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SOME RESULTS OF OPERATOR IDEALS ON s-TYPE

|A, p| OPERATORS

AMIT MAJI AND P. D. SRIVASTAVA

Abstract. Let s = (sn) be a sequence of s-numbers in the sense of Pietsch and A be an

infinite matrix. This paper presents a generalized class A (s) −p of s-type |A, p| operators

using s-number sequence which unifies many earlier well known classes. It is shown

that the class A (s) −p forms a quasi-Banach operator ideal under certain conditions on

the matrix A. Moreover, the inclusion relations among the operator ideals as well as the

inclusion relations among their duals are established. It is also proved that for the Cesàro

matrix of order 1, the operator ideal formed by approximation numbers is small for 1 <
p <∞.

1. Introduction

Due to the immense applications in spectral theory, the geometry of Banach spaces,

theory of eigenvalue distributions, etc., the theory of operator ideals occupies a special im-

portance in functional analysis. Many useful operator ideals have been defined by using se-

quence of s-numbers. In 1963, Pietsch [4] firstly introduced the approximation numbers of a

bounded linear operator in Banach spaces. Subsequently, different s-numbers, namely Kol-

mogorov numbers, Gel’fand numbers, etc. are introduced to the Banach space setting. For

the unifications of different s-numbers, Pietsch ([5], 1974) defined an axiomatic theory of s-

numbers in Banach spaces.

For each fixed infinite matrix A = (ank ), Rhoades [11] defined A − p space, denoted by

|A, p| as

|A, p| =



















x ∈ w :
( ∞

∑

n=1

( ∞
∑

k=1

|ank xk |
)p)

1
p <∞ for 0 < p <∞

x ∈ w : sup
n≥1

( ∞
∑

k=1

|ank xk |
)

<∞ for p =∞,

where w is a sequence space of real or complex numbers. Further, Rhoades [12] has shown

that if A = (ank ) is a triangle, i.e., ank = 0 for k > n and ann 6= 0, then the space |A, p| is sepa-

rable for 1 < p <∞ and complete for 1 < p ≤∞. A−p spaces contain many known sequence
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spaces such as Cesàro sequence spaces, 1 ≤ p <∞ [13], lp sequence spaces, 0 < p ≤∞ etc.

by specifying suitable matrix. In particular, if we choose the matrix A = (ank ) as a Nörlund

matrix, i.e.,

ank =
{

an+1−k

An
: 1 ≤ k ≤ n

0 : k > n,

where an is nonnegative for each n and An =
∑n

k=1
ak > 0, then |A, p| space reduces to

{

x ∈ w :
( ∞

∑

n=1

(

1
An

n
∑

k=1
|an+1−k xk |

)p)
1
p <∞

}

,

whereas Nörlund sequence space [14] is defined as, for 1 ≤ p <∞

{

x ∈ w :
( ∞

∑

n=1

(

1
An

|
n
∑

k=1
an+1−k xk |

)p)
1
p <∞

}

.

If we choose the sequence an = 1 for all n ∈N, then |A, p| space reduces to Cesàro sequence

space for 1 ≤ p <∞, denoted as cesp . For A = I , we have the sequence space lp for 0 < p ≤∞.

Pietsch [4] calls an operator T ∈L (E ,F ) to be l p type if
∑∞

n=1(an(T ))p is finite for 0 < p <
∞, where (an(T )) is the sequence of approximation numbers of the bounded linear operator

T . Later on Constantin [2] generalized the class of lp type operators to the class of ces − p

type operators by using the Cesàro sequence spaces, where an operator T ∈L (E ,F ) is called

ces −p type if
∑∞

n=1

(

1
n

n
∑

k=1
ak (T )

)p
is finite, 1 < p <∞. Rhoades [11] further generalized the

class of ces − p type operators to the class of A − p type operators, where A = (ank ) is an

arbitrary infinite matrix. An operator T ∈ L (E ,F ) is said to be A −p type operator if (an(T ))

is an element of the corresponding |A, p| space, 0 < p ≤ ∞. Pietsch [7] studied extensively

operator ideals generated from the different s-number sequences by using Lorentz sequence

spaces.

The purpose of this paper is to study a generalized class of operators using the sequence

of s-numbers. We have also shown that the class A (s) −p of s-type |A, p| operators is a quasi-

Banach operator ideal under some certain conditions on the infinite matrix A, which is more

general than the usual classes of operator ideals. Moreover, we have obtained various inclu-

sion relations among the operator ideals as well as the inclusion relations among their duals.

Finally, it is shown that for the Cesàro matrix of order 1, the operator ideal formed by approx-

imation numbers is small for 1 < p <∞.

2. Preliminaries

Throughout this paper we denote E , F as the real or complex Banach spaces and L (E ,F )

as the space of all bounded linear operators from E to F . Let L be the class of all bounded
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linear operators between arbitrary Banach spaces. We denote E
′

as the dual of E and x
′

is

the continuous linear functional on E . N and R
+ stand for the set of all natural numbers and

the set of all nonnegative real numbers, respectively. Let x
′ ∈ E

′
and y ∈ F , then the map

x
′ ⊗ y : E → F is defined by (x

′ ⊗ y)(x)= x
′
(x)y , x ∈ E .

