}

−L{∇ug(u, u, v, v) − t}] ≥ 0,

(f) Re[uT {{{∇uf(u, u, v, v) + w}−L{{∇ug(u, u, v, v) − t}} + {uH{∇uf(u, u, v, v) +w}

−L{∇ug(u, u, v, v) − t}] ≤ 0,

(g) (w, w) ∈ C ∈ Cn × Cn and (t, t) ∈ E ∈ Cn × Cn,

(h) v ≥ 0.

C and E are compact convex sets in Cn ×Cm and D and H are compact convex sets

in Cm × Cm. Now we established weak and strong duality theorem between (VP) and

(VD).

Theorem 1.1 (Weak Duality Theorem). Let (x, x, y, y, z, z, r, r) be feasible for

(VP) and let (u, u, v, v, w, w, t, t) be feasible for (VD).

Let Re[{f(., ., v, v) + (.)T w + (.)Hw} − L{g(., ., v, v) − (.)T t − (.)Ht}]

be F -Pseudoconvex at (u, u). (2)

And let Re[{f(x, x, ., .) − (.)T z − (.)Hz} − l{f(x, x, ., .) + (.)T r + (.)Hr}]

be G-Pseudoconvex at (y, y). (3)

Assume that,

F (x, u, {∇uf(u, u, v, v) + w + ∇uf(u, u, v, v) + w}

−L{∇ug(u, u, v, v) − t + ∇uf(u, u, v, v) − t}})

+Re[uT {(∇uf(u, u, v, v) + w) − L(∇ug(u, u, v, v) − t)}

+uH{(∇uf(u, u, v, v) + w) − L(∇ug(u, u, v, v) − t)}] ≥ 0 (4)

G(v, y, {∇yf(x, x, y, y) − z + ∇yf(x, x, y, y) − z}

−l{∇yg(x, x, y, y) + r + ∇yg(x, x, y, y) + r)})

+Re[yT [{(∇yf(x, x, y, y) − z} − l{∇yg(x, x, y, y) + r]

+yH [{∇yf(x, x, y, y) + r) − l{∇yg(x, x, y, y) + r}] ≤ 0 (5)
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then

Re[f(x, x, y, y) + S((x, x)/C) − yT z − yHz]

Re[g(x, x, y, y) − S((x, x)/E) + yT r + yHr]

≥
Re[f(u, u, v, v) − S((v, v)/D) + uT w + uHw]

Re[g(u, u, v, v) + S((v, v)/H) − uT t − uHt]
(6)

Here it is assumed that the numerator of the objective function is nonnegative and

the denominator is positive in the feasible region for both the primal and dual problems.

Proof. From (4)

F (x, u, {∇uf(u, u, v, v) + w + ∇uf(u, u, v, v) + w}

−L{∇ug(u, u, v, v) − t + ∇uf(u, u, v, v) − t}})

+Re[uT {(∇uf(u, u, v, v) + w) − L(∇ug(u, u, v, v) − t)}

+uH{(∇uf(u, u, v, v) + w) − L(∇ug(u, u, v, v) − t)}] ≥ 0

since Re[[f(., ., v, v) + (.)T w + (.)Hw] − L[g(., ., v, v) − (.)T t − (.)H t]] is F -Pseudoconvex

at (u, u), it follows that

Re[f(x, x, v, v)+(x)T w+(x)Hw]−L[g(x, x, v, v)+S((v, v)/H)−(x)T t−(x)Ht]]

−Re[f(u, u, v, v)+(u)T w+(u)Hw]−L[g(u, u, v, v)+S((v, v)/H)−(u)T t−(u)Ht]] ≥ 0 (7)

I.e. Re[f(x, x, v, v)−S((v, v)/D)+(x)T w+(x)Hw]−L[g(x, x, v, v)+S((v, v)/H)−(x)T t−

(x)H t]] ≥ 0

Re[(x)T w + (x)Hw] ≤ Re[S((x, x)/C)] and from (7), then from

Re[(x)T t + (x)H t] ≤ Re[S((x, x)/E)], (t, t) ∈ E,

Re[(v)T r + (v)Hr] ≤ Re[S((v, v)/H)], (r, r) ∈ H ,

Re[f(u, u, v, v) + S((v, v)/H) − uT t − uHt] > 0

by (7), we obtain

Re[f(x, x, v, v) + S((x, x)/C) − S((v, v)/D)]

−L[g(x, x, v, v) − S((x, x)/E) + (v)T r + (v)Hr]] ≥ 0 (8)

From (5)

G(v, y, {∇yf(x, x, y, y) − z + ∇yf(x, x, y, y) − z}

−l{∇yg(x, x, y, y) + r + ∇yg(x, x, y, y) + r)}

+Re[yT [{(∇yf(x, x, y, y) − z − (∇yg(x, x, y, y) + r}]