We now state few results which will be used in the sequel. Before it, we recall some basic

definitions and terminologies of s-numbers of operators and operator ideals.

Definition 2.1. A finite rank operator is a bounded linear operator whose dimension of the

range space is finite.

Definition 2.2 ([1], [9]). A map s = (sn) : L → R
+ assigning to every operator T ∈ L a non-

negative scalar sequence (sn(T ))n∈N is called an s-number sequence if the following condi-

tions are satisfied:

(S1) monotonicity: ‖T ‖= s1(T ) ≥ s2(T ) ≥ ·· · ≥ 0, for T ∈L (E ,F )

(S2) additivity: sm+n−1(S +T )≤ sm(S)+ sn(T ), for S,T ∈L (E ,F ), m,n ∈N

(S3) ideal property: sn(RST ) ≤ ‖R‖sn(S)‖T ‖, for some R ∈ L (F,F0), S ∈ L (E ,F ) and T ∈
L (E0,E ), where E0,F0 are arbitrary Banach spaces

(S4) rank property: If r ank(T )≤ n then sn(T ) = 0

(S5) norming property: sn(I : l n
2 → l n

2 ) = 1, where I denotes the identity operator on the n-

dimensional Hilbert space l n
2 .

We call sn(T ) the n-th s-number of the operator T . For results on s-number sequence,

refer ([1], [5], [7], [8], [9]).

We give some examples of s-number sequences of a bounded linear operator.

Let T ∈L (E ,F ) and n ∈N.

The n-th approximation number, denoted by an(T ), is defined as

an(T ) = inf
{

‖T −L‖ : L ∈L (E ,F ), rank(L) < n
}

.

The n-th Gel’fand number, denoted by cn(T ), is defined as

cn(T ) = inf
{

‖T JM‖ : M ⊂ E , codim(M) <n
}

,

where JM : M → E be the natural embedding from subspace M of E into E .

The n-th Kolmogorov number, denoted by dn(T ), is defined as

dn(T ) = inf
{

‖QN (T )‖ : N ⊂ F, dim(N) < n
}

,
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where QN : E → E/N be the quotient map from E onto E/N .

The n-th Weyl number, denoted by xn(T ), is defined as

xn(T ) = inf
{

an(T A) : ‖A : l2 → E‖≤ 1
}

,

where an(T A) is an n-th approximation number of the operator T A.

The n-th Chang number, denoted by yn(T ), is defined as

yn(T ) = inf
{

an(BT ) : ‖B : F → l2‖ ≤ 1
}

,

where an(BT ) is an n-th approximation number of the operator BT .

The n-th Hilbert number, denoted by hn(T ), is defined as

hn(T ) = sup
{

an(BT A) : ‖B : F → l2‖≤ 1, ‖A : l2 → E‖≤ 1
}

.

Remark 2.1 ([9]). Among all the s-number sequences defined above, it is easy to verify that

the approximation number, an(T ) is the largest and the Hilbert number, hn(T ) is the smallest

s-number sequence, i.e., hn(T ) ≤ sn(T ) ≤ an(T ) for any bounded linear operator T . If T is

compact and defined on a Hilbert space, then all the s-numbers coincide with the singular

values of T , i.e., the eigenvalues of |T |, where |T | = (T ∗T )
1
2 .

Proposition 2.1 ([9], p.115). Let T ∈L (E ,F ). Then

hn(T )≤ xn(T ) ≤ cn(T ) ≤ an(T ) and hn(T ) ≤ yn(T )≤ dn(T ) ≤ an(T ).

Definition 2.3. ([9], p.90) An s-number sequence s = (sn) is called injective if, given any metric

injection J ∈L (F,F0), sn(T ) = sn(JT ) for all T ∈L (E ,F ).

Definition 2.4. ([9], p.95) An s-number sequence s = (sn) is called surjective if, given any

metric surjection Q ∈L (E0,E ), sn(T ) = sn(TQ) for all T ∈L (E ,F ).

Proposition 2.2. ([9], pp.90-94) The Gel’fand numbers and the Weyl numbers are injective.

Proposition 2.3. ([9], p.95) The Kolmogorov numbers and the Chang numbers are surjective.

The following lemma is required to prove our theorems.

Lemma 2.1 ([5]). |sn(T )− sn(S)| ≤ ‖T −S‖ for S,T ∈L (E ,F ) and n = 1,2, · · · .

Definition 2.5 ((Dual s-numbers) [5]). For each s-number sequence s = (sn), a dual s-number

function sD = (sD
n ) is defined by

sD
n (T ) = sn(T

′
) for all T ∈L ,

where T
′

is the dual of T .
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Definition 2.6 ([7], p.152)). An s-number sequence is called symmetric if sn(T ) ≥ sn(T
′
) for

all T ∈L . If sn(T ) = sn(T
′
) then the s-number sequence is said to be completely symmetric.

Now we state some known results of dual of an s-number sequence.

Theorem 2.1. ([7], p.152) The approximation numbers are symmetric, i.e., an(T
′
) ≤ an(T ) for

T ∈L .

Remark 2.2. an(T
′
) = an(T ) for every compact operator T ( refer, C. V. Hutton [3]).

Theorem 2.2 ([7], p.153). Let T ∈L . Then

cn(T ) = dn(T
′
) and cn(T

′
) ≤ dn(T ).

In addition, if T is a compact operator then cn(T
′
)= dn(T ).

Theorem 2.3. ([9], p.96) Let T ∈L . Then

xn(T ) = yn(T
′
) and yn(T ) = xn(T

′
),

i.e., Weyl numbers and Chang numbers are dual to each other.

Theorem 2.4 ([7], p.153). The Hilbert numbers are completely symmetric, i.e., hn(T ) = hn(T
′
)

for all T ∈L .

Definition 2.7 ([7], [10]). Let L be the class of all bounded linear operators between arbitrary

Banach spaces and L (E ,F ) be the set of all such operators from E to F . A sub collection M

of L is said to be an ideal if each component M (E ,F ) =M
⋂

L (E ,F ) satisfies the following

conditions:

(OI 1) if x ′ ∈ E ′, y ∈ F then x ′⊗ y ∈M (E ,F );

(OI 2) if S,T ∈M (E ,F ) then S +T ∈M (E ,F );

(OI 3) if S ∈M (E ,F ), T ∈L (E0,E ) and R ∈L (F,F0) then RST ∈M (E0,F0).

Definition 2.8 ([7], [10]). A function α : M →R
+ is said to be a quasi-norm on the ideal M if

the following conditions hold:

(QON 1) if x ′ ∈ E ′, y ∈ F then α(x ′⊗ y) =‖x
′‖‖y‖;

(QON 2) there exists a constant Cα ≥ 1 such thatα(S+T ) ≤Cα[α(S)+α(T )] for S,T ∈M (E ,F );

(QON 3) if S ∈M (E ,F ), T ∈L (E0,E ) and R ∈L (F,F0) then α(RST )≤ ‖R‖α(S)‖T ‖.
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In particular if Cα = 1 then α becomes a norm on the operator ideal M .

An ideal M with a quasi-normα, denoted by [M ,α] is said to be a quasi-Banach operator

ideal if each component M (E ,F ) is complete under the quasi-norm α. A quasi-normed op-

erator ideal [M ,α] is called injective if for every operator T ∈L (E ,F ) and a metric injection

J ∈L (F,F0), JT ∈M (E ,F0) we have T ∈M (E ,F ) and α(JT ) =α(T ). Further, a quasi-normed

operator ideal [M ,α] is called surjective if for every operator T ∈L (E ,F ) and a metric surjec-

tion Q ∈ L (E0,E ), TQ ∈ M (E0,F ) we have T ∈ M (E ,F ) and α(TQ) = α(T ). Thus injectivity

and surjectivity are dual concept. For its various properties, please refer to [7].

Definition 2.9 ([7], [10]). For every operator ideal M , the dual operator ideal denoted by M
′

is defined as

M
′
(E ,F ) =

{

T ∈L (E ,F ) : T
′
∈M (F

′
,E

′
)
}

,

where T
′

is the dual of T and E
′

and F
′

are the duals of E and F , respectively.

Definition 2.10 ([7], p.68). An operator ideal M is called symmetric if M ⊂M
′

and is called

completely symmetric if M =M
′
.

Remark 2.3 ([7], [10]).

1. M
′

is complete if M is complete.

2. If [M
′
,α

′
] be the dual of quasi-normed ideal [M ,α] then α

′
(T ) =α(T

′
).

We now consider some known operator ideals determined by sequence of s-numbers,

namely L
(s)

r,p and S(s)
p (see [7], [9]), where

L
(s)

r,p :=
{

T ∈L :
∞
∑

n=1

(

n
1
r
− 1

p sn(T )
)p

<∞
}

for 0 < r, p <∞,

and

S(s)
p :=

{

T ∈L :
∞
∑

n=1

(

sn(T )
)p

<∞
}

for 0 < p <∞.

Definition 2.11 ([6]). An operator ideal M is said to be small if M (E ,F ) = L (E ,F ) implies

that at least one of the Banach spaces E and F is of finite dimension.

3. Operators of s-type |A, p|

In this section we have defined s-type |A, p| operators and proved that the operator ideal

formed by s-number sequence is complete. We have also investigated the dual and inclusion

results among the operator ideals.
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Let s = (sn) be a sequence of s-numbers. We call an operator T ∈ L (E ,F ) is of s-type

|A, p| operator if the sequence of s-numbers of T , (sn(T )) is an element of the corresponding

|A, p| space. In other words, T is of s-type |A, p| operator if















( ∞
∑

n=1

( ∞
∑

k=1
|ank sk (T )|

)p)
1
p <∞ for 0< p <∞,

sup
n≥1

( ∞
∑

k=1

|ank sk (T )|
)

<∞ for p =∞.

For each fixed matrix A, we denote A (s) − p be the class of all s-type |A, p| operators

between arbitrary Banach spaces and A
(s)

(E→F )
−p be the set of s-type |A, p| operators from E

to F which is a component of A (s) −p for 0 < p ≤∞.

Let A = (ank ) be a matrix satisfying the condition:

|an,2k−1|+ |an,2k | ≤ M |ank | for each k and n, (3.1)

where M is a constant independent of n and k .

Theorem 3.1. Let 0 < p <∞. For fixed matrix A = (ank ) satisfying (3.1) and
∞
∑

n=1
|an1|p <∞, the

class A (s) −p is an operator ideal.