+yH [{∇yf(x, x, y, y) − z) −∇yg(x, x, y, y) + r}]] ≤ 0
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From Re[{f(x, x, ., .) − (.)T z − (.)Hz} − l{g(x, x, ., .) − S((x, x)/E) + (.)T r + (.)Hr}] G-

pseudoconcave at (y, y), it implies that,

Re[{f(x, x, v, v) − (v)T z − (v)Hz}

−l{g(x, x, v, v) − S((x, x)/E) + (v)T r + (v)Hr}]

−Re[{f(x, x, y, y) − (y)T z − (y)Hz}

−l{g(x, x, y, y) − S((x, x)/E) + (y)T r + (y)Hr}] ≤ 0 (9)

Re[{f(x, x, v, v) + S((x, x)/C) − (v)T z − (v)Hz}

−l{g(x, x, v, v) − S((x, x)/E) + (v)T r + (v)Hr}] ≤ 0

since Re[vT z + vHz] ≤ Re[S((v, v)/D)](z, z) ∈ D ∈ Cm × Cm.

Re[(x)T t + (x)H t] ≤ Re[S((t, t)/E], (t, t) ∈ E ∈ Cm × Cm

Re[(v)T r + (v)Hr] ≤ Re[S((v, v)/H ], (r, r) ∈ H , and because

Re[f(x, x, y, y) + S((x, x)/C) − yT z − yHz] ≥ 0,

Re[g(x, x, y, y) − S((x, x)/E) + yT r + yHr] > 0, we get

Re[{f(x, x, v, v) + S((x, x)/C) − S((v, v)/D)}

−l{g(x, x, v, v) − S((x, x)/E) + (v)T r + (v)Hr}] ≤ 0 (10)

Now, Combining (9) and (10), we have

(l − L){g(x, g, v, v) − S((x, x)/E) + (v)T r + (v)Hr} ≥ 0 (11)

Since Re[g(x, x, y, y) − S((x, x)/E) + yT r + yHr] > 0, (11) implies (l) ≥ (L)

Theorem 1.2 (Strong Duality Theorem). If (x0, x0, y0, y0, z0, z0) is an optimal

solution for (VP) then there exist (w0, w0) ∈ Cn × Cn, such that (x0, x0, y0, y0, w0, w0)

is feasible for (VD) and let the assumption of Theorem 1.1 be fulfilled. Assume that,

(i) Re[(∇yy + ∇yy)f + (∇yy + ∇yy)f ] is + ive or − ive definite.

then (x0, x0, y0, y0, w0, w0) is a solution for (VD) and both (VP) and (VD) have the same

optimal value.

Proof. A strong duality theorem for this type of problems can be proved in the single

objective view of [6] in the light of the above theorem.

Conclusion and Special Cases.

It has been shown in many of the eariler works ([5] and [6]) non smooth programming

duality can be tackled by introducing quadratic terms like (xT Ax)1/2. Even in the

fractional objective case the numerator as well as denominator can contain such quadratic

terms.
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Special cases:

If we are taking real case: A frequently occuring example of a non differentiable
support function is (xT Ax)1/2, where A is a positive semi definite matrix. It can be

easily verified that (xT Ax)1/2 = S(x/C), where C = {Ay : (yT Ay) ≤ 1} and that set C
is compact convex.

(a) If in the feasible regions k ≡ 1, gi ≡ 1, (xT
i Bx)1/2 = S(x/Ci), where Ci = {Biy :

(yT Biy) ≤ 1}, (xT Cx)1/2 = S(x/Di), where

Di = {Ciy : (yT Ciy) ≤ 1}, i = 1, 2, . . . , k,

then programs (FP) and (FD) become a pair of symmetric dual non differentiable
programs considered by Chandra, Craven, and Mond [2].

(b) If in (FP) and (FD), Bi = {0} and Ci = {0}, i = 1, 2, . . . , k, and in the feasible regions
gi ≡ 1, i = 1, 2, . . . , k, we obtain the symmetric dual multiobjective programming

problems studied by Weir and Mond [4].
(c) If in (FP) and (FD), k ≡ 1, gi ≡ 1, Ci = {0} and Di = {0}, i = 1, 2, . . . , k, we obtain

symmetric dual problems studied by Chandra, Craven, and Mond [2].
(d) If in (FP) and (FD), k ≡ 1, gi ≡ 1, we obtain symmetric dual problems studied by

Mond and Schecher [1].
(e) If we consider the real case, then it reduces in the single objective view of [6].

(f) If we consider the Integral real case, then it reduces in the single objective view of
[5].

2. If we are eliminating support functions then it will reduce to work in [3] for 1st order
case.
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