Proof. Let E and F be any two Banach spaces. We shall prove (OI 1) to (OI 3) to show A (s) −p

is an operator ideal. Let x
′ ∈ E

′
, y ∈ F then x

′ ⊗ y is a rank one operator. So

sn(x
′ ⊗ y)= 0 for all n ≥ 2.

We have

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (x
′
⊗ y)|

)p)
1
p =

( ∞
∑

n=1

(

|an1s1(x
′
⊗ y)|

)p)
1
p

= ‖x
′
⊗ y‖

( ∞
∑

n=1

|an1|p
)

1
p <∞.

Thus x
′ ⊗ y ∈A

(s)
(E→F )

−p and hence (OI 1) is proved.

Let S,T ∈A
(s)

(E→F )
−p . We calculate

∞
∑

k=1

|ank sk (T +S)| =
∞
∑

k=1

|an,2k−1s2k−1(T +S)|+
∞
∑

k=1

|an,2k s2k(T +S)|

≤
( ∞

∑

k=1

(

|an,2k−1|+ |an,2k |
)

s2k−1(T +S)
)
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≤ M
( ∞

∑

k=1

|ank |sk(T )+
∞
∑

k=1

|ank |sk(S)
)

. (3.2)

Case I: 0< p < 1

For 0 < p < 1 and a,b > 0, we have
(

a+b
)p

≤
(

ap +bp
)

and
(

a+b
)

1
p ≤C

(

a
1
p +b

1
p

)

, where C ≥ 1

is a constant.

From (3.2), we have

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (T +S)|
)p)

1
p ≤ M

( ∞
∑

n=1

( ∞
∑

k=1

|ank |sk (T )+
∞
∑

k=1

|ank |sk (S)
)p)

1
p

≤C .M
[( ∞

∑

n=1

( ∞
∑

k=1

|ank |sk (T )
)p)

1
p +

( ∞
∑

n=1

( ∞
∑

k=1

|ank |sk (S)
)p)

1
p
]

<∞

where C ≥ 1 is a constant.

Case II: 1 ≤ p <∞
Using Minkowski inequality for 1 ≤ p <∞, we have from (3.2)

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk(T +S)|
)p)

1
p ≤ M

( ∞
∑

n=1

( ∞
∑

k=1

|ank |sk (T )+
∞
∑

k=1

|ank |sk (S)
)p)

1
p

≤ M
[( ∞

∑

n=1

( ∞
∑

k=1

|ank |sk (T )
)p)

1
p +

( ∞
∑

n=1

( ∞
∑

k=1

|ank |sk (S)
)p)

1
p
]

<∞.

Thus S +T ∈A
(s)

(E→F )
−p and hence (OI 2) is proved.

Let T ∈L (E0,E ), R ∈L (F,F0) and S ∈A
(s)

(E→F )
−p . It is required to prove RST ∈A

(s)
(E0→F0)

−p .

Using the property (S3) in the Definition 2.2., we have

sn(RST )≤ ‖R‖sn(S)‖T ‖ for all n ∈N.

So

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (RST )|
)p) 1

p ≤ ‖R‖‖T ‖
( ∞

∑

n=1

( ∞
∑

k=1

|ank sk(S)|
)p) 1

p

<∞.

Thus RST ∈A
(s)

(E0→F0)
−p and therefore (OI 3) is proved.

Hence A (s) −p is an operator ideal. ���

Corollary 3.1. Let A = (ank ) be a matrix satisfying (3.1) and sup
n≥1

|an1| <∞. Then for p =∞, the

class A (s) −∞ is an operator ideal.
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Remark 3.1. Let A = (ank ) be a matrix such that
∞
∑

n=1
|an1|p <∞, then the condition (3.1) on

the matrix is sufficient but not necessary to form an operator ideal. Justification is given be-

low.

Justification: Let 0 < p <∞ and A = (ank ) be a nonzero diagonal matrix such that

|a2n−1,2n−1|p +|a2n,2n |p ≤ M1|ann |p , (3.3)

where M1 is a constant independent of n.

First of all, we show that for the nonzero diagonal matrix A satisfying (3.3), the class A (s) −p

of s-type |A, p| operators forms an operator ideal. For this let S, T ∈A
(s)

(E→F )
−p . Then

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (T +S)|
)p)

1
p =

( ∞
∑

n=1

(

|ann |sn(T +S)
)p)

1
p

≤C1.M
1
p

1

[( ∞
∑

n=1

(

|ann |sn(T )
)p)

1
p +

( ∞
∑

n=1

(

|ann |sn(S)
)p)

1
p
]

=C1.M
1
p

1

[( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (T )|
)p)

1
p +

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (S)|
)p)

1
p
]

<∞.

Thus S +T ∈A
(s)

(E→F )
−p . Hence (OI 2) is proved. Clearly the conditions (OI 1) and (OI 3) hold

good. Thus the class A (s) − p is an operator ideal. But the nonzero diagonal matrix A (In

particular identity matrix) does not satisfy the condition (3.1). This proves our claim.

Remark 3.2. Let A = I , an identity matrix, then the operator ideal A (s) −p becomes a well

known operator ideal S(s)
p which has been studied extensively by many mathematicians.

If we choose the matrix A = (ank ) such that for 0 < r, p <∞

ank =
{

n
1
r
− 1

p : if n = k

0 : otherwise.

Then the matrix A satisfies the condition (3.3) and forms a quasi-Banach operator ideals de-

noted as L
(s)

r,p introduced by Pietsch.

Note 3.1. It is observed that if the matrix A = (ank ) satisfies the condition (3.1), then the set

A
(s)

(E→F )
−p of s-type |A, p|operators from E to F is a linear space. So if we choose the s-number

sequence as the sequence of approximation numbers, then the set A
(a)

(E→F )
−p is same as the

set of A−p type operators studied by Rhoades. If we choose the matrix A as the Cesàro matrix

of order 1 then the set A
(a)

(E→F )
−p coincides with the set of ces −p type operators introduced

by Constantin.
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Note 3.2. Rhoades [11] raised an open question whether the condition (3.1) on the matrix

A = (ank ) is necessary for the set of A −p type operator to form a linear space? It is observed

that the identity matrix I does not satisfy the condition (3.1) but the set of A −p type (here

A = I ) operators forms a linear space structure. This answers the question of Rhoades in

negation, i.e., the condition (3.1) on the matrix A is sufficient but not a necessary to form a

linear space.

Proposition 3.1. For 1 ≤ p < q ≤∞, we have A (s) −p ⊆A (s) −q.

Proof. For 1≤ p < q ≤∞, we have |A, p| ⊆ |A, q |. So the proof of Proposition 3.1. is trivial. ���

Let A (s) −p be an operator ideal. Define β(s)
A,p

: A (s) −p →R
+ for 0 < p <∞ by

β(s)
A,p

(T ) =
( ∞

∑

n=1

( ∞
∑

k=1
|ank sk (T )|

)p)
1
p

,

where T ∈A (s) −p .

Note 3.3. For p =∞, we define β(s)
A,∞(T )= sup

n≥1

( ∞
∑

k=1

|ank sk(T )|
)

.

Theorem 3.2. Let 0 < p <∞. For fixed nonzero matrix A = (ank ) satisfying the condition (3.1)

and
∞
∑

n=1
|an1|p < ∞, the function β̂(s)

A,p
is a quasi-norm on the operator ideal A (s) − p, where

β̂(s)
A,p (T ) =

β(s)
A,p (T )

(

∞
∑

n=1
|an1|p

)
1
p

, T ∈A (s) −p.

Proof. Let E and F be two Banach spaces and A
(s)

(E→F )
−p be any one of the components of

A (s) −p .

Let x
′ ∈ E

′
, y ∈ F , then x

′ ⊗ y is a rank one operator. So sn(x
′ ⊗ y)= 0, ∀n ≥ 2. Therefore,

β(s)
A,p(x

′
⊗ y) =

( ∞
∑

n=1

(

|an1s1(x
′
⊗ y)|

)p)
1
p = ‖x

′
⊗ y‖

( ∞
∑

n=1

|an1|p
)

1
p

.

Again ‖x
′ ⊗ y‖ = sup

‖x‖=1
‖(x

′ ⊗ y)(x)‖ = ( sup
‖x‖=1

|x ′
(x)|)‖y‖ = ‖x

′‖‖y‖.

Therefore

β̂(s)
A,p

(x
′
⊗ y) =‖x

′
‖‖y‖.

Suppose that S,T ∈A
(s)

(E→F )
−p , then

β(s)
A,p

(S +T )=
( ∞

∑

n=1

( ∞
∑

k=1

|ank sk(S +T )|
)p)

1
p
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=
( ∞

∑

n=1

( ∞
∑

k=1

|an,2k−1s2k−1(S +T )|+
∞
∑

k=1

|an,2k s2k (S +T )|
)p)

1
p

≤Cβ.M
(( ∞

∑

n=1

( ∞
∑

k=1

|ank sk (S)|
)p)

1
p +

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk(T )|
)p)

1
p
)

≤Cβ.M
(

β(s)
A,p

(S)+β(s)
A,p

(T )
)

,

where Cβ ≥ 1 is a constant. Thus

β̂(s)
A,p

(S +T )≤Cβ.M
(

β̂(s)
A,p

(S)+ β̂(s)
A,p

(T )
)

.

Finally, let S ∈A
(s)

(E→F )
−p , R ∈L (F,F0) and T ∈L (E0,E ). Then

β(s)
A,p (RST )=

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (RST )|
)p)

1
p

≤ ‖R‖‖T ‖
(( ∞

∑

n=1

( ∞
∑

k=1

|ank sk(S)|
)p)

1
p
)

≤ ‖R‖β(s)
A,p(S)‖T ‖.

Thus

β̂(s)
A,p

(RST )≤ ‖R‖β̂(s)
A,p

(S)‖T ‖.

Hence β̂(s)
A,p

is a quasi-norm on the operator ideal A (s) −p . ���

Example 3.1. Let A = (ank ) be a Cesàro matrix of order 1, then for p = 2, β̂(s)
A,2

is a quasi norm

on the operator ideal A (s) −2, where β̂(s)
A,2

(T ) =
p

6
π

( ∞
∑

n=1

(

1
n

n
∑

k=1
sk (T )

)2) 1
2

, T ∈A (s) −2.

Corollary 3.2. Let A = (ank ) be a nonzero matrix satisfying (3.1) and sup
n≥1

|an1| <∞. Then for

p = ∞, the function β̂(s)
A,∞ is a quasi-norm on the operator ideal A (s) −∞, where β̂(s)

A,∞(T ) =
β(s)

A,∞(T )

sup
n≥1

|an1| , T ∈A (s) −∞.

Theorem 3.3. The operator ideal A (s)−p is complete with the quasi-norm β̂(s)
A,p , i.e., [A (s)−p,

β̂(s)
A,p

] is a quasi-Banach operator ideal for 0 < p ≤∞.

Proof. Let 0 < p <∞. To prove A (s)−p is a quasi-Banach operator ideal, it is enough to prove

that each component A
(s)

(E→F )
−p of A (s) −p is complete under the quasi norm β̂(s)

A,p
.

We have

β(s)
A,p

(T )=
( ∞

∑

n=1

( ∞
∑

k=1

|ank sk (T )|
)p)

1
p
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≥
( ∞

∑

n=1

(

|an1s1(T )|
)p)

1
p

= ‖T ‖
( ∞

∑

n=1

|an1|p
)

1
p

.

⇒‖T ‖≤ β̂(s)
A,p

(T ) for T ∈A
(s)

(E→F )
−p. (3.4)

Let (Tm) be a Cauchy sequence in A
(s)

(E→F )
−p . Then ∀ ǫ> 0, there exist N ∈N such that

β̂(s)
A,p

(Tm −Tl ) < ǫ, ∀ m, l ≥ N . (3.5)

Now from (3.4),

‖Tm −Tl‖ ≤ β̂(s)
A,p

(Tm −Tl ).

Using (3.5), we have

‖Tm −Tl‖≤ β̂(s)
A,p (Tm −Tl ) < ǫ ∀ m, l ≥ N .

Hence (Tm) is a Cauchy sequence in L (E ,F ). As F is a Banach space, L (E ,F ) is also a Banach

space. Therefore Tm → T as m →∞ in L (E ,F ). We shall now show that Tm → T as m →∞ in

A
(s)

(E→F )
−p .

Using Lemma 2.1., we have

|sn(Tl −Tm)− sn(T −Tm)| ≤ ‖Tl −T ‖.

Letting l →∞, we have

sn(Tl −Tm) → sn(T −Tm). (3.6)

From (3.5), we get

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (Tl −Tm)|
)p)

1
p < ǫ

( ∞
∑

n=1

|an1|p
)

1
p

, ∀ m, l ≥ N .

Using (3.6), it can be shown that as l →∞ ( keeping m ≥ N fixed)

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (T −Tm)|
)p) 1

p ≤ ǫ
( ∞

∑

n=1

|an1|p
) 1

p

⇒ β̂(s)
A,p

(T −Tm) ≤ ǫ ∀ m ≥ N .

This means that Tm → T under the quasi-norm β̂(s)
A,p

.

Next to show that T ∈A
(s)

(E→F )
−p . Now

∞
∑

k=1

|ank sk (T )| =
∞
∑

k=1

|an,2k−1s2k−1(T )|+
∞
∑

k=1

|an,2k s2k(T )|
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≤
∞
∑

k=1

(

|an,2k−1|+ |an,2k |
)

s2k−1(T )

Since 0 ≤ sn+1(T )≤ sn(T ), ∀ n and using the inequality (3.1), we have

∞
∑

k=1

|ank sk (T )| ≤ M
( ∞

∑

k=1

|ank |sk (T −TN )+
∞
∑

k=1

|ank |sk (TN )
)

.

Therefore

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (T )|
)p)

1
p ≤C .M

[( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (T −TN )|
)p)

1
p +

( ∞
∑

n=1

( ∞
∑

k=1

|ank sk (TN )|
)p)

1
p
]

<∞,

since β̂(s)
A,p

(T −TN ) <∞ and (TN ) ∈A
(s)

(E→F )
−p.

Hence T ∈A
(s)

(E→F )
−p.

For p =∞, we can similarly prove that A (s)−∞ is complete under the quasi-norm β̂(s)
A,p−

∞.

This completes the proof. ���

We now study some properties of the quasi-Banach operator ideal A (s)−p for 0 < p ≤∞.

Theorem 3.4. If the s-number sequence is injective, then the quasi-Banach operator ideal

[A (s) −p, β̂(s)
A,p

] is injective for 0 < p ≤∞.

Proof. Let 0 < p <∞. Let T ∈L (E ,F ) and J ∈L (F,F0) be any metric injection. Suppose that

JT ∈A
(s)

(E→F0)
−p . Then

∞
∑

n=1

( ∞
∑

k=1

|ank sk (JT )|
)p

<∞.

Since the s-number sequence s = (sn) is injective, we have sn(T ) = sn(JT ), for all T ∈L (E ,F ),

n = 1,2, · · · . Hence

∞
∑

n=1

( ∞
∑

k=1

|ank sk(T )|
)p

=
∞
∑

n=1

( ∞
∑

k=1

|ank sk (JT )|
)p

<∞.

Thus T ∈A
(s)

(E→F )
−p and clearly β̂(s)

A,p
(JT ) = β̂(s)

A,p
(T ) holds.

Similarly we can prove for p =∞. Hence the operator ideal [A (s) −p, β̂(s)
A,p] is injective. ���

Remark 3.3. The quasi-Banach operator ideal [A (c)−p, β̂(c)
A,p

] formed by Gel’fand numbers c =
(cn) and the quasi-Banach operator ideal [A (x) −p, β̂(x)

A,p
] formed by Weyl numbers x = (xn)

are injective quasi-Banach operator ideals for 0 < p ≤∞.

Theorem 3.5. If the s-number sequence is surjective, then the quasi-Banach operator ideal

[A (s) −p, β̂(s)
A,p

] is surjective for 0 < p ≤∞.
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Proof. Let 0 < p <∞. Let T ∈ L (E ,F ) and Q ∈ L (E0,E ) be any metric surjection. Suppose

that TQ ∈A
(s)

(E0→F )
−p . Then

∞
∑

n=1

( ∞
∑

k=1

|ank sk (TQ)|
)p

<∞.

Since the s-number sequence s = (sn) is surjective, we have sn(T ) = sn(TQ), for all T ∈L (E ,F )

and n = 1,2, · · · . Hence

∞
∑

n=1

( ∞
∑

k=1

|ank sk (T )|
)p

=
∞
∑

n=1

( ∞
∑

k=1

|ank sk(TQ)|
)p

<∞.

Thus T ∈A
(s)

(E→F )
−p and also β̂(s)

A,p
(TQ)= β̂(s)

A,p
(T ).

It is easy to check for p =∞. Hence the operator ideal [A (s) −p, β̂(s)
A,p

] is surjective. ���

Remark 3.4. The quasi-Banach operator ideal [A (d) −p, β̂(d)
A,p

] formed by Kolmogorov num-

bers d = (dn) and the quasi-Banach operator ideal [A (y)−p, β̂
(y)

A,p ] formed by Chang numbers

y = (yn) are surjective quasi-Banach operator ideals.

Let us consider [A (a) −p, β̂(a)
A,p

] and [A (h) −p, β̂(h)
A,p

] be the quasi-Banach operator ideals

corresponding to the approximation numbers a = (an) and the Hilbert numbers h = (hn)

respectively. Then we have the following inclusion relations among the operator ideals.

Theorem 3.6. Let 0< p ≤∞. Then

(I) A (a) −p ⊆A (c) −p ⊆A (x) −p ⊆A (h) −p and

(II) A (a) −p ⊆A (d) −p ⊆A (y) −p ⊆A (h) −p.

Proof. Let 0 < p <∞. Suppose that T ∈A (a) −p . Then

∞
∑

n=1

( ∞
∑

k=1

|ank ak (T )|
)p

<∞.

From Proposition 2.1., we have

∞
∑

n=1

( ∞
∑

k=1

|ank hk (T )|
)p

≤
∞
∑

n=1

( ∞
∑

k=1

|ank xk (T )|
)p

≤
∞
∑

n=1

( ∞
∑

k=1

|ank ck (T )|
)p

≤
∞
∑

n=1

( ∞
∑

k=1

|ank ak (T )|
)p

.

Hence the proof of (I ) follows for 0 < p <∞. It is trivial to check for p =∞.

We omit the proof of (I I ) as it is similar to the previous one. ���

There are some converse estimates among s-number sequences as given below.

Lemma 3.2 ([8], p.165). Let T ∈L (E ,F ). Then an(T ) ≤ 2n
1
2 cn(T ) and an(T ) ≤ 2n

1
2 dn(T ).

We have next result related to this converse estimates.
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Theorem 3.7. Let 0 < r, p <∞ and A = (ank ) be a diagonal matrix where

ank =
{

n
1
r
− 1

p
− 1

2 : k = n

0 : k 6= n.

If a bounded linear operator T from E to F belongs to L
(c)

r,p , then T belongs to A (a) −p.

Proof. For 0 < p <∞, we have

∞
∑

n=1

( ∞
∑

k=1

|ank ak (T )|
)p

=
∞
∑

n=1

(

n
1
r
− 1

p
− 1

2 an(T )
)p

≤
∞
∑

n=1

(

n
1
r
− 1

p
− 1

2 .2n
1
2 cn(T )

)p
(Using Lemma 3.1.)

= 2p
∞
∑

n=1

(

n
1
r
− 1

p cn(T )
)p

<∞.

Hence the result follows. ���

Remark 3.5. In particular, if we take the diagonal matrix A = (ank ), where

ank =
{

n− 1
2 : k = n

0 : k 6= n.

If a bounded linear operator T from E to F belongs to S(c)
p , then T belongs to A (a) −p for

0 < p <∞.

Theorem 3.8. Let 0 < r, p <∞ and A = (ank ) be a diagonal matrix where

ank =
{

n
1
r
− 1

p
− 1

2 : k = n

0 : k 6= n.

If a bounded linear operator T from E to F belongs to L
(d)

r,p , then T belongs to A (a) −p.

Proof. The proof is similar to the proof of Theorem 3.7. ���

Remark 3.6. In particular, if we take the diagonal matrix A = (ank ), where

ank =
{

n− 1
2 : k = n

0 : k 6= n.

If a bounded linear operator T from E to F belongs to S(d)
p , then T belongs to A (a)−p for 0<

p <∞.

We now state the dual of the operator ideal formed by different s-number sequences.
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Theorem 3.9. The operator ideal A (a) − p is symmetric and the operator ideal A (h) − p is

completely symmetric for 0 < p ≤∞.

Proof. Since an(T
′
) ≤ an(T ) and hn(T

′
) = hn(T ), for all T ∈ L (E ,F ), we have A (a) − p ⊆

(A (a) −p)
′

and A (h) −p = (A (h) −p)
′
. ���

Theorem 3.10. Let 0 < p ≤ ∞. Then A (c) − p = (A (d) − p)
′

and A (d) − p ⊆ (A (c) − p)
′
. In

addition, if T belongs to the class of compact operators, then A (d) −p = (A (c) −p)
′
.

Proof. The proof follows from Theorem 2.2. ���

Theorem 3.11. Let 0 < p ≤∞. Then A (x) −p = (A (y) −p)
′

and A (y) −p = (A (x) −p)
′
.

Proof. The proof follows from Theorem 2.3. ���

3.1 Small operator ideal

This section deals with the small ideals of operators. In [6], Pietsch proved that the ideal S(a)
p

is small for 0 < p < ∞. Here, we proved that the ideal formed by approximation type cesp

operators is small for 1 < p <∞.

Let A be a Cesàro matrix of order 1 and A (a) − p be an ideal of approximation type cesp

operators.

Then we have the following theorem.

Theorem 3.12. The quasi-Banach operator ideal A (a) −p of approximation type cesp opera-

tors is small for 1 < p <∞.

Proof. Let λ =
( ∞

∑

n=1

1
np

)
1
p

for 1 < p < ∞. Then [A (a) − p, β̂(a)
A,p

] is a quasi-Banach operator

ideal, where β̂(a)
A,p

(T ) = 1
λ

( ∞
∑

n=1

(

1
n

n
∑

k=1
ak (T )

)p)
1
p

. Let E ,F be any two Banach spaces. Suppose

that A
(a)

(E→F )
−p = L (E ,F ), then there exists a constant C > 0 such that β̂(a)

A,p
(T ) ≤ C‖T ‖ for

all T ∈ L (E ,F ). Assume that E and F both are infinite dimensional Banach spaces. Then by

Dvoretzky’s theorem [7] for m = 1,2, · · · we have quotient spaces E/Nm and subspaces Mm

of F which can be mapped onto l m
2 by isomorphisms Xm and Am such that ‖Xm‖‖X −1

m ‖ ≤ 2

and ‖Am‖‖A−1
m ‖ ≤ 2. Consider Im be the identity map on l m

2 , Qm be the quotient map from

E onto E/Nm and Jm be the natural embedding map from Mm into F . Let an , dn and un

be approximation numbers, Kolmogorov numbers and Bernstein numbers [5], respectively.

Then

1 = un(Im)= un(Am A−1
m Im Xm X −1

m )
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≤ ‖Am‖un(A−1
m Im Xm)‖X −1

m ‖

= ‖Am‖un(Jm A−1
m Im Xm)‖X −1

m ‖

≤ ‖Am‖dn(Jm A−1
m Im Xm)‖X −1

m ‖

= ‖Am‖dn(Jm A−1
m Im XmQm)‖X −1

m ‖

≤ ‖Am‖an(Jm A−1
m Im XmQm)‖X −1

m ‖ for n = 1,2, · · · ,m.

Now

n
∑

k=1

(1) ≤
n
∑

k=1

‖Am‖ak(Jm A−1
m Im XmQm)‖X −1

m ‖

⇒
1

n
.n ≤ ‖Am‖

( 1

n

n
∑

k=1

ak (Jm A−1
m Im XmQm)

)

‖X −1
m ‖

⇒ 1 ≤
(

‖Am‖‖X −1
m ‖

)p( 1

n

n
∑

k=1

ak (Jm A−1
m Im XmQm)

)p
.

Therefore

( m
∑

n=1

(1)
)

1
p ≤

(

‖Am‖‖X −1
m ‖

)( m
∑

n=1

( 1

n

n
∑

k=1

ak (Jm A−1
m Im XmQm)

)p)
1
p

⇒
1

λ
m

1
p ≤‖Am‖‖X −1

m ‖
1

λ

( m
∑

n=1

( 1

n

n
∑

k=1

ak (Jm A−1
m Im XmQm)

)p)
1
p

⇒
1

λ
m

1
p ≤‖Am‖‖X −1

m ‖β̂(a)
A,p

(Jm A−1
m Im XmQm)

≤C‖Am‖‖X −1
m ‖‖Jm A−1

m Im XmQm‖

≤C‖Am‖‖X −1
m ‖‖Jm A−1

m ‖‖Im‖‖XmQm‖

=C‖Am‖‖X −1
m ‖‖A−1

m ‖‖Xm‖

≤ 4C .

This is a contradiction as m is any arbitrary number. Thus E and F both cannot be infinite

dimensional when A
(a)

(E→F )
−p =L (E ,F ). This completes the proof. ���

Theorem 3.13. The quasi-Banach operator ideal A (d) −p of Kolmogorov type cesp operators

is small for 1 < p <∞.

Proof. The proof is similar to the proof of Theorem 3.12. ���
